



Abstract — insurance companies rely on medical underwriting

to assess the risk of prospective clients. However, insurance

companies often experience slow responses, inefficiencies and

unreliable decisions from the current underwriting systems. In

this paper, we present the architecture and implementation of a

rule based Medical Underwriting System (MUP). The proposed

architecture is multi-tier based system using Rete algorithm to

implement the medical underwriting rule engine. The specific

design and implementation is done using Java platform. The

results show that MUP outperformed the current underwriting

systems. The MUP memory usage is minimal and stable. The

MUP obtained a faster response time. Errors generated by

MUP were fewer than the current underwriting systems, with a

ratio of 3:9.

Index Terms— Insurance industry, medical underwriting,

rule-based systems, Multi-tier architecture, and Rete algorithm.

I. INTRODUCTION

 Current ways of performing medical underwriting are

highly ineffective, very slow and error-prone. This leads to

most companies losing clients to competitors, and a lot of

disputes arise during the insurance claims process. It is vital

for insurance companies to achieve 99% accuracy in medical

underwriting. This in turn helps in managing the allocation

of appropriate life cover to customers with various medical

conditions.

In this paper, we propose Rete algorithm for effective

execution of medical underwriting business rules. The

proposed system is based on Java Enterprise Edition (JEE)

platform, which is aimed at implementing the proposed

Medical Underwriting Prototype (MUP) architecture. The

proposed MUP architecture is multi-tier based system.

MySQL server was used to store and retrieve client’s

medical information. We used Drools expert system and rete

algorithm to implement our system [22]. Advanced testing

tools such as SoapUI [25], JMeter[26] and JUnit[27] were

used to test and evaluate the proposed system.
The remainder of this paper is organized as follows: In

Section II, we present an overview of medical underwriting

and life insurance. In Section III, we present an overview of

rule-based systems. In Section IV, we provide various

techniques for medical underwriting and review previous

work relating to this study. In Section V, we present system

Manuscript received June 30, 2014; revised August 10, 2014. This work

was supported in part by Tshwane University of Technology grant. Arnold

Lephoto is with Tshwane University of Technology, department of

Computer Science, Private Bag X680, Pretoria 0001, South Africa

(arnoldlephoto@gmail.com).

Okuthe P. Kogeda, is with Department of Computer Science, ICT

faculty, Tshwane University of Technology, Private Bag X680, Pretoria

0001, South Africa (kogedapo@tut.ac.za).

requirements and the proposed system architecture. In

Section VI, we present the system implementation. In

Section VII, we present testing, evaluation and discuss

results. We conclude in Section VIII.

II. OVERVIEW OF MEDICAL UNDERWRITING

A. Definition

For a long time, insurance companies used medical

underwriting as a risk assessment and management tool.

Medical underwriting has always been seen as a critical part

of the insurance business that affects the future of the

company and its bottom line.

Wang [4] defines medical underwriting as “the insurers’

effort to distinguish among different risk types and to assign

premium rates that reflect differences in risk levels among

insurance applicants”. A client with high medical risk pays

more for insurance while a client with low risk pays less [4].

Underwriting is also a process in which a business can

protect itself, and be sustainable in the long run.
Yan & Bonissone [3] defined medical underwriting as a

“complex decision making task traditionally performed by

highly-trained individuals. Given an application, the

underwriter compares the information provided by the

applicant with policy guidelines and standards used by the

insurance company.” Underwriting is mainly performed by

highly skilled professionals with a huge amount of business

knowledge. This puts underwriters under a lot of pressure to

perform accurate underwriting. Most life insurance

companies are developing procedures aimed at improving

the quality of underwriting processes, and to support medical

underwriters [10]. Underwriting process requires

prospective client’s medical information to be collected. The

collected medical information needs to be evaluated against

the company’s underwriting guidelines (i.e., medical

underwriting rules). There are two common processes used

for collecting medical data [16]. These are:

• Traditional underwriting: a process whereby the

underwriter conducts a physical interview with a client

face to face interaction.

• Tele-underwriting: “a process whereby the underwriter

interviews the client on the telephone. Initial questions are

predefined and the underwriter can probe for more

details”.

Either process must ensure that collected data is reliable

and accurate.

B. Importance of Medical Underwriting

Two main reasons why medical underwriting is important

are:

Modelling a Rule Based System for Medical

Underwriting in an Insurance Industry

Arnold Lephoto and Okuthe P. Kogeda

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

 Insurance companies use the results of medical

underwriting to categorize specific clients. Clients with

high-risk profiles are administered differently to those

with low risk profiles. This is aimed at helping insurance

companies to minimize risks and be sustainable.

 Medical underwriting “prevents the uninsured from

waiting until they are sick or in need of medical care

before purchasing insurance” [21]. Prospective clients

wait till it is too late to acquire life insurance. Medical

underwriting process helps in ensuring that clients do not

wait until they are sick before applying for life insurance.

C. Challenges of Medical Underwriting

The main challenges of medical underwriting are:

• It indirectly affects insurance sale targets. For instance, a

sales agent may sell 200 products a day only to have 65%

of them declined, due to underwriting rules. Although

underwriting ensures quality and sustainability of the

business, it may hamper the growth of the business.

• Even with the introduction of automated underwriting, the

process still creates a bottleneck within the sales process.

This is due to the fact that there is still human intervention

involved (i.e., the underwriter and the client).

III. RULE BASED SYSTEMS

 A Rule Based System (RBS) is a decision support model

that has been used to develop intelligent systems. Intelligent

systems are best used where human problem solving

techniques are needed [1]. RBSs are mainly used where

information processing can be expressed in the condition-

action form. RBSs are composed of pieces of knowledge

known as business rules, which are meant to solve business

problems. Various industries use RBS in their business

processes. These include industries such as mining,

chemicals, manufacturing, gaming, insurance, etc.

A rule-based system is composed of three parts. These are

[6]:

• Rule base: is a set of business rules that contains

conditions and resulting actions of the business.

• Working memory (WM): is also known as facts. It is a

database that actively holds input data.

• Rule engine/Inference engine: is responsible for

execution of the business rules within the RBS.

The structure and operation of RBS is illustrated in Fig.1.

The WM contains two input facts (i.e., fact1 and fact2) and

the rule base contains two business rules (i.e., rule1 and

rule2). The rule engine/inference engine executes business

rules within the rule base using a pattern matcher and

agenda. The results are inserted into the WM [13].

A rule engine is the building block of a RBS, its function

is to execute business rules and manipulate the WM. A rule

engine can be classified as:

• Forward chaining: this mechanism is data driven. Data

gets inserted into the WM; this triggers business rules

within the inference engine. This happens until a goal is

reached.

• Backward chaining: this mechanism is goal driven,

whereby the system searches for rules whose results are

mentioned in the data. The system then tests the

condition before it uses the rules.

Many industries are relying on RBS to run their core

businesses. When applying a RBS a certain criteria needs to

be followed, JBoss Drools Team [22] proposes the

following criteria:

• When the business problem to be solved is complex for

traditional coding paradigm.

• When the business problem has passed the obvious

algorithmic solution.

• When the business rules change often.

• When there are non-technical business analysts or

knowledge experts.

Andreescu & Mircea [20] defines business rules as “sets of

policies and procedures, or definitions that govern the way

an organization does business”. Business Rules Group [23]

defines business rules as “statements that defines or

constrains some aspect of the business. This can be a term or

a fact, a constraint or a derivation. It is 'atomic' in that it

cannot be broken down or decomposed further into more

detailed business rules. If reduced further, there would be

loss of important information about the business.”

Fig. 2. Medical underwriting rule execution flow

Medical underwriting business rules are jointly developed by

insurance business actuaries and business analysts. These

professionals analyze the rules and make sure that they are

fair to the client and helps sustain the business in the long

run. Medical underwriting rules are mainly used to rate

clients according to specific categories, for example, low,

medium, and high risk category. Medical underwriting rules

Fig. 1. Execution structure of rule based system [13].

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

normally execute based on predefined set of questions

presented to the client. Medical underwriting rule execution

process is defined as shown in Fig. 2.

Fig. 2 defines medical underwriting process as a flow of

client’s medical information into enterprise business rule set

for execution. After business rules are executed, medical

underwriting decision is produced. These components are:

• Client data: medical underwriting requires client’s

medical information to be available. This can be via

Traditional underwriting or Tele-underwriting

processes. Business rules: are a variety of business rules

in the medical underwriting process. Some of the rules

are a simple check that requires a client to respond with

yes/no, others are more complex and requires

calculation and additional information.

• Outcome: is the results produced by the business rule

process. The outcome is used by other business

processes within the enterprise.

IV. TECHNIQUES OF MEDICAL UNDERWRITING AND RELATED

WORK

Cong [17] defines RETE algorithm as “an efficient

algorithm used for matching facts with rule patterns to

determine rules that satisfy conditions”.

RETE algorithm was invented by Dr. Charles L. Forgy from

the University of Carnegie Mellon in 1974. He then

presented RETE algorithm in his Thesis in 1979. The

research report suggests that, RETE algorithm performs

much faster than the naive pattern matching algorithm [14].

RETE algorithm exploits temporal redundancy and

structural redundancy to achieve better performance.

Fig. 3. Rete algorithm input and output [28]

RETE algorithm uses a tree model to execute pattern-

matching between rules and facts. The tree contains three

types of nodes i.e., Memory node, production and Join [15].

Fig. 3 illustrates how RETE algorithm functions.

The main advantages of Rete algorithm include [28]:

• execution speed and effectiveness. This is achieved within

the RETE algorithm’s network design. RETE algorithm

pools frequently used components so that they are not

reinitialized on every computation.

• the ability to share nodes with similar conditions. When

two or more rules have a similar condition, RETE uses a

single node for all the conditions, unlike creating duplicate

nodes. This helps in minimizing duplication of matching

effort during execution. This also increases performance.

Several other algorithms have been developed to fill the

growing area of rule engines:

• Linear Inference algorithm: works by “ordering rules that

can be executed in a single left to right sweep for each

inference cycle” [7]. The algorithm requires only one

sweep of the rules, in spite of the number of data changed

between inference cycles.

• LEAPS algorithm: uses a lazy approach when evaluating

rule conditions. It puts all the input data (i.e., facts) on the

main stack using the order in which data was asserted in

the working memory (WM).

• TREAT algorithm: uses a method called Conflict Set for

saving the state in the inference system. Conflict Set is

when rules are in a condition-action form, the conditions

will be tested against the working memory. All the

matches found become candidates for firing [9].

• Linear Inference algorithm uses larger and more-complex

data structures. It allows a rule system to reproduce the

model of the underlying rules for each inference session.

Each change in the fact requires a full cycle of the

network, because the system cannot handle multiple

changes in the data at the same time. On the other hand

each cycle of the network requires access to the memory.

This results in a higher memory usage and poor memory

access locality. This results to linear inference algorithm

not being able to handle highly complex logic effectively

[7].

• “LEAPS algorithm is the fastest executable rule sets, often

outperforming OPS5 interpreters that use RETE-match or

TREAT-match algorithms by far” [19]. However LEAPS

algorithm data structures and algorithms are difficult to

understand, this is due to the lack of relational database

concepts (i.e., relations and select-project-join operators)

to help in the critical features of the LEAPS algorithm.

This fact makes LEAPS algorithm less attractive to

implement in modern rule based systems. LEAPS

algorithm is less agile compared to RETE algorithm.

TREAT algorithm is very similar to RETE algorithm. The

main performance differences between RETE algorithm and

TREAT algorithm is, “RETE algorithm needs fewer

comparisons in order to add a new working memory element

(WME) to its beta and alpha network than TREAT

algorithm” [7]. This makes TREAT algorithm less attractive

to use than RETE algorithm.

A lot of research has been conducted in the area of

improving medical underwriting. YU-JU et al. [2] presents

feed forward neural networks with back-propagation

algorithm to build a decision model for various insurance

companies. They conducted various experimental researches

on this algorithm. Their tests indicate that, neural network

requires more variables of data to increase its accuracy.

They also discovered that, while neural networks can adapt

and learn easily, they have the negative character of a “black

box” syndrome, whereby it is difficult to monitor the internal

workings of the network. However, the authors failed to

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

indicate the performance of the method they pursued. They

also failed to discuss the error rate (i.e., false alarms)

generated by neural networks in the study. In this study, we

present a clear performance indicator and the rate at which

errors are generated.

Horgby et al. [12] presents fuzzy logic method for

medical underwriting. The main objective was to show how

fuzzy inference system can be used to underwrite a client

with diabetes mellitus for a life insurance policy. The

findings of the study indicate that fuzzy inference is suitable

for helping underwriters cope with the complexity of making

suitable decisions. One of the commonly known drawbacks

of fuzzy logic is the lack of effective learning capability.

However, the study failed in highlighting performance

indicators, computational resource usage and error rates. In

this study, we use a technique that is easy to train, effective

to implement, and performs well under complex conditions.

Bhalla [18] studied a predictive model that can help in

enhancing medical underwriting. The predictive analytics by

Bhalla [18] used historical and statistical data to analyze and

predict the client’s risk category. This method allocates a

score to applications after predictive analysis. The

applications that scores higher are considered to be low risk

while those that score lower are considered to be high risk.

The results show that the enhancement of the underwriting

algorithm to include predictive analysis helps underwriters

to focus more on high risk applications. Unfortunately this

method is very risky as it does not guarantee the accuracy of

the prediction. However this may lead to some high risk

applications being overlooked. The authors also failed to

provide the performance indicators and failure rate of this

predictive model.

V. SYSTEM DESIGN AND ARCHITECTURE

The main functional requirement of this work was to

model a Medical Underwriting Prototype (MUP) that

manages client information and perform medical

underwriting using a rule based component. We used

Unified Modelling Language (UML) to model key activities

of MUP. Fig. 4 shows the use case diagram with key

activities of MUP application. The proposed architecture is a

multi-tier based architecture. Urgaonkar et al. [5] defines a

multitier architecture as a framework that provides flexible,

modular approach for designing modern internet

applications.

Fig. 5 illustrates a proposed MUP multi-tier architecture.

The presentation layer handles medical underwriter's

interactions with MUP, the business interface layer manages

the business rules and business logic, the data access layer

manages the access to the database, finally the data store

layer stores MUP medical information.

Fig. 4. Use Case diagram

Fig. 5. MUP multi-tier architecture

VI. SYSTEM IMPLEMENTATION

This work was implemented using JEE platform, JBoss

Application Server, Drools Expert for RETE algorithm

implementation and MySQL Server for MUP data storage as

shown in Fig.7. Fig. 6 shows the MUP Entity Relationship

Diagram (ERD) used by MUP.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

Fig. 6. MUP Entity Relationship Diagram

Drools Expert was acquired by Red Hat as part of their

strategic JBoss acquisition in 2006. It is a rule engine

implementation of RETE algorithm and it is based on Java

platform. The Drools Expert's implementation of RETE is

called ReteOO; it is optimized specifically for modern

object oriented systems. The reasons we chose Drools

Expert are [22]:

• It is a true implementation of RETE algorithm.

• It is based on forward chaining inference mechanism.

• It integrates well with Java based applications.

• It integrates well with Eclipse development environment.

• It is easy to learn, reliable, widely used, and available free

of charge.

The core medical underwriting business rules for this

work were built within the Drools Expert system using

Drools Rule Language (DRL). DRL is a language built

specifically for developing business rules targeted at Drools

Expert rule engine. The syntax for DRL is easy to learn and

to apply. DRL language is capable of expressing highly

complex business rules and also supports Java language.

Code Snippet 1, illustrates the basic structure of a DRL file.

rule "name"

optional attributes

when

Left Hand Side

then

Right Hand Side

End
Snippet 1. Basic structure of A DRL file

Fig. 7. MUP database tables

In a RETE system, a set of rules sits in production

memory, and a set of facts sits in a database called working

memory (WM). First a pattern matcher looks at both

memories to see which rules have their conditions satisfied

by the facts by forward chaining. After that, the matcher

generates a list of rules whose conditions have been

satisfied, called the Conflict Set. For the given working

memory (WM), the set of business rules (R) and production

rule (arcpl ,,][) the Conflict Set is defined as:

WMfireableonWMRwhichis

arcplfflCS k





),(

),,]([|}),...,{,{(1


 (1)

 CS creates a unique element conflicsetWMR n @

, where }...{ 1 kffWM 

The Conflict Set can either be empty (i.e., no rules fire-

able), unitary (i.e., only one rule can fire), finite (i.e., a finite

number of rules is activated) or infinite (i.e., an infinite

number of matches are found) [11]. In a situation where

infinite or finite match occurs, RETE will decide which rule

should be applied. This strategy is called resolution strategy

and is defined as:

 nWMWMWM  ...10 (2)

This returns a unique element

tconflictseWMR n @

The transition of medical underwriting data inside the

RETE network is defined as:

 msm a? (3)

Where ?m is the input token into the network, !ms is the

list of output tokens and a is an optional action to be

performed.

VII. EXPERIMENT AND RESULTS

We used Apache JMeter to test MUP. The test scenarios

were based on memory usage, response time and the rate of

false alarms generated. We compared the test results of

MUP with that of the application currently used in the

insurance environment. The current underwriting system

uses a traditional conditional statement (i.e., if-then-else) to

perform pattern matching and business rules execution. We

refer to this implementation as "naive algorithm" because it

does not have features of a true rule execution algorithm.

We loaded both systems with 500 rules and the number of

medical conditions per client increased from 1 to 5000 in a

period of 1 hour. The test scenario shows that MUP

application (using RETE algorithm) uses less memory

resources and the memory usage is consistent. The current

underwriting application memory usage is high and unstable.

We then loaded both rule bases (i.e., MUP application

and the current underwriting application) with 500 rules, and

1000 medical conditions per client were created randomly.

An Average of 100 requests was sent to the service layers

per second. The test was run within a period of 1 hour. The

objective was to determine the response time it takes to

process the request. Table I shows the results of this test

scenario by JMeter where UnderwritingProcessEngine.class

is the MUP application and ClientUnderwriter.class is the

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

current underwriting application. This test scenario shows

that MUP average response time under extreme usage is

80.32 milliseconds; the current underwriting application

average response time under extreme usage is 170.89

milliseconds.
Table I: Response time report for MUP application and current

underwriting systems

Finally, both rule bases (i.e., MUP application and the

current underwriting application) were loaded with 500

rules. The number of medical conditions per client increased

from 1 to 1000. The numbers of prospective clients profiled

were 954. The result shows that MUP system (with RETE

algorithm) generates fewer errors as compared to the current

underwriting system (with naive algorithm). Error generation

of RETE algorithm stabilizes as the data increase; this was

due to RETE being able to learn from previous errors. The

current system error generation increases exponentially as

the input data increases. Fig. 7 illustrates this test scenario.

Fig. 7. Errors generated by both RETE algorithm and the naive algorithm

VIII. CONCLUSION

This paper presented a medical underwriting system that

uses RETE algorithm to execute medical underwriting

business rules. We presented a brief overview of medical

underwriting and rule based systems. We presented system

architecture and implementation of MUP. The experiment

on the system was conducted, and the results indicated that

MUP uses less memory, generates fewer errors and performs

faster than the current underwriting system in an insurance

environment.

REFERENCES

[1] G. F. Luger, Artificial Intelligence: Structures and Strategies for

Complex Problem Solving, 6. edition, Addison-Wesley, 2009.

[2] L. YU-JU, H. CHIN-SHENG and L. CHE-CHERN, “Determination

of Insurance Policy Using Neural Networks and Simplified Models

with Factor Analysis Technique,” WSEAS TRANSACTIONS on

INFORMATION SCIENCE & APPLICATIONS, 2008.

[3] W. Yan and P. P. Bonissone, “Designing a Neural Network Decision

System for Automated Insurance Underwriting,” IJCNN IEEE, pp.

2106-2113, 2006.

[4] P. Wang, “Effects of Disability-Based Underwriting Prohibitions on

the Labor Market,” Asia-Pacific Journal of Risk and Insurance: Vol.

4: Iss. 1, Article 4, 2009.

[5] B. Urgaonkar, G. Pacificiy, P. Shenoy, M. Spreitzery and A.

Tantawiy, “An Analytical Model for Multitier Internet Services and

Its Applications,” 2005. [Online]. Available:

http://lass.cs.umass.edu/papers/pdf/SIGMETRICS05.pdfAmir.

[Accessed 02 02 2013].

[6] C. Seitz, S. Lamparter, T. Schöler and M. Pirker, “Embedded Rule-

based Reasoning for Digital Product Memories,” Siemens AG,

Corporate Technology, Autonomous Systems, 2010.

[7] Oracle, “Linear Inferencing: High-Performance Processing, Oracle

White Paper,” 2009. [Online]. Available:

http://www.oracle.com/us/industries/public-sector/029743.pdf.

[Accessed 03 03 2013].

[8] R. K. Nepal, “The Insurance Market in Nepal,” Bachelor Thesis,

Arcada University, 2012.

[9] D. P. Miranker, “TREAT: A Better Match Algorithm for AI

Production Systems,” in National Conference On Artificial

Intelligence - AAAI, 1987.

[10] R. C. M. Lee, K. P. Mark and D. K. W. Chiu, “Enhancing Workflow

Automation in Insurance Underwriting Processes with Web Services

and Alerts,” in Proceedings of the 40th Hawaii International

Conference on System Sciences, 2007.

[11] G. Huet and F. Fages, “Complete sets of unifiers and matchers in

equational theories.,” Theoretical Computer Science, pp. 43(1):189-

200, 1986.

[12] P. Horgby, R. Lohse and Nicola-Alexander, “Fuzzy Underwriting: An

Application of Fuzzy Logic to Medical Underwriting,” Journal of

Actuarial Practice vol 5, No. 1, 1997.

[13] E. Friedman-Hill, “Jess in Action: Rule-Based Systems in Java,”

Manning, 2003.

[14] C. L. Forgy, “On the Efficient Implementation of Production

Systems,” PhD Thesis, Carnegie-Mellon University, 1979.

[15] A. G. D. de Oliveira, “Sistema para Validação da Correcção e

Completude de Encomendas,” Thesis, Universidade Tecnica de

Lisboa, 2012.

[16] J. Crumiller, “The Impact of Tele-Underwriting on Mortality

Experience,” Princeton Consultants Tele-Underwriting Practice,

2006.

[17] C. P. Cong, “An approach to adaptive inference engine for rule-based

consultation systems,” Doctorate thesis, University of Duisburg-

Essen, 2007.

[18] A. Bhalla, “Enhancement in Predictive Model for Insurance

Underwriting,” International Journal of Computer Science &

Engineering Technology (IJCSET), p. Vol. 3 No. 5, 2012.

[19] D. Batory, The LEAPS Algorithms, The University of Texas, 1994.

[20] A. I. Andreescu and M. Mircea, “Perspectives on the Role of

Business Rules in Database Design,” Database Systems Journal vol.

III, no. 1/2012, 2012.

[21] Wikipedia, “Medical Underwriting,” 2012. [Online]. Available:

http://en.wikipedia.org/wiki/Medical_underwriting. [Accessed 12 10

2012].

[22] JBoss Drools Team, “Drools Expert User Guide,” 2011. [Online].

Available: http://docs.jboss.org/drools/release/5.3.0.Final/drools-

expert-docs/html. [Accessed 15 01 2013].

[23] Business Rules Group, “Defining Business Rules: What are they

Really?, 3rd edition,” 2002. [Online]. Available:

http://www.BusinessRulesGroup.org. [Accessed 20 11 2012].

[24] Wiktionary, “architecture,” 2013. [Online]. Available:

http://en.wiktionary.org/wiki/architecture. [Accessed 02 02 2013].

[25] SoapUI - http://www.soapui.org

[26] JMeter - http://jmeter.apache.org

[27] JUnit - http://junit.org.

[28] De Oliveira, A. G., Sistema para Validação da Correcção e

Completude de Encomendas. Thesis, Universidade Tecnica de

Lisboa, 2012.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

http://junit.org/

