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Abstract—Platelet activation and cell surface dynamics draws
significant interest in the scientific community. The current
work focuses on the question whether simple geometrical
features derived from platelets scanned using standard light
microscopy techniques are useful predictors of platelet shape
change. The corresponding parameters, such as area or perime-
ter, were used as input for a supervised classification of a
global platelet activation score and the distribution of the so-
called pseudopodia. The latter are a striking sign of cell surface
changes which is typically associated with the relevant activation
of platelets. The results show that both phenotypes can be pre-
dicted with a high accuracy in unknown samples, demonstrating
the potential of the automated platelet characterisation for a
wide range of clinical and scientific applications.

Index Terms—platelet activation, pseudopods, segmentation,
supervised machine learning

I. INTRODUCTION

PLATELETS are one of the main constituent of human
blood and their concentration within the plasma is a

standard parameter which is investigated in routine clinical
exams. They are responsible for blood coagulation, wound
healing and various pathological processes such as thrombus
formation, which plays a mayor role in stroke and heart
attacks. Platelets are highly dynamic objects that can react
to external stimuli such as pressure, temperature change
or chemical agents with a variety of different geometrical
changes of their cell surface structure. However, not very
much is known about the dynamics of this platelet shape
change (PSC). Specifically, the dynamics of cell surface
changes and/or the specific geometrical pattern formed un-
der different conditions (either pathological states or as a
response to external stimuli) has recently gained increasing
interest in the scientific community [1]–[3].

A characteristic sign of PSC is the formation of so-called
pseudopodia, which appear like spikes of different length,
thickness and shape that are attached to the cell body [4]. In
order to quantify and characterise different PSC reactions to
external stimuli and under pathological conditions, it would
be highly desirable to know the distribution of the number
of pseudopods in the blood sample being investigated. One
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might here rely on dedicated segmentation algorithms which
identify platelets and their pseudopods on microscopic im-
ages, count their numbers and characterise the corresponding
shapes. Although such an approach might be the preferred
option for the investigation of PSC with high precision, it is
associated with several drawbacks. First of all, segmentation
algorithms of pseudopodia are prone to artefacts. Small or
thin pseudopodia might easily be missed as their length could
be too small to be accurately differentiated from natural
variations of the cell surface structure. Furthermore, images
acquired with different imaging modalities, e.g. dark field or
phase contrast microscopy, result in different image contrasts
and require an adaption of the algorithm. Even when using
the same image modality, the contrast might change due to
different foci of the microscope at independent investigations
or different illuminations. As the pseudopodia are smaller
and show at the same time a much larger variability in
shape and position in comparison to the platelet body, their
segmentation is much more complicated and prone to errors
than the segmentation of a cell as a whole.

Therefore, the current work investigated if geometric fea-
tures derived from the whole platelet segment (i.e. where
no differentiation between cell body and pseudopodia was
performed) could be used as a surrogate marker to reliably
predict the distribution of the number of pseudopods in
platelet enriched blood samples. Furthermore, a cell activa-
tion score was defined which not just covers the number and
shape of pseudopodia. Instead, the whole platelet structure
including changes in the cell body was taken into account.
Again, only simple geometric features of platelet shape such
as area or perimeter were determined. For both phenotypes,
pseudopodia distribution and platelet activation score, su-
pervised machine learning algorithms were trained using
the known association between geometric features and class
information. The latter was obtained by manually evaluating
a large representative sample of different platelet images. The
current work demonstrates that a reliable prediction of both
phenotypes is indeed feasible. This opens the door for a wide
range of future quantitative studies of platelet shape change
and its association with different external stimuli as well as
pathological changes of the corresponding PSC.

II. METHODS

A. Sample preparation

Platelet rich plasma from anticoagulated whole blood
(3.2% buffered sodium-citrate 0,105 M) was prepared and
microscopic images of platelets were acquired as described
previously [2], [3]. Aliquots of PRP were incubated for 10
minutes at 37◦C without the addition of an agonist (native)
or at a concentration of 20 µMol ADP or 15 µMol TRAP.
Platelets were fixed in 0.4% HEPES-buffered formaldehyde
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Fig. 1. Original microscopic image from the ADP series (left). The corresponding image where the outlines (red lines) of the identified platelet segments
were overlaid is shown on the right. The segments identified by the automated segmentation algorithm [3], [5] are labled by numbers #1 - #6.

at 37◦C for 30 minutes. The native untreated data were
used for the determination of the number of pseudopods
distribution (referred to as PD-data) whereas the ADP and
TRAP datasets were used to define the activation score (AS-
data). The latter datasets were used to predict the activation
score as the platelet-enriched plasma was treated with two
different agents which resulted in different degrees of platelet
activation. Therefore, a wider range of activation patterns
could be covered, resulting in a more reliable predictor
especially for highly activated platelets.

B. Image segmentation and parameter definition

The platelet enriched samples were scanned with a light
microscope (Laborlux; Wild Leitz GmbH, Wetzlar, Germany)
equipped with a Canon 600 D reflex camera (Canon Inc.,
Tokyo, Japan). The magnification factor was 100 and the
resulting images were stored in JPEG format for futher
processing. A total of 350 images were acquired at dif-
ferent spatial locations for each sample. The correspond-
ing images were then processed to identify platelet seg-
ments and determine their geometrical properties as de-
scribed in [3] using the GROUP-IT open-source software
toolkit (Gruenwald Remagen Open-Source Unified Platelet
Identification Tracker). GROUP-IT is available for free
download at [5]. For the sake of completeness, the basis
for the segmentation algorithm and the parameters which
are determined for each segment are briefly described in the
following.
At the initial step, a bias field was estimated by iteratively
removing pixels with large grey values. The smoothed bias
field was then subtracted from the original 8-bit greyscale
images to remove low-frequency inhomogenities resulting
e.g. from regional brightness variations. The resulting images
were then deblurred by a deconvolution algorithm which
employed a maximum-likelihood estimator of the image
specific point-spread-function (PSF)1. The PSF corrected
images were smoothed by an anisotropic diffusion filter
in combination with a morphological opening operation.
Using an adaptive threshold approach, the filtered images
were segmented into disjunct binary segments. For each

1Here, the function deconvblind from MATLAB 2014a (The Mathworks
Inc.) was used.

segment, the following twelve parameters were determined
(see Table I): the segment area (σ1); the segment perimeter
(σ2); the fractal dimension of the segment border (σ3);
the circularity (σ4); the average grey value (σ5) and the
corresponding standard deviation (σ6); the eccentricity of an
ellipse which has the same second moments as the segment
(σ7); the diameter of a circle with the same area as the
segment (σ8); the ratio between the area of the region and
the area of its bounding box (σ9); the major (σ10) and
minor (σ11) axis length of the equivalent eclipse and the
solidity (σ12). The latter is defined by the ratio between
the segment area and the area of the convex hull which
corresponds to the current segment. The parameters were
finally used to remove any remaining non-platelet segments
from the images, resulting e.g. from erythrocytes, leucocytes
or microparticles. The complete description of the algorithm
including its performance on real datasets is detailed in [3].

TABLE I
PLATELET FEATURES USED FOR CLASSIFICATION

σ1 Area

σ2 Perimeter

σ3 Fractal dimension of the segment

σ4 Circularity

σ5 Average grey value

σ6 Standard deviation of the grey value distribution

σ7 Eccentricity of the equivalent eclipse

σ8 Diameter of the circle with the same area

σ9 AreaRegion/AreaBoundingBox

σ10 Major axis length of the equivalent eclipse

σ11 Minor axis length of the equivalent eclipse

σ12 Solidity: AreaRegion/AreaConvexHull

C. Supervised classification

As described above, a 12-dimensional feature vector was
defined for each of the segmented platelets (Table I). The
corresponding vector contains the relevant features that form
the basis for the prediction of both pseudopodia distribution
and the platelet activation score. However, in order to be
independent of the different scales of the individual pa-
rameters, each variable was first normalised by subtracting
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Fig. 2. Relation between the known number of pseudopods and the predicted average number of pseudopods for uncorrected data in the training sample
(left). The corresponding distribution for the validation sample is shown on the left. As described in the text, a correction factor was defined based on the
training dataset and applied the each datapoint. The consistency of the predicted and the known average number of pseudopods (red dotted line) becomes
clearly evident.

the group average (either PD or AS) and dividing by
the corresponding standard deviation. After normalisation,
≈ 99% of all data fall in the interval [−3, 3] for normally
distributed data.

1) Pseudopodia distribution: A random sample consisting
of 996 segments was drawn from the PD-dataset and the
number of pseudopods, NPseudo, was manually counted for
each segment by an expert (MJK). Due to the small number
of platelets with more than four pseudopods, the data were
assigned to one of the following five groups: zero pseudopods
(group 0), a single pseudopod (group 1), two pseudopods
(group 2), three pseudopods (group 3) and four or more
pseudopods (group 4). The group defines the class variable
which is associated with the corresponding feature vector.
As the 12-dimensional feature vector might contain vari-
ables that do not add sufficient discrimination power, a
preselection of the relevant variables was performed before
training the supervised model. Specifically, each of the 212

possible independent combinations of the 12 parameters was
selected and used to train a k-nearest-neighbour (kNN) model
with k = 12. For each combination of the parameters,
the prediction error was determined using a leave-one-out
crossvalidation scheme [6]. Using the parameter combination
that resulted in the smallest error rate, a training sample
consisting of 489 samples was randomly obtained to train a
kNN model with k = 12. The remaining 507 segments were
used for model validation. I.e., the number of pseudopods
was predicted for each segment contained in the validation
sample and subsequently compared to the known number
of pseudopods. However, it is important to notice that one
is typically not interested in the accurate prediction of the
number of pseudopods for a single platelet. Instead, the dis-
tribution of the number of pseudopodia in the whole sample
is of greater interest as this represents the information of
the average platelet activation, resulting from either external
stimuli or the pathological process investigated. Therefore,
the average predicted number of pseudopods was determined

for each of the five groups. To avoid any systematic errors,
the corresponding group averages were also calculated for
the training sample and plotted against the known number
of pseudopods in each group. As a linear relationship with a
slope b = 0.57 and offset a = 0.32 was observed between the
two quantities, all datapoints were first corrected by scaling
the corresponding predicted number of pseudopods for each
segment by 1/b = and subtracting a/b. Finally, the average
number of predicted pseudopods was plotted against their
real numbers in the validation dataset in order to validate
the model predictions including the applied correction term.

2) Activation Score: A total of 659 platelet segments
were randomly chosen from the AS dataset and manually
assigned to one of the three groups: real platelets (RP ),
agglomerates of platelets (AGGLO) and none-platelets such
as erythrocytes or lykocytes (NP ). The NP group was disre-
garded from the further analysis as it did not contain platelet
segments. For each segment in group RP and AGGLO,
an activation score index AITrue was defined manually by
an expert (MJK). The score ranged between 0-100, where
the lowest values were assigned to none-activated platelets
whereas the value 100 was assigned to segments which
showed the highest level of activation. The activation score
was based on the morphological classification of platelet
shape change as proposed by Rosenstein [7] and Allen
[8]. Images of single platelets were assessed regarding their
morphologic features of activation, i.e. number, length and
width of pseudopodia and the formation of the granulomer
and the hyalomer. The manual assignment was repeated
independently three times and the average AITrue was
calculated for each segment. From the 514 segments in
the RP and AGGLO group, 255 were randomly assigned
to train a linear regression model with bilinear interaction
terms using a stepwise approach [9]. The optimised model
was then employed to predict the activation score in the
validation sample consisting of the remaining 259 segments,
AIPredicted. The distribution of the difference between true
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Fig. 3. Distribution of the difference between predicted and true activation score in the validation sample as predicted with the bilinear regression model
(a). The corresponding scatter plot is shown in (b). The red line indicates points which fulfill the identity AITrue = AIPredicted.

and predicted activation index was determined from which
the average and median of |AIPredicted − AITrue| was
calculated.

III. RESULTS

Figure 1 (left) shows a single image from the stack of 350
images of the ADP series. The corresponding result from
the automated segmentation which forms the basis for the
definition of the 12-dimensional feature vector (see Table I)
is shown on the right. In this image, a total of six segments
where identified. One can easily recognise the pseudopodia
formed by platelet #3 and, to a smaller extend, by platelet #2.
Segment #6 consists of two adjacent platelets and therefore
presents an agglomerate.

A. Pseudopodia distribution

The exhaustive search performed for the accurate predic-
tion of the number of pseudopods revealed that the best pa-
rameter combination consisted of {σ2, σ3, σ4, σ5, σ10, σ12}.
Results from the prediction of NPseudo in the training
sample using those six parameters are shown in Fig. 2 (left).
As already described above, a linear relationship between
the true and predicted values was observed. However, the fit
of the distribution revealed a significant systematic deviation
from the bisector so that all data points were appropriately
corrected. Employing the correction factor extracted from
the training sample, the points in the validation sample
agree within the error bars with the expected behaviour (see
Fig. 2 (right)). Specifically, the following average number
of pseudopods were predicted for the five groups defined
above, where the error bar indicates the corresponding error
of the mean: 0.18 ± 0.12 (group 0); 1.03 ± 0.12 (group 1);
2.10±0.19 (group 2); 2.86±0.27 (group 3) and 3.85±0.36
(group 4).

B. Activation Score

The stepwise regression approach of the training data
resulted in two linear terms and one interaction term to

predict the activation score. Specifically, AIPredicted has to
be calculated as

AIPredicted = 45.8 + 26.4σ2 − 8.3σ10 + 2.2σ6σ9, (1)

to obtain the lowest least-squared error rate in the training
sample. The performance of Eq. 1 to correctly predict un-
known samples is shown in Fig. 3. Here, the scatter between
the known and the predicted activation score (right) as well
as the distribution of the difference between both are shown
(left). The difference is nearly Gaussian distributed which
shows that possible remaining systematic deviations might
be negligible. In contrast, the scatter between AITrue and
AIPredicted shows a small systematic deviation from a sym-
metric distribution (Fig. 3 (right)). Points with small AITrue

are slightly overestimated whereas a small underestimation
is observed for platelets with higher true activation score.
However, on average the mean (median) absolute difference
between the predicted and true activation score was 6.85 units
(5.35 units).

IV. CONCLUSION

The activation of platelets is a highly dynamic process
and an important parameter for the investigation of platelet
function. Today, light absorption measurements of platelet
enriched blood samples are one of the standard tools to
determine platelet activation [10]. In essence, the increased
platelet area results in an increase of the light absorption
coefficient which is then measured and properly calibrated
[11]. However, such techniques do not allow for a study
of the heterogeneity of individual platelets, where different
geometries which are formed under various conditions can
not be investigated [12].
To better understand the platelet shape change dynamics,
a set of tools have been developed in the recent past
which allow for an automated measurement and analysis
of microscopic images from platelet enriched samples [3],
[5]. One of the important aspects is that individual platelets
are measured and analysed so that information about the
distribution of platelet features in a given sample can be
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obtained. This is of high importance as e.g. an increased
light absorption coefficient can be either due to an increase
of the platelet cell body without formation of pseudopodia
or from the inverse process. Using the standard tools, there
is no possibility to differentiate between those two condi-
tions which might reflect totally different physiological or
pathological processes. Here, the GROUP−IT open-source
toolkit allows for the automated segmentation of platelets and
the measurement of the corresponding segment properties
such as area, perimeter or fractal dimension [5]. However, it
is important to link those parameters to the phenotypes of
interest, i.e. the number of pseudopods and the global platelet
activation.
In the current work, it was therefore investigated if the
features measured for the individual segments could be used
to predict (1) the number of pseudopods and (2) the platelet
activation using supervised learning models. The latter was
obtained from manually scoring the individual segments with
respect to criteria published in the literature [7], [8]. It was
shown that the pseudopodia distribution can be predicted
with high accuracy if the learning model was adjusted to
correct systematic errors. It is important to notice however,
that only the training data were used to define the sys-
tematic deviation between known and predicted number of
pseudopods. The test sample was then employed to validate
the supervised classifier including the correction term. We
have demonstrated that this approach resulted in an unbiased
and accurate measure of the pseudopodia distribution in an
unknown sample.
The same applies to the prediction of the activation index,
where the average absolute deviation between real and
predicted value was only ≈ 6 units. However, a small
systematic error in the predicted AI was observed, similar
to the pseudopodia distribution. This should not pose severe
problems as it can easily be corrected by scaling the data in
the training sample appropriately. This should even further
reduce the deviation between predicted and true activation
score (see Fig. 3).
In summary, the current work has demonstrated that clinical
phenotypes such as the number of pseudopodia and the
platelet activation can reliably and automatically be predicted
from simple measures of platelet geometry, including grey
value information. This opens the door for a wide range of
applications in future clinical studies on platelet function and
dysfunction.
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