



Abstract—This novel algorithm employs a shuffling

procedure to perform encryption of audio files, applying the

stream cipher method. The algorithm uses a private key to

perform encryption that is key dependent and data dependent.

This algorithm was implemented and tested with different types

of audio files of different sizes. Empirical analysis showed that

this new algorithm is effective for encrypting audio files of

medium or high quality.

Index Terms— cryptography, stream cipher

I. INTRODUCTION

HE Advanced Encryption Standard (AES) [1], is well-

known for providing very secure encryption. Many

encryption algorithms based on AES were developed.

However, AES has limitations on some multimedia specific

requirements, creating the need for other encryption

algorithms to be developed [2], [3], [4], [5].

Some algorithms, such as [4], [6], [7], [8], applied

different shuffling techniques to encrypt text files and

images. Reference [9] used the RSA algorithm to encrypt

speech files consisting of separate words. They extracted

each word and converted it into text. This method cannot be

easily generalized to apply to general audio contents. In [5],

a chaotic system for audio encryption was presented. They

obtained several encryption keys through a chaotic map

where a different key is used in each iteration of the

encryption process. Encryption of audio files in [10] was

performed in five steps. These steps apply table substitution

and different methods of shuffling to the audio data to

perform lossless encryption.

Some research papers aimed to reduce audio encryption

time by encrypting selected parts of the audio file [11], [12],

[13]. Partial encryption of audio files can be done using the

Discrete Fourier Transform to encrypt lower frequency

bands [11]. Alternatively, an efficient encryption algorithm,

such as AES, may be applied to selected parts of the audio

file at the cost of a minor reduction in the security of

encrypted files [12], [13].

In the next section, a novel algorithm is presented to

perform encryption employing a shuffle stream cipher. The

algorithm was implemented and tested, and analysis is

performed to show its effectiveness.

Manuscript received July 10, 2014; revised July 26, 2014. This work

was supported by a grant from Al-Zaytoonah University of Jordan.

A. A. Tamimi is the corresponding author (phone: +962-79-6559966; e-

mail: drtamimi99@gmail.com). Both authors are with the Department of

Computer Science, Faculty of Science & I.T., Al-Zaytoonah University of

Jordan, Amman 11733, Jordan.

II. PERFORMING AUDIO SHUFFLE ENCRYPTION

This algorithm takes an audio file and a key as input, and

it performs byte shuffling of the audio data. The audio file is

regarded as a stream, and the encryption performed is both

key dependent and data dependent. The encryption

algorithm is outlined below:

For i = 1 to k
 fixBit = Hash(Key,i)
 D = Vector where D[j] is the value of bit (fixBit) of

the j
th
 byte of the current stream

 S0 = Vector containing numbers of current stream
bytes (j) that have (D[j] = = 0)

 S1 = Vector containing numbers of current stream
bytes (j) that have (D[j] = = 1)

 Shuffle = Concatenation of S0 with S1
 Substitute the bytes of the current stream so that

the new location of byte (j) is byte (Shuffle[j])
End For

This algorithm works as follows. A single bit, call it

fixBit, is chosen by a hash function based on the key and

iteration number. A shuffle vector (one-dimensional array) is

constructed by listing the numbers of bytes that have the

value of bit number fixBit equal to zero, followed by the

numbers of bytes that have the value of bit number fixBit

equal to one. This vector gives a mapping that specifies the

new location of each byte in the partially encrypted stream.

This step is repeated for several iterations. Each iteration

uses a different fixBit and applies the same steps to the new

partially encrypted stream that resulted from the preceding

iteration. The number of iterations, k, is a small integer

chosen by a key-dependent function.

The following simple example shows how this encryption

is applied. Let the binary representation of the input be:

11110101 00101101 10100011 10001100 with Key = (3, 5).

For simplicity, suppose two iterations are applied with the

fixBit values chosen directly and sequentially from the key.

In the first iteration, fixBit = 3, and this bit is underlined in

the input above. Based on the values of this fixBit, S0 = (1,

3) and S1 = (2, 4), which make the shuffle vector (1, 3, 2, 4).

Therefore, the input after the shuffle substitution will be

11110101 10100011 00101101 10001100. The second

iteration is applied to this result in the same manner, but with

fixBit = 5.

Before encrypting audio files using the above algorithm,

data must be normalized into one or more streams of bytes.

Depending on quality, the audio track may be using 8, 16, or

more bits for representing audio values. If 8 bits (1 byte) is

used for each value, the audio file is normalized into one

audio stream. If higher quality audio is used, the audio file is

normalized into more streams; where the number of streams

An Audio Shuffle-Encryption Algorithm

Abdelfatah A. Tamimi and Ayman M. Abdalla

T

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

is equal to the number of bytes required by the

representation of audio values.

Consider, for example, the values in a typical audio

format, which range from 1 to 1, where other audio formats

may be normalized similarly. If 16 bits (2 bytes) are used for

representing each value, add 1 to each value and then

multiply it by 127. This converts each value into a rational

number ranging from 0 to 254. We separate the integer part

from the fraction part, where each part requires 8 bits (1

byte). When encryption is performed, the integer parts are

regarded as one stream and the fraction parts are regarded as

a different stream. Each stream is encrypted separately.

Recall that a shuffle vector is constructed by listing the

numbers of bytes that have the value of bit number fixBit

equal to zero, followed by the numbers of bytes that have the

value of bit number fixBit equal to one. Therefore, each of

these two streams will generate a different shuffle vector,

even when they use the same key. Consequently, when more

streams are used, more mixing will take place, causing an

increase of security.

The decryption algorithm is similar to the encryption

algorithm. It is performed with the same number of iterations

used in the encryption where each of the encryption steps is

inverted. The decryption algorithm is outlined below.

For i = k to 1 step -1
 fixBit = Hash(Key,i)
 D = Vector where D[j] is the value of bit (fixBit) of

the j
th
 byte of the current stream

 S0 = Vector containing numbers of current stream
bytes (j) that have (D[j] = = 0)

 S1 = Vector containing numbers of current stream
bytes (j) that have (D[j] = = 1)

 Shuffle = Concatenation of S0 with S1
 Substitute the bytes of the current stream so that

the new location of byte number (Shuffle[j]) is
byte number (j)

End For

When the encryption separates the input file into two or

more streams, the decryption process will do that as well.

Each stream is decrypted separately, and then the final

decrypted streams are combined and restored into audio

format.

III. IMPLEMENTATION AND ANALYSIS

 The security of this algorithm comes from the complexity

of the shuffle operation. If one or more bits in the key are

changed, a different shuffle bit is chosen and the substitution

is changed. For each data stream, there are k2
b
 different

possible shuffle vectors for an input of size b bytes

encrypted in k iterations. Since a typical audio file does not

have a size less than a few kilobytes, a brute-force attack on

the encrypted file is impossible.

 The algorithm was applied to 25 audio files of various

types and sizes, where their average size was 39 kilobytes.

When different keys were used with the same file, they

produced different encrypted files. In addition, analysis

using histograms, peak signal-to-noise ratio (PSNR),

correlation, and entropy show properties of the algorithm

that resist statistical attacks.

 When the input audio quality used two or more bytes for

each value, the input file was separated into two or more

streams, and each stream was encrypted separately. Then,

the encrypted file was restored into audio format. For low-

quality audio files requiring one byte per value, the file was

regarded as one stream, and then encrypted and restored into

audio format.

We plotted the audio values for different files to observe

the effect of encryption. Fig. 1 and Fig. 2 show a plotted

sample audio (Sample.wav) and its encrypted audio,

respectively. The size of Sample.wav is 229 kilobytes. When

comparing Fig. 1 to Fig. 2, it can be seen that the encrypted

audio has no resemblance to the original and shows no

features that may help an attack. The decryption algorithm

recovered the original audio successfully, reproducing the

audio in Fig 1. These observations were the same for all

tested audio files.

Fig. 1. Original audio for Sample.wav.

Fig. 2. Encrypted audio for Sample.wav.

 When audio quality required two or more bytes for each

value, the histograms of the encrypted files in these cases

were different from the histograms of the original files. They

gave no indication that may help statistical attacks.

However, when the input audio quality required only one

byte for each value, the histograms of the encrypted files

were similar to the original-file histograms. This is due to

the fact that shuffling the single stream keeps its values

unchanged, unlike the cases that split values across two or

more streams and shuffle them separately. Consequently, our

algorithm is not suited for encrypting low-quality audio files

since they will be vulnerable to statistical attacks. In that

case, the audio file may be encrypted using a combination of

our algorithm with another encryption algorithm that

changes the audio values.

 The mean squared error for two streams, stored in vectors

A and B, is computed as follows:

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014





n

i

iBiA
n

MSE

1

2)(][][
1

. (1)

If streams A and B above represent the original audio file

and its encryption, then PSNR is computed as:

 (2)

where MAX is the maximum value in the stream. A lower

PSNR value is desired for encrypted files since it indicates

more resistance to attacks. The PSNR obtained when

encrypting Sample.wav was 4.373 decibels (dB). Figure 3

shows PSNR values computed for all encrypted audio files,

where the average for these values was 4.536 dB. These low

PSNR values indicate a high level of noise in the encrypted

audio files, making them more resistant to attacks.

Fig. 3. PSNR for encrypted audio files.

 The correlation, r, between two audio files, stored in

vectors A and B, is computed as follows, where A and

B are mean values for vectors A and B, respectively:














n

i

n

i

n

i

BiBAiA

BiBAiA

r

1

2

1

2

1

)][()][(

)][)(][(

 (3)

A lower correlation value between an audio file and its

encryption indicates less resemblance between them, which

provides more resistance to attacks. The correlation value

for Sample.wav was -0.0274. The correlation values for all

encrypted files are shown in Fig. 4. The average correlation

value computed for the absolute values of correlation for the

encrypted files related to their respective originals was

0.0263.

The randomness of a value can be measured with entropy.

Entropy is computed as follows:

 



MAX

i

iPiPH

1

2)())((log)((4)

where MAX is the maximum value of the audio data and P(i)

is the probability of the occurrence of value i. A higher

entropy indicates higher randomness and, consequently,

higher resistance to statistical attacks. The entropy for

Sample.wav was 2.5932, and for its encrypted file, it was

6.2214. The average entropy value for the original audio

files was 2.6498, where the average entropy value for their

encrypted files was 5.2338. The entropy of all encrypted

files and original files is illustrated in Fig. 5. As seen in the

figure, the encryption caused a visible increase in entropy

when the files were encrypted. This indicates an increase in

randomness of values, which reduces the risk of attacks.

Fig. 4. Correlation between the original audio files and their

corresponding encrypted files.

Fig. 5. Entropy of original and encrypted audio files.

IV. CONCLUSION

A new encryption algorithm for audio files was presented.

This new algorithm performs encryption using a shuffling

procedure. Statistical analysis using histograms, PSNR,

correlation, and entropy showed that the algorithm is not

vulnerable to statistical attacks unless it is used for

encrypting low-quality audio files. In addition, the huge

number of possible keys makes a brute-force attack on the

algorithm impossible.

REFERENCES

[1] The Advanced Encryption Standard, Federal Information Processing

Standards Publication (FIPS 197), pp. 92-96, 2001.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[2] T. McDevitt and T. Leap. “Multimedia cryptology,” Cryptologia

(Taylor & Francis), vol. 33, no. 2, 142-150, 2009. DOI:

10.1080/01611190802300408

[3] D. Socek, S. Magliveras, D. C’ulibrk, O. Marques, H. Kalva, and B.

Furht. “Digital video encryption algorithms based on correlation-

preserving permutations,” EURASIP J. Inform. Secur., 2007. DOI:

10.1155/2007/52965

[4] J. W. Yoon and H. Kim. “An image encryption scheme with a

pseudorandom permutation based on chaotic maps,” Commun.

Nonlinear Sci. Numer. Simulat., vol. 15, no. 12, pp. 3998-4006,

2010. DOI: 10.1016/j.cnsns.2010.01.041

[5] R. Gnanajeyaraman, K. Prasadh, and Ramar “Audio encryption using

higher dimensional chaotic map,” Int. J. Recent Trends Eng., no.

Academy Publisher), vol. 1, no. 2, 103-107, 2009.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[6] A. Tamimi and A. Abdalla, “A double-shuffle image-encryption

algorithm,” in The 2012 Int. Conf. Image Processing, Computer

Vision, and Pattern Recognition (IPCV '12), Las Vegas, NV, USA.

16-19 July 2012. Printed in Image Processing, Computer Vision, and

Pattern Recognition [eds. H.R. Arabnia and L. Deligiannidis], pp.

496-499, CSREA Press, 2012.

[7] A. Yahya and A. Abdalla. “A shuffle encryption algorithm using S-

box,” J. Comp. Sci. (Science Publications), vol. 4, no. 12, 999-1002,

2008.

[8] A. Yahya and A. Abdalla. “An AES-based encryption algorithm with

shuffling,” in The 2009 Int. Conf. Security & Management (SAM

'09), Las Vegas, NV, USA. 13-16 July 2009. Printed in Security and

Management [eds. H.R. Arabnia and K. Daimi], pp. 113-116,

CSREA Press, 2009.

[9] Md. M. Rahman, T. K. Saha, and Md. A.-A. Bhuiyan.

“Implementation of RSA algorithm for speech data encryption and

decryption,” Int. J. Comput. Sc. & Netw. Secur., vol. 12, no. 3, 74-

82, 2012.

[10] D. Sharma. “Five level cryptography in speech processing using

multi hash and repositioning of speech elements,” Int. J. Emerging

Technol. and Adv. Eng., vol. 2, no. 5, 21-26, 2012.

[11] S. Sharma, L. Kumar, and H. Sharma. “Encryption of an audio file

on lower frequency band for secure communication,” Int. J. Adv.

Res. Comput. Sc. & Software Eng., 3, no. 7, 79-84, 2013.

[12] B. Gadanayak, C. Pradhan, and U. C. Dey. “Comparative study of

different encryption techniques on MP3 compression,” Int. J.

Comput. Appl., vol. 26, no. 3, 28-31, 2011.

[13] B. Gadanayak, C. Pradhan, and N. Baranwal. “Secured partial MP3

encryption technique,” Int. J. Comput. Sci. & Inform. Technol., vol.

2, no. 4, 1584-1587, 2011.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

