Comparative Study of Different Parameter Inversion Methods

Jiangtao Quan, Keji Chen, Jing Xu, Xishan Wen, Zhuohong Pan, Qi Yang

Abstract—In order to obtain the objective function for four point method, the theoretical expression of objective function and its partial derivative have been obtained and computed by complex image method, which satisfies all the need of traditional optimal methods of direct search and gradient-based. The traditional optimal methods have been used as the inversion method of earth parameter on inverted error, iterative number and CPU time. Most of these methods are trapped into local solution because the earth parameter inversion is a highly nonlinear problem. The least square method and trust region method are the better methods for earth parameter inversion for their performance on accuracy and numerical stability. To improve the consistence of the inverted results, the least square method and trust region method with constrained conditions have been proposed. The constrained inversion with weights can normalize the resistivity and reflect the upper and deeper soil parameters, so the least square method with constrains and weights is recommend as the earth parameter inverted method of grounding grid design. In order to obtain the apparent resistivity curve precisely, the general configuration of pole distance is recommended to increase by 1:1.5 for the adjacent pole distance.

Index Terms—four-point method, earth parameters estimation, horizontal multilayer soils (HMS), probe spacing configuration.

I. INTRODUCTION

Earth parameter which determines grounding impedance and step/touch potential, is an essential part of grounding grid design[1], [2]. In the real geological formation, electrical conductivity distribution of earth is inhomogeneous. So earth parameters estimation (EPE) is aim for acquisition and utilization of the earth structure and composition by practical measured data.

The models of earth parameter have been more sophisticated, other than the spherical model [3], cylindrical form [4] and finite volume structure [5], horizontal multilayer earth(HME) are more widely used to simulate the real soil in grounding design [6], [7]. EPE is an optimization problem of apparent resistivities measured by four-point methods [8].

Based on complex image method, the measured apparent resistivity by Wenner arrangement is interpreted by BFGS quasi–Newton method [9]. As partial derivatives of apparent resistivities according to earth parameters have been derived, this method is more efficient than classical image method.

Recently, generic algorithm (GA) has been applied in soil parameter estimation to increases the accuracy in the calculation of parameters of horizontal multilayer earth. The error comparison between J. Alamo [10] and GA by I. F. Gonos [10] showed that J. Alamo’s methods for parameters estimation of two-layer earth is with considerably higher error when compared with GA methodology. Based on Sundè’s algorithm [11] and GA, W. P. Calixto [12] presented a better estimation method considering the number of layers. Moreover, W. P. Calixto used the 3-D soil stratification methodology to increase the resolution of electrical properties of the local soil model [13].

In early researches, HMS with two layers has been well developed [14], [15]. For three-layer earth interpretation, the electrostatic images generating method (EIG) for HMS [16], [17]. It is time-consuming during iterative computation process. But In fact, the EIG can be mathematically derived using Taylor’s expansion of Green’s function of HMS. Due to the limitation of implementation efficiency, EIG is not widely used in soil parameter inversion (SPI) of HMS which is more than 3 layers. As an improvement of EIG, complex image method (CIM) has been introduced to carry out calculation of Green’s function of HMS. Moreover, for SPI of HMS, BFGS quasi–Newton method has been put forwards by CIM solution of Green’s function and its derivatives to earth parameters [9]. But for all the gradient–base methods, the derivation methods for HMS are rather complicated when n>4 [6], [9]. If n > 3, optimization methods converge to local optima easily which may lead to considerable larger error than global optima or real situation. As a derivative free method, GA is time-consuming and local−minimum−convergent in some cases. Even with GA, traditional method [18] and Sundè’s algorithm [16] have produced different results by [10], [12].

Although a lot of research conducted, comprehensive comparison of various methods’ performance haven’t been done, and the problems of pole layout principle and the difference of the inversion results have not been effective study, which must be further discussed.

Based on the objective function of horizontal multilayer soil parameters inversion and combing with the example, this article compares the performance of different methods, and a
nalizes the effect of polar distance on soil parameter measurements, also this article summarizes the pole layout principle. And to solve the problem of exotic and different inversion results, soil parameter inversion method with constraints was proposed, and is verified by an example.

II. OBJECTIVE FUNCTION OF SOIL PARAMETERS

As shown in Fig. 1, scalar potential φ of an arbitrary observation point satisfies Poisson’s equation in the cylindrical coordinate:

$$\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{\partial^2 \phi}{\partial z^2} = -\rho_0 \delta(d), r = \sqrt{x^2 + y^2}$$ \hspace{1cm} (1)

Where δ is referred to as the Dirac delta function and d is denoted by distance between the observation point and the point current source. The closed form of φ can be written as

$$\phi(x, y, z_0) = \frac{\rho_f}{4\pi \rho_0} \left[A e^{-\lambda(x-a)} + B e^{\lambda(x-a)} \right] J_0(\lambda \sqrt{x^2 + y^2}) \text{d} \lambda \text{d} a$$ \hspace{1cm} (2)

Where φ is the scalar potential of layer i, λ is the integral variable and J_0 is zero order Bessel function of first kind. A_i and B_i can be theoretically derived and then approximated by complex image method:

$$A_i(\lambda) = \sum_{n=1}^{N_{Ai}} \alpha_i e^{i \beta_i \lambda}, B_i(\lambda) = \sum_{n=1}^{N_{Bi}} \alpha_i e^{-i \beta_i \lambda}$$ \hspace{1cm} (3)

Where N_{Ai} and N_{Bi} is the number of complex images of A_i and B_i, α and β is the amplitude and location of the complex image (3) into (2) gives

$$\phi(x, y, z_0) = \frac{\rho_f}{4\pi} \sum_{i=1}^{N_{Ai}} \frac{\alpha_i}{\sqrt{x^2 + y^2 + (z - z_0 - \beta_i)^2}}$$ \hspace{1cm} (4)

For the four-point configuration shown in Fig. 2, the voltage difference of the potential probes is given by:

$$V_{P_1} - V_{P_2} = \phi_1(x_{C1} - x_{P1}, y_{C1} - y_{P1}, z_{P1}, z_{C1}) - \phi_2(x_{C2} - x_{P2}, y_{C2} - y_{P2}, z_{P2}, z_{C2})$$

$$- \phi_3(x_{C1} - x_{P1}, y_{C1} - y_{P1}, z_{P1}, z_{C1}) + \phi_4(x_{C2} - x_{P2}, y_{C2} - y_{P2}, z_{P2}, z_{C2})$$

$$= \frac{\rho_f}{4\pi} \left(\sum_{i=1}^{N_{Ai}} \alpha_i \left(\frac{1}{\sqrt{x_{P1}^2 + y_{P1}^2 + (z_{P1} - z_{C1})^2}} - \frac{1}{\sqrt{x_{P2}^2 + y_{P2}^2 + (z_{P2} - z_{C2})^2}}
ight) + \sum_{i=1}^{N_{Bi}} \alpha_i \left(\frac{1}{\sqrt{x_{P1}^2 + y_{P1}^2 + (z_{P1} - z_{C1})^2}} - \frac{1}{\sqrt{x_{P2}^2 + y_{P2}^2 + (z_{P2} - z_{C2})^2}} \right) \right)$$

Potential difference of P_1 and P_2 can be written as

$$V_{P_1} - V_{P_2} = \frac{\rho_f}{4\pi} \left(D_{A_{C1} - B_{C1}} + D_{A_{C2} - B_{C2}} - D_{A_{C1} - B_{C2}} - D_{A_{C2} - B_{C1}} \right)$$

where ρ_0 is the apparent resistivity. D_{A_{C1} - B_{C1}} is defined as

$$D_{P_{-Q}} = \frac{1}{\sqrt{(x_P - x_Q)^2 + (y_P - y_Q)^2 + (z_P - z_Q)^2}} + \frac{1}{\sqrt{(x_P - x_Q)^2 + (y_P - y_Q)^2 + (z_P + z_Q)^2}}$$

By definition of apparent resistivity, we have

$$\rho_a = \frac{4\pi (V_{P_1} - V_{P_2})}{I (D_{C_{1-P_1}} + D_{C_{2-P_2}} - D_{C_{1-P_2}} - D_{C_{2-P_1}})}$$

The objective function of parameter estimation is expressed as the root-mean-square (RMS) error

$$\min_{\rho_m} f_{res-err} (\rho_{a1}, \ldots, \rho_{an}, h_{i1}, \ldots, h_{in}) = \sqrt{\sum_{i=1}^{N_{Pi}} (\rho_{ai} - \rho_{ai})^2 \frac{\rho_{ai}}{m}}$$

where ρ_{ai} and ρ_{ai0} is the apparent resistivity and measured resistivity respectively.

EPE belongs to small scale nonlinear optimization problem. It indicates that nonlinearity of SPI renders most optimized methods inefficient and stuck in the local optimum solutions. Moreover, choosing proper initial solution is important for the final solution in SPI. So, we will consider examples from each class, since no one method or class of methods can be expected to uniformly solve all problems with equal efficiency. Clearly it behooves the engineer to tailor the method used to inverse the parameters of HMS by the measured data at hand.

As shown in Fig. 1, parameters of HMS, such as the number of layers (n), resistivity (ρ), thickness (h), and depth (z) of the i-th layer, can be obtained by processing measurement data with optimization methods.

III. INTRODUCTION OF METHODS FOR SPI

In next section, several comparative studies were surveyed and the selected results from a few of computational cases of SPI have been given, since painfully little of what is currently known of the performance of these methods on practical SPI problems has purely come from considerations of J. Alamo [19].

These methods of SPI were examined from primarily three perspectives: First, some methods are included because of their historical importance such as steepest decent method. Second, numerous methods were thought to be of practical importance in SPI like Generalized algorithm, BFGS quasi–Newton method and Levenberg–Marquardt method. Third, some new methods are available for application in SPI, such as simplex method[20] and trust region method. As these methods were discussed, we include to the extent possible, remarks that delimit advantages and disadvantages of those methods. It is, of course, nearly impossible to be complete in this effort, and in addition we have to avoid extensive discussion of rate and region of convergence.

For comparison of these methods, CDEGS, the commercial grounding computation software using SD and LM [21], and other research papers like BFGS [9], GA [10], [12] were
introduced. The methods introduced in this section are direct–search and gradient–based methods. Direct–search methods include:

1. Nelder–Mead simplex method (NM in IMSL and MATLAB);
2. Genetic algorithm (GA in MATLAB);

Gradient–based methods include:

1. Steepest decent method (SD in CDEGS);
2. Levenberg–Marquardt method (CLM in CDEGS, LM in IMSL and MATLAB);
3. Conjugate gradient method (CG in IMSL and MATLAB);
4. BFGS quasi–Newton methods (BFGS in IMSL and MATLAB);
5. Trust regions method (TR in MKL and MATLAB).

The methods in Table II have only 9 points which is inadequate for the inversion of 6-layer earth with 11 parameters. Even with 4-layer earth and the similar RMS error shown in Table III, variance of results shown in Table IV with 11 parameters is very nearly the same resistivity of last layer solved by TR is 0.9Ω∙m/0.1m.

In Table II, some singular results were produced, just like the parameter of 3rd layer solved by TR is 0.9Ω∙m/0.1m. The measured apparent resistivities was shown in Table I. The comparison of RMS errors of inversions and numbers of iterations was list in Table IV.

For the RMS error, we have LM ≈ TR ≈ CG ≈ BFGS < NM < SD, and for the computational effort, we have TR, LM < SD, CLM < BFGS < CG < NM.

In earth parameters optimization problems, the variables involved are almost always subject to certain constrains, like the thickness cannot be too thin or too thick and the resistivity should be a normal value. The abnormal resistivity maybe unusually low (≤10Ω∙m) or unusually high (≥10000Ω∙m) [1]. In Table II, some singular results were produced, just like the parameter of 3rd layer solved by TR is 0.9Ω∙m/0.1m. The presented methods used in this paper just try to get a better result in the searching space ignoring some considerations of the inverted parameters, and some results of unusual pattern could be found. So it’s necessary to assign some additional constrains to the parameter inversion of HMS to obtain reasonable results avoiding the established search mode by the optimization methods. The method of SPI of HMS with constrains will be expressed in the next section.

For the gradient–based methods, LM and TR are superior to other methods for the numerical stability and convergent rate.

Table I

<table>
<thead>
<tr>
<th>APPARENT RESISTIVITY, CASE II (BFGS [9])</th>
<th>(\rho_a (\Omega \cdot m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>INVERSED PARAMETERS OF BY [9], (n = 6), RMS error: 3.1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_a (\Omega \cdot m))</td>
</tr>
<tr>
<td>(b(m))</td>
</tr>
</tbody>
</table>

Table III

<table>
<thead>
<tr>
<th>COMPARISON OF THE RESULT BY DIFFERENT METHODS ((n = 4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS error</td>
</tr>
<tr>
<td>TR: 2.7%</td>
</tr>
<tr>
<td>BFGS: 2.7%</td>
</tr>
<tr>
<td>LM: 2.7%</td>
</tr>
<tr>
<td>CG: 2.7%</td>
</tr>
<tr>
<td>NM: 3.2%</td>
</tr>
<tr>
<td>SD: 3.5%</td>
</tr>
</tbody>
</table>

Table IV

<table>
<thead>
<tr>
<th>COMPARISON OF DIFFERENT METHODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>method</td>
</tr>
<tr>
<td>RMS error (%)</td>
</tr>
<tr>
<td>number of iterations</td>
</tr>
<tr>
<td>CPU time (s)</td>
</tr>
</tbody>
</table>

IV. PROBE SPACING CONFIGURATION

The standard \(\rho_a \) curves of two layer earth have been detailed discussed in IEEE Std. 81–2012 [1]. However, the real \(\rho_a \) curves differ from the typical two layer case because the earth parameters are more complex and a standard probe spacing configuration should be proposed to meet the requirements of various earth structures. In order to sample the \(\rho_a \) curve by measuring apparent resistivities effectively and precisely, the proper ratio of probe spacing arranged in ascending order can be 1:1.5 approximately to get dense enough measured points. For example, the probe spacing can be set to 1m, 1.4m, 2m, 3m, 5m, 7m, 10m, 14m, 20m, 30m, 50m, 70m, 100m, …, \(a_{max} \). The maximum spacing \(a_{max} \) could be 1–3 times as the diagonal length of the grounding grid in order to get the apparent resistivity of deep earth.

An example of the measured data by proposed probe spacing configuration and the \(\rho_a \) curve of a singular parameter 7-layer horizontal multilayer earth were shown in Fig. 7. The result showed that the presented probe spacing configuration can learn the detailed \(\rho_a \) curve and sample the curve precisely under unusual earth parameters. Moreover, the proposed probe spacing configurations a versatile method for all kinds of horizontal multilayer earths.

Actually, the unusually high or low resistivity layer can effectively screen the deeper layer while four–point method is applied. In Fig.3, it takes 1km as maximum probe spacing to obtain the detailed \(\rho_a \) curve of the test soil.

![Fig.3: The \(\rho_a \) curve and measured resistivities of Wenner method using the proposed probe spacing configuration.](image-url)
V. SOIL PARAMETERS INVERSION WITH CONSTRAINTS

Soil parameters inversion with constraints (SPIC) is aim for two aspects: 1) Avoiding unreasonable results such as unusual high/low resistivities and abnormal thick/thin layers. 2) Improving confidence for the resistivity of the top and deep soil, and preventing significant estimated bias of inversed resistivity curve at the top and deep layer region is closed to the measured data. So SPICW is recommended as it can get more precisely deep earth resistivity and grounding impedance [1] and the performance of LM on SPICW is superior to TR.

\[\min f_{\text{RMS error}}(\rho_1, \ldots, \rho_n, h_1, \ldots, h_n) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} \left(\frac{\rho_{\text{meas}} - \rho_{\text{calc}}}{\rho_{\text{calc}}} \right)^2} \] (10)

Subject to:
\[\rho_i \leq \rho_{\text{min}}, \quad i = 1, \ldots, n \] (11)
\[h_i \leq h_{\text{max}}, \quad i = 1, \ldots, n - 1 \] (12)
\[l_i \leq \frac{\rho_{\text{min}}}{\rho_{\text{calc}}}, \quad i = 1, \ldots, n - 1 \] (13)

Where \(\rho_{\text{calc}}, \rho_{\text{min}}, h_{\text{max}}, l_i, u_i \) are the lower and upper bounds of the resistivity, thickness and resistivity ratio of the \(i \)-th layer respectively. \(\rho_{\text{calc}}, h_{\text{max}}, l_i, u_i \) can be defined by the user.

For example, SPIC for Table I can be with the following lower/upper bounds and inequalities linear constraint:
\[0.9 \rho_{\text{M1}} \leq \rho_i \leq 1.1 \rho_{\text{M1}}, 0.8 \rho_{\text{M9}} \leq \rho_i \leq 1.25 \rho_{\text{M9}} \]
\[0.1 \min (\rho_{\text{Mi}}) \leq \rho_i \leq 10 \max (\rho_{\text{Mi}}), i = 1, 2, 3 \]
\[0.1 \min (a) \leq h_i \leq \max (a), i = 1, \ldots, 3 \]
\[0.2 \leq \frac{\rho_{\text{min}}}{\rho_{\text{calc}}}, 5 \leq i = 1, \ldots, 3 \] (14)

LM with lower/upper bounds and inequality constraints is proposed for SPIC. SPIC result of Table I was shown in Table V.

Another method to cope with this situation is introducing weighting coefficients \(w \) in the RMS error function:
\[\min f_{\text{weight}}(\rho_1, \ldots, \rho_n, h_1, \ldots, h_n) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} \left(\frac{w_i \rho_{\text{meas}} - w_i \rho_{\text{calc}}}{w_i \rho_{\text{calc}}} \right)^2} \] (15)

Subject to:
\[0.2 \leq \frac{\rho_i}{\rho_{\text{calc}}}, 5 \leq i = 1, \ldots, n - 1 \]

For the importance of top and deep earth resistivity, \(w \) can be
\[w_i = \left[-0.5n + 0.1 - 0.5 \mod (m, 2), i = 1, \ldots, m \right] (16) \]

The results of LM and TR for SPIC with weighting coefficients constraints (SPICW) were shown in Table V and Fig.4.

Table V shows, though RMS error is slightly larger than previous case, the difference of resistivity between adjacent layers has been controlled. By SPICW, the apparent resistivity curve at the top and deep layer region is closed to the measured data. So SPICW is recommended as it can get more precisely deep earth resistivity and grounding impedance.

VI. CONCLUSION

Soil parameters inversion with constraints has been proposed to avoid unreasonable results and improve confidence of top and deep resistivity. Levenberg–Marquardt method and trust region method are recommended for earth parameter inversion with constraints. But the examples showed that even with constrained optimization methods, sometimes the grounding parameters are affected by the inversed results if the probe spacing is not properly organized. In order to precisely approximate the \(\rho−a \) curve by Wenner arrangement, the proper ratio of ascending order probe spacing is required.

REFERENCES

