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Abstract—The assignment of care tasks to nurses is often 

done manually in most hospitals. A high quality care task 

schedule is crucial for efficient and effective execution of 

nursing care duties. High quality schedules seek to satisfy 

patient preferences over time window for the care, schedule 

fairness among nurses, and management goals regarding care 

activity completion times and labor costs. This paper suggests a 

grouping genetic approach to care task scheduling in a hospital 

setting. By taking advantage of the group structure of the 

problem, the algorithm uses fuzzy evaluation techniques, 

permuting tasks across candidate nurse schedules and within 

each nurse schedule. Results of the computational experiments 

show that the proposed approach is effective. 

 
Index Terms—Care tasks, task assignment, fuzzy grouping 

genetic algorithm, fuzzy theory 

 

I. INTRODUCTION 

ARE task assignment in hospitals involves allocation of 

nursing care activities to nursing staff on a daily basis, 

subject to hard and soft constraints regarding relationships 

between tasks and capacity limitation of nurses [1] [2]. The 

responsibility of nurses is to efficiently and effectively 

provide high quality care to patients. However, due to 

worldwide shortage of nurses and the ever-increasing 

pressure for high quality nursing care, care task assignment 

is a crucial but hard problem. In most hospitals, task 

assignment is done manually using spreadsheets based on 

pre-determined patient information regarding execution time 

intervals in which care activities should be done to patients 

[3]. Normally, tasks are assigned to nurses according to 

basic rules of the thumb [4]. However, this procedure may 

yield poor and unfair task schedules, leading to poor quality 

of service. Developing efficient and effective task 

scheduling methods is imperative. 

High quality schedules should satisfy, as much as 

possible, the preferences and expectations of the patients, 

the nursing staff and the management. Care task schedules 

should ensure that the actual care execution times are as 

close as possible to the desired time windows pre-specified  
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by patients. This leads to high patient satisfaction. In 

addition, care tasks should be assigned fairly among the 

available nurses; the goal is to balance, as much as possible, 

the individual workloads assigned to nurses. This ultimately 

leads to high worker moral, service efficiency, and job 

satisfaction. However, in satisfying the preferences of 

patients and nurses, the decision maker should consider 

management goals and expectations [5]. However, 

management goals are often qualitative and imprecise, 

adding to the complexity of the problem. 

In the presence of imprecise and conflicting preferences 

and management goals, the use of conventional optimization 

methods such as linear programming, and basic dispatching 

heuristics such as earliest due date, slack, and first in first 

out, is limited [4] [5]. For instance, conventional dispatching 

rules disallow the use of multiple criteria in the scheduling 

process. Moreover, the rules have a rigid structure that 

excludes the use of other useful information that may be 

available. Thus, the care task assignment problem is 

characterized by complicating features: 

(1) The presence of fuzzy staff preferences and wishes, 

such as fairness and equity on assigned workloads; 

(2) The presence of fuzzy patient expectations and 

preferences on time windows and care due dates; 

(3) The presence of imprecise management goals which 

are difficult to quantify; and, 

(4) The need to find a judicious trade-off between 

conflicting goals of the problem. 

Designing interactive metaheuristics to handle fuzzy goals 

and preferences is imperative. This will provide high quality 

task schedules that eventually lead to improved care worker 

satisfaction (job satisfaction), service efficiency, service 

quality, and business competitiveness. Incorporating fuzzy 

evaluation techniques into metaheuristic approaches is a 

viable and promising option. The purpose of this research is 

to develop a fuzzy heuristic approach to care task 

assignment in a hospital setting. Therefore, the specific 

objectives are: 

(1) To describe the care task assignment problem;  

(2) To propose a fuzzy grouping genetic algorithm; and, 

(3) To provide illustrative examples, demonstrating the 

effectiveness of the algorithm. 

The next section presents a brief description of the care 

task assignment. Section III presents a description of the 

proposed fuzzy grouping genetic algorithm. Computational 

experiments, results and discussions are presented in Section 

IV. Finally, conclusions and contributions are presented in 

Section V. 

A Fuzzy Grouping Genetic Algorithm for Care 

Task Assignment 

M. Mutingi, C. Mbohwa 
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II. THE CARE TASK ASSIGNMENT PROBLEM 

A. Problem Description 

The health care task assignment problem (CTAP) is 

concerned with the allocation of a set of health care tasks to 

nursing staff so that patients can receive the required 

healthcare service [5] [6] [7]. The essence of the problem is 

that all the tasks must be assigned, subject to a set of 

constraints concerning care giver capacity, the nature of 

tasks and their precedence relationships. In most hospitals, 

care tasks are assigned based on pre-determined patient 

information on task duration and the time window during 

which specific tasks should be performed. The task 

assignment process is often carried out manually using 

spreadsheets. In practice, standard work procedures are 

recorded in manuals that contain key information on care 

tasks and the associated resources needed. Care tasks, for 

instance, assistance with meals, instillation of drops, and 

preparation of infusions, can be categorized into preparatory 

tasks, executions tasks, and clean-up tasks [4] [5]. 

Therefore, each care activity consists of these three types of 

tasks. Fig. 1 shows an example of a daily worksheet. 

CTAP is analogous to the job dispatching or job shop 

scheduling problem. Similar to job dispatching, CTAP can 

be addressed using dispatching rule-based methods. In that 

context, appropriate priority rules, such as first-in-first out 

(FIFO) and earliest due date (EDD), can be applied. 

Deriving from this analogy, we identified a number of 

constraints, classified into hard constraints and soft 

constraints. 

B. Problem Formulation 

Table 1 presents the constraints associated with the CTAP 

problem [4] [5]. Hard constraints must always be satisfied, 

while soft constraints may be violated, but at a penalty cost. 

Hard constraints are concerned with task release time, task 

precedence, and staff capacity. For clarity of deliberation on 

the CTAP problem formulation, we define the following 

notations. 

 

Notation: 

u   Index for U activities, u = 1,2,…,U 

v   Index for Vu tasks in activity u, v = 1,2,…,V 

du   The desirable due date of activity u 

ru    The release time of activity u 

tuv   Starting time for care task v of activity u 

tcv1,v2 The changeover time from task v1 to v2 

puv   The expected processing time of task v of activity u 

 

1) Release Time Constraints: 

The release time of a task pertains to the earliest time 

when that particular task is ready for execution. 

 

, 1,2,..., , 1,2,...,uv u ut r u u U v v V      (1) 

 

2) Precedence Constraints 

Precedence constraints relate to the structural sequence of 

tasks that should be observed when executing specific tasks. 

It follows that succeeding care tasks cannot be handled until 

their predecessors are finished. 

 

, 1 , 1 , 1,2,..., , 1,2,...,u v u v uv ut p t u u U v v V        (2) 

 

3) Capacity Constraints 

Capacity constraints limit the number of tasks that a nurse 

can perform at any given time. In this case, we assume that a 

nurse can perform only one task at a time. Therefore,  

 

1, 1 1, 1 1, 2 2, 2u v u v v v u vt p tc t              (3) 

 

where, v1 and v2 represent any two tasks from any 

activities to be performed by a specific nurse. 

In addition to the three hard constraints above, soft 

constraints should be satisfied as much as possible. We 

identify three types of soft constraints concerned with due 

date, task changeover, and execution time (time window) of 

the tasks. 

TABLE I 

TYPICAL CARE TASK CONSTRAINTS 

Constraint Brief Description  

Hard Constraints:  

1. Release Time 

Constraints 

The first nursing task of a certain nursing activity 

cannot be handled until the release time of the 

activity. 

2. Precedence 

Constraints 

A nursing task cannot be handled until the 

previous task of the same nursing activity is 

finished. 

3. Capacity 

Constraints 

Nurses have the limited processing capacity to 

handle their work. In general, they can handle only 

one nursing task at a time. 

Soft Constraints:  

4. Due Date 

Constraints 

The last nursing tasks of a certain nursing activity 

should be finished before the due date of the 

nursing activity. 

5. Transition Time 

Constraints 

Some nursing tasks cannot be handled 

immediately after their previous task of the same 

nursing activity is finished. 

6. Time Window 

Constraints 

Some execution tasks of nursing activities should 

be handled within an expected execution time 

interval. 

 

 

Date 03Jan 2014 

Time 0800 0930 1000 1030 1100 1130 1200 1230 1300 

 

Patient 1 

Shampoo 

toilet 

Assist bath 

Check 

gauze  

 BP check  BP check 

 

Preprandial 

medicine 

Serve, clear 

tray 

Clean teeth 

 

 

Patient 2 

BP check Anti-biotic  BP check 

Instil drops 

 Check 

compliance  

Serve, clear 

tray 

Clean teeth 

  

… … … … … … … … … … 

 

Fig. 1.  A typical example of a daily worksheet 
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4) Due Date Constraints 

The due date constraints ensure that the end time of each 

activity is as close as possible to the desirable due date of 

that activity. This restriction can be represented by the 

following expression; 

 

, 1,2,..., , 1,2,...,uv uv u ut p d u u U v v V       (4) 

 

5) Transitions Time Constraints 

These constraints ensure that the changeover time 

between successive tasks is as much close to the desired time 

as possible. This implies that succeeding tasks should not be 

performed immediately after their predecessors, till a desired 

lapse of time (or transition time) transv1v2 is reached. 

 

2 1 1 1, 2 , 1, 2uv uv uv v vt t p trans u v v            (5) 

 

where, v1 and v2 are tasks of the same activity u, and task 

v2 can only start after task v1 is completed, with a transition 

time transv1,v2. 

6) Time Window Constraints 

Time window constraints limit, as much as possible, the 

execution time of some care activities to be within the 

desired time window 
1 2[ , ],u uT T where 

1

uT and 
2

uT are the 

lower and upper bounds on the expected execution time of 

an activity u, respectively. For instance, lunch meals may be 

restricted to time window [1200, 1300] hrs. Therefore,  

 
1 2and , ,uv u uv uv ut T t p T u v          (6) 

 

where, 
1

uT and 
2

uT are the lower and upper bounds on the 

execution time of activity u, respectively. 

C. Problem Objectives 

The objectives of the CTAP are (i) to maximize fairness 

in workload assignment, (ii) to minimize violation of soft 

constraints. Thus, the aim is to maximize the quality of the 

care schedule by finding a trade-off between these 

objectives. Clearly, the CTAP is a complex problem that is 

difficult to solve using conventional solution approaches. To 

this end, we present an enhanced fuzzy grouping genetic 

algorithm for interactive decision making for the problem. 

III. A FUZZY GROUP GENETIC ALGORITHM APPROACH 

Fuzzy grouping genetic algorithm (FGGA) is a 

development from grouping genetic algorithm [8]. It uses 

fuzzy theory to evaluate the performance of alternative 

solutions. FGGA takes advantage of the group structure of 

the problem. The algorithm and its elements, including 

chromosome representation, initialization, fuzzy fitness 

evaluation, and genetic operators, are presented in this 

section. 

A. FGGA Coding Scheme 

To enhance the performance of FGGA, a unique group 

coding scheme is developed to exploit the group structure of 

the problem. Let C = {1, 2, 3,…,V] be a chromosome 

representing a set of V tasks to be performed by I nurses. 

Then, the evaluation of C involves partitioning tasks along C 

into g groups such that all the hard constraints are satisfied 

and the violation of soft constraints is minimized. For 

instance, given 7 tasks (V = 7), and 3 nursing staff (I = 3), 

then the group structure of the problem is coded as shown in 

Fig. 2. The structure consists of two codes: code 1 represents 

the assignment of care workers w1, w2, and w3, to groups of 

tasks {1,2}, {3,4,5}, and {6,7}, respectively. Genetic 

operators work on code 1, while code 2 records the position 

of the delimiter or frontier “|” which separates task groups. 

 

 
 

Fig. 2.  FGGA chromosome coding scheme 

 

B. Initialization 

An initial population of candidate solutions is created by 

randomly assigning tasks to nurses. First, care tasks are 

arranged in ascending order of their expected start times. For 

each nurse, probabilistically allocate unassigned tasks, 

beginning with the earliest. By this procedure, the algorithm 

increases the likelihood of generating a good initial 

population of feasible solution candidates. 

C. Fitness Evaluation 

The fitness evaluation procedure determines the goodness 

of each candidate solution based on a combination of fuzzy 

evaluation functions. The functions should measure the 

relevant quality of the candidate solution, and capture the 

imprecise conflicting goals and constraints. The evaluation 

function Ft, at iteration t, should be a normalized function 

obtained from its n constituent normalized functions denoted 

by µh (h = 1,…,n). Therefore, we use a fuzzy multi-factor 

evaluation method, 

 

( ) ( )t h h

h

F s w s                (7) 

 

where, s is a candidate solution at iteration t; and wh denotes 

the weight of the function µh. The use of the max-min 

operator is avoided so as to prevent possible loss of vital 

information. 

 The goodness or quality of a solution is a function of 

how much it satisfies the preferences of nurses and patients, 

as well as management goals and choices. Due to ambiguity 

and imprecision of these preferences and goals, fitness is 

modelled as a normalized interval-valued fuzzy membership 

functions, as shown in Fig. 3. 

 

 
Fig. 3  Interval-valued linear membership function 

1 

 μ 

X 
0      a                 b 

[ 1  2 | 3  4  5 | 6  7 ]       [2  5  7] 

 

w1           w2          w3 

 

 

Code 2 
 

Code 1 
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 The satisfaction level is represented by a decreasing 

linear function where [0,a] is the most desirable range, and b 

is the maximum acceptable. Therefore, the corresponding 

function is, 

 

1 If

( ) ( ) ( ) If 

0 If otherwise

A

 x a

x b x b a a x b




    



   (8) 

 

1) Membership Function 1: Due Date 

The completion time of every activity should, as much as 

possible, be within acceptable limits so as to maximize the 

quality of the care schedule. Let tu and du be the completion 

time and due date of each activity u, respectively. Then the 

total variation of completion times from their respective due 

dates is given by the expression, 

 

1 u u

u

z t d                  (9) 

 

Assuming interval-valued membership function, we 

obtain, 

 

1 1( )A z                   (10) 

 

2) Membership Function 2: Transition Time 

For any activity u, assume that task v2 is supposed to start 

soon after task v1, with a transition time of transv1,v2. Then, 

the objective is to minimize the total variation 
2z from 

meeting this transition requirement, represented by, 

 

2 , 1 , 1 1, 2 , 2

1, 2 u

u v u v v v u v

u v v J

z t p trans t


          (11) 

 

Therefore, assuming the interval-valued membership 

function, we obtain, 

 

2 2( )A z                  (12) 

 

3) Membership Function 3: Time Windows – Earliness 

The goodness of a candidate care schedule can be 

measured in terms of total earliness. Let the total earliness be 

denoted by 3z . Then, 

 

 1

3 max(0, )
u

u uv

u v J

z T t


            (13) 

 

Here, Ju is a set of tasks from activity u; 1

uT  is the lower 

bound of the time window of activity u. Assuming that e 

follows a trapezoidal linear membership, the fuzzy 

membership function for earliness can be expressed as 

follows; 

 

1 3( )A z                   (14) 

 

4) Membership Function 4: Time Window - Lateness 

Apart from earliness, the goodness of a candidate care 

schedule can also be measured in terms of total lateness or 

tardiness. Therefore, the objective is to minimize total 

tardiness z4 given by, 

 
2

4 max(0, )
u

uv uv u

u v J

z t p T


           (15) 

 

Here, 2

uT  is the upper bound on time window of activity 

u, and Ju is a set of tasks in activity u. Assume that 

4z follows a trapezoidal linear membership. Then the fuzzy 

membership function for tardiness can be expressed as 

follows; 

 

4 4 4( )z                  (16) 

 

5) Membership Function 5: Workload Fairness 

Let hi denote the workload of nurse i, and a be the 

average workload. The objective is to minimize workload 

variation 
5z   is given by, 

 

5 i

i

z h a                 (17) 

 

Here, the workload hi is given by the expression, 

 

, 1,2,...,i v iv

u v

h p x i i N       (18) 

 

where, xiv is a binary variable representing whether or not 

task v is assigned to nurse i.  We use a fuzzy membership 

function µ5 of the form, 

 

5 5( )z                   (19) 

 

D. Selection and Crossover 

The selection operator selects the best performing 

chromosomes into a mating pool, called tempp. Among 

various selection mechanisms, remainder stochastic 

sampling without replacement is the most effective 

(Goldberg, 1989; Holland. 1975), and therefore was adopted 

in this study. Each chromosome c is selected and stored in 

tempp according to its expected count es, 

 

1

( )

1 ( )
s p

s

F s
e

p F s





              (20) 

 

where, p is the population size; Fs (s = 1,…,p) is the 

fitness function of the s
th

 chromosome. 

According to this strategy, each chromosome receives 

copies equal to the integer part of es, plus additional copies 

obtained by using the fractional part of es as a success 

probability of getting an additional copy of chromosome s. 

The best performing candidates are selected with higher 

probability into tempp. 

Crossover is a stochastic mechanism by which selected 

chromosomes mate to produce new offspring, called 

selection pool. The mechanism enables FGGA to explore 
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unvisited regions in the solution space. Groups of genes in 

the selected chromosomes are exchanged at a probability 

pcross. First, a crossover point between 1 and g is randomly 

generated, where g is the number of groups. Second, the 

groups on the right of the crossover point are swapped. 

Third, the offspring are repaired as necessary. The process is 

repeated till the desired pool size, poolsize, is achieved. Fig. 

4 shows a crossover of parent chromosomes P2 and P2. 

Offspring O1 and O2 are repaired to O1′ and O2′. 

 
Parents: Offspring: Repaired: 

P1: [2 5 | 3 4 1 | 6] O1: [2 5 | 3 1 | 6] O1′: [2 5 | 3 1 | 4  6] 

P2: [5 6 | 3 1 | 4 2 ] O2: [5 6 | 3 4 1 | 4 2] O2′: [5 6 | 3 4 1 | 2] 

 

Fig. 4.  An example of crossover and repair mechanisms 

 

After crossover, some of the genes may appear in more 

than one group, while others may be missing. Such offspring 

are repaired by eliminating duplicated genes on either side 

of the crossover point, and then inserting missing genes into 

those groups with the least workload. Group coding takes 

advantage of the group structure to generate new offspring. 

E. Mutation 

Mutation is applied to every new chromosome in two 

forms: swap mutation and shift mutation. Swap mutation 

exchanges genes between two groups in an individual 

chromosome, while shift mutation moves a randomly chosen 

frontier between two adjacent groups by one step to the right 

or to the left. Thus, the mutation operator provides FGGA 

with local search capability, a phenomenon called 

intensification. Fig. 5 provides an illustration of swap and 

shift mutation mechanisms, respectively. 

 
 Swap Mutation Shift Mutation 

Before mutation: [ 1  2 | 3  4  5 | 6 ]  [ 1  2 | 3  4  5 | 6 ] 

After mutation: [ 1  2 | 6  4  5 | 3 ]  [ 1  2 | 3  4 | 5  6 ] 

 

Fig. 5.  An illustration of swap and shift mutation 

 

F. Inversion and Diversification 

The population may prematurely converge to a particular 

solution, thus, population diversity should be controlled. 

Inversion is a stochastic operator that restructures the genes 

of a chromosome in the reverse order, e.g., chromosome 

[21|5|34] may be transformed to [34|5|21]. To check 

diversity, we define an entropic measure hk for task v; 

 

1

( ) ln( )

ln

n
jv jv

v

j

x p x p
h

V


            (21) 

 

where, xjv represents the number of chromosomes in 

which task k appears in position j of chromosomes in the 

current population; V is the number of tasks. Therefore, 

diversity h is given by, 

 

1

n

k

k

h h n


                 (22) 

 

In this application, the inversion operator is applied 

whenever diversity falls below a threshold value, hd, while 

preserving best performing candidates.  

G. The Overall FGGA Algorithm 

The overall algorithm incorporates the above operators, 

beginning with the selection of suitable input parameters. 

The selected input parameters were: crossover probability 

(0.35), mutation probability (0.01), and inversion probability 

(0.04). An initial population, P(0),  is generated randomly by 

random assignments of clients to care givers. The algorithm 

then proceeds into an iterative loop involving selection, 

crossover, mutation, inversion, and until termination 

condition is reached (maximum number of iterations T). Fig. 

6 presents the overall structure of the proposed FGGA. 

 
The Overall FGGA Procedure 

1: BEGIN 

2:  Input: FGGA parameters; t = 0; 

3:  Initialize population, P(0); 

4:  REPEAT 

5:   Selection: 

6:    Evaluate P(t); 

7:    Create temporal population, tempp(t); 

8:   Group crossover: 

9:    Select 2 chromosomes from tempp(t); 

10:    Apply crossover operator 

11:    Repair if necessary; 

12:   Mutation:  

13:    Mutate P(t); 

14:    Add offspring to newpop(t); 

15:   Replacement: 

16:    Compare successively, spool(t) and oldpop(t) strings; 

17:    Take the ones that fare better; 

18:    Select the rest of the strings with probability 0.55; 

19:   Diversification: 

20:    Calculate population diversity H; 

21:    WHILE (h < hd) 

22:     diversify P(t); 

23:     calculate h; 

24:    END WHILE 

25:    Evaluate P(t); 

26   New population:  

27:    oldpop(t) = newpop(t); 

28:    Advance population, t = t + 1 

29:  UNTIL (t ≥ T) 

30: END 

 

Fig. 6. The overall FGGA pseudo-code 

 

We present illustrative examples, computational results, 

and relevant discussions in the next section. 

IV. COMPUTATIONAL EXPERIMENTS AND RESULTS 

A. Computational Experiments 

To test the proposed method, we randomly generated the 

data for the care task assignment problem. We assumed a 

hospital department with 30 patients 5 nurses working in a 

day shift from 8:00 am to 5:00 pm. We further assumed a 

normal distribution for the processing times, puv, according 

to the expression, [ , ],uv uv uv uv uvp p p p p      where 

ε∊[0,1]. As such, we randomly generated 10 problems with 

different processing times by setting ε = 0.5. The release 

times ru for each activity u, time windows for specific tasks, 

and the due dates for different activities were also created 

randomly between 8:00 am an 5:00 pm.  

The algorithm was coded in Java
TM

 7, Standard Edition, 

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014



 

Windows 7 operating system on a PC running on an Intel 

Pentium 3.0 GHz, and 4GB RAM. The performance of 

FGGA was compare against particle swarm optimization 

(PSO) and genetic algorithm (GA) which were developed in 

this study [8] [9].  

B. Results and Discussions 

Fig. 7 shows an illustration of the transcription of the 

fitness values for a maximum of 500 iterations. The 

comparative performance of FGGA against PSO and GA 

show that FGGA outperforms the two competitive 

algorithms in terms of efficiency and the final fitness value. 

 

0
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0.4

0.6

0.8

1

0 100 200 300 400 500

F
it

n
es

s

Iterations

FGGA PSO GA

 
 

Fig. 7. Comparative performance of FGGA, PSO and GA 

 
TABLE II 

COMPARATIVE ANALYSIS 
Algorithm Average CPU time (sec) Search Success Rate Solution, Ft 

FGGA 4.6 100.0% 1.00 

PSO 5.5 93.3% 1.00 

GA 6.2 90.0% 1.00 

 

The algorithms were tested for search success rate based 

on a hypothetical problem consisting of 4 nurses and 24 

tasks, with a known optimal solution. Each algorithm was 

run 20 times, recording the average computation (CPU) 

time, and the search success rate. Table II shows the results 

of the experiment. All the algorithms obtained the desired 

optimal solution. In terms of search success rate, FGGA 

rated 100%, followed by PSO rated 93.33%, while GA rated 

90%. Regarding computational efficiency, FGGA performed 

the best with CPU time 4.6 seconds. On the other hand, the 

average CPU times for PSO and GA were 5.5 sec and 6.2 

sec, respectively. Therefore FGGA has a higher potential for 

efficient and effective performance, even on larger scale 

problems. 

V. CONCLUSION 

Care task assignment is a common problem in hospitals, 

concerned with finding the best way to allocate care tasks to 

a limited pool of nurses, so that all tasks are performed as 

timely as possible, nurse workloads are assigned fairly, 

transition times between tasks are satisficed as much as 

possible, and expert choices are taken into account. The 

higher the satisfaction level of these requirements, the higher 

the quality of the task schedule. This is a hard problem that 

demands interactive fuzzy heuristic methods. This paper 

presented a fuzzy group genetic algorithm to solve the 

problem. By exploiting permutations of groups of tasks 

across candidate task schedules and within each candidate 

schedule, using enhanced heuristic operators, the algorithm 

can address the problem efficiently. The approach provides 

useful contributions to researchers and practitioners in 

healthcare. 

A. Contributions to Knowledge 

The proposed algorithm contributes to knowledge in 

flexible, adaptable and interactive heuristic optimization 

methods. By realizing the need to holistically satisfy the 

patient, the healthcare worker, and the management, this 

research provides a judicious trade-off approach by which 

the three players in a healthcare system can be satisfied, with 

potential long-term benefits. Moreover, the problem can be 

modelled with more realism, considering fuzzy expert 

choices of the decision maker. The method presents in-built 

heuristic techniques that exploit the group structure of the 

problem to handle large-scale problems efficiently. Thus, the 

proposed algorithm is an invaluable addition to the body of 

knowledge in healthcare operations management. 

B. Contributions to Practice 

The practicing decision maker can benefit from the 

suggested approach to the CTAP in a number of ways. The 

algorithm provides an opportunity to use weights to 

interactively incorporate the decision maker’s preferences 

and choices. In practice, decision makers appreciate the use 

of an interactive decision support that provide a list of good 

alternative solutions from which the most appropriate 

decision can be chosen, taking into account other practical 

considerations. In this view, expert knowledge can be 

incorporated into the decision process, unlike when using 

prescriptive optimization methods. Overall, the proposed 

algorithm a viable tool in care task assignment. 
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