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Abstract — This paper compares the performance of Mel-

Frequency Cepstral Coefficients (MFCCs), their deltas and 

delta-deltas, which are conventionally used in the forensic voice 

comparison arena, to an alternative set of features, namely the 

Complex Cepstral Coefficients (CCCs). The performance of 

CCCs has been found to outperform MFCCs in terms of the 

accuracy and precision of the likelihood ratio results. It is 

hypothesized that this is because CCCs intrinsically carry more 

speaker-specific information than MFCCs, this being 

specifically related to the glottal shaping and lips radiation 

filters of the speech production model. 

 
Index Terms — cepstral coefficients, forensic voice 

comparison, likelihood ratio. 

 

I. INTRODUCTION 

NALYSIS of speech recordings can play a crucial part in 

determining the identity of an offender in a court of 

law. The speech samples are normally compared on the basis 

of various discriminative parameters, such as formants, 

formant trajectories and Mel-frequency cepstral coefficients 

(MFCCs). This study investigates the comparative 

performance of MFCCs with an alternative set of cepstral 

coefficients, specifically the complex cepstral coefficients 

(CCCs). 

MFCCs, including their first and second derivative 

parameters (i.e., deltas and delta-deltas), have been used in 

speech forensics for a while and have been shown to 

produce good results [1]-[4]. MFCCs are broadly a 

perceptual based feature set. CCCs, on the other hand, tease 

out information relating to the speech production process 

[5]. Currently CCCs are not used in the speech forensics 

arena. This is likely related in part to the potential sensitivity 

of this feature set to transmission artifacts such as channel 

noise, channel phase distortion, etc. However, speech 
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transmitted across a mobile phone network does not get 

directly impacted by such factors, but rather in a highly 

indirect manner [6]. Given that mobile phone speech is 

being increasingly used as evidence in courts of law, we 

have decided to take a fresh look at this feature set and 

compare its performance in FVC to more commonly used 

feature sets. Though the comparison process in this paper 

has been performed using studio quality recordings, which 

does not reflect a realistic forensic scenario, we believe the 

analysis results presented nonetheless provide an indication 

of the speaker-specific information contained in each feature 

set. 

The following four experiments are based on the analysis 

of vowel segments (specifically, one monophthong and two 

diphthongs). Different realizations of the MFCCs parameters 

have been considered. With the first experiment, MFCCs 

have been extracted from the entire vowel segment. The 

second and third experiments use MFCCs, but they 

incorporate deltas and delta-deltas, respectively, these being 

extracted by segmenting the speech into stationary frames of 

30ms. The fourth experiment uses CCCs that have been 

again extracted from the entire vowel segment. 

The likelihood-ratio framework has been used in our 

experiments to quantify the strength of speech evidence. 

Among the different probabilistic models available, such as 

Multivariate Kernel Density (MVKD) [7], Gaussian Mixture 

Model-Universal Background Model (GMM-UBM) [8] and 

Principal Component Analysis Kernel Likelihood Ratio 

(PCAKLR) [9], the latter approach has been chosen for this 

investigation because of its ability to handle large number of 

parameters, such as is the case with cepstral coefficients, 

without any computational issues. It also has been found to 

provide comparable results to the MVKD analysis when 

used with a small number of parameters [9]. The 

performance of MFCCs and CCCs in FVC has been 

analysed by comparing their corresponding accuracy and 

precision. The results are shown using Tippett plots and the 

performance measuring tools include log-likelihood-ratio 

cost  (  )llrC , Average Probability Error Plots (APE) and 

Credible Interval.  

The remainder of this paper is structured as follows. 

Details of CCCs and MFCCs are discussed in the following 

section. This is followed by a brief overview of PCAKLR 

along with a description of the performance measuring tools 

Comparison between Mel-Frequency and 

Complex Cepstral Coefficients for Forensic 

Voice Comparison using a Likelihood Ratio 

Framework 

Balamurali B. T. Nair, Esam A. S. Alzqhoul, Bernard J. Guillemin                                                    

A 

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

mailto:bbah005@aucklanduni.ac.nz


 

used in this investigation. Section III discusses the 

experimental methodology, followed in Section IV with the 

discriminative performance of the aforementioned speech 

parameters in FVC. Discussions and conclusions appear in 

Section V. 

II. BACKGROUND INFORMATION 

A. Cepstral analysis 

When applied to speech, cepstral analysis (often referred 

as homomorphic filtering [10]) can be used to separate out 

the various aspects of speech production process. Cepstral 

analysis is defined as the inverse Fourier transform of the 

logarithm of the Fast Fourier Transform (FFT) of the signal 

[5]. A number of different sets of cepstral coefficients exist. 

The term cepstrum typically refers to the set obtained when 

the logarithm function is applied to the magnitude of the 

FFT components only. When it is applied to both the 

magnitude and phase component of speech the resulting set 

is referred to as the complex cepstrum. Fourier analysis of 

the speech signal is used to convert the convolution between 

the source and filter components in the time domain into a 

product of their corresponding representations in the 

frequency domain. The logarithm operator transforms this 

product operation into a sum of both components. The 

inverse Fourier transform is then used to bring the separated 

components back into the time domain (quefrency domain) 

[5], [11]. The resultant cepstral coefficients characterize the 

slow and fast varying components of speech. Slow varying 

components (e.g. pitch) get concentrated in the upper part of 

the cepstral domain, whereas the fast varying components 

(e.g. the vocal tract filter) get concentrated in the lower part. 

 

Complex Cepstral Coefficients 

When the complex cepstrum analysis is applied to speech, 

the components of the speech production model will be 

separated as described in (1) - (5) [5]. 

           *  . * *s n p n A g n v n r n  (1) 

         ( ) .S z P z AG z V z R z     (2) 

     ( )S z P z H z   (3) 

         {log } log logIFFT S z IFFT P z H z   (4) 

 ( ) ( ) ˆ )ˆ (ŝ n p n h n   (5) 

where * is the convolution operator, s is the speech signal, 

p is the excitation signal (assumed impulse like signal for 

voiced speech), g is the glottal shaping filter with gain A, v is 

the vocal tract filter, r is the lips radiation  filter and H(z) is 

the overall filter response in the frequency domain. The 

glottal shaping filter, G(z), is typically a stable, anti-causal 

filter with poles located at the origin and zeroes outside the 

unit circle. The vocal tract filter, V(z), is typically an all pole 

filter with all of its poles inside the unit circle. The lip 

radiation filter, R(z), typically has a pole at the origin and a 

zero inside the unit circle [5].  

Applying the complex logarithm to S(z)  and then inverse 

Fourier transforming produces a set of complex cepstral 

coefficient (as in (4) and (5)), ˆ( ).s n This is the summation 

of two subsets of coefficients, ˆ( )h n (arising from H(z)) and 

ˆ ( )p n  (arising from P(z)). ˆ( )h n will comprise of both 

causal and anti-causal components, the causal components 

arising from V(z) and R(z), and the anti-causal components 

arising from the zeroes of G(z).  ˆ ( )p n  will also comprise of 

causal and anti-causal components. ˆ( )h n  dominates the 

lower part of ˆ( ),s n  whereas ˆ ( )p n  dominates the upper 

part.  

 

Mel Frequency Cepstral Coefficients  

MFCC analysis focuses on the perceptually relevant 

aspects of the speech spectrum. The speech signal is 

converted to the frequency domain using the Discrete 

Fourier Transform (DFT). The next step is estimating how 

much energy exists in various regions of the frequency 

domain. This is motivated by the fact that the human ear 

responds non-linearly at different frequencies. This non-

linear response to frequencies is best represented by the 

Mel-scale shown in (6): 

 ( ) 1125 ln 1
700

f
M f

 
  

 
 (6) 

where f is the frequency and M(f) is the equivalent Mel-

scale frequency. The energy is then estimated over a set of 

overlapped Mel-filter banks by computing the power 

spectrum of the speech signal and then summing up the 

energies in each filter bank region. Once the filter bank 

energies are computed, the logarithm operator is applied. 

Unlike CCCs, which use IFFT in their last step, the MFCC 

extraction performs the Discrete Cosine Transform (DCT) 

on the logarithm of the energies computed. The resultant set, 

MFCC(n), as given in (7), is causal, 

    
1

1 2 1
   log cos     

2

R

r

MFCC n MF r r n
R R





  
      

  
  (7) 

where, MFCC(n) is the n
th

 MFCC coefficient extracted 

from a particular speech segment using R triangular filters 

and MF(r) is the mel-spectrum for the r
th

 filter [5]. It is a 

common practice to use deltas and delta-deltas along with 

MFCCs to capture the dynamic aspects of the speech signal 

[1]. These are simply the first and second order derivatives 

of MFCCs over a range of short-term speech frames. 

Given that CCCs arise from taking the complex logarithm 

of the FFT of s(n) (both magnitude and phase), whereas 

MFCC arise from taking the logarithm of the magnitude of 

FFT only, the set of CCCs should potentially contain more 

speaker-specific information than MFCCs, and thus the 

motivation for this study. 

B. Likelihood ratio (LR) framework  

The likelihood ratio framework in the context of FVC 

provides a quantitative answer to the question: How much 

more likely is it to observe the properties of the offender and 

suspect speech samples assuming they have the same origin 

(prosecution hypothesis) than a different origin (defence 

hypothesis)? [12]-[14]. Mathematically, the LR is defined 

as: 
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( | )

( | )

p

d

p E H
LR

p E H
  (8) 

where ,( | )p dp E H  is the conditional probability of the 

evidence given the prosecution and defence hypothesis, 

respectively. LR values significantly greater than one 

support the prosecution hypothesis and values significantly 

less than one support the defence hypothesis. Being an easier 

metric to analyze, log likelihood ratios (LLRs) are often 

calculated from LRs. Like LR, the magnitude of the LLR is a 

measure of the strength of evidence, but its sign indicates 

whether this is in favor of prosecution or defence. Positive 

values favour the former, while negative values favour the 

latter.  

For the following set of experiments, PCAKLR has been 

chosen for computing LRs [9]. In PCAKLR, firstly the 

speech parameters are transformed into a new set of 

uncorrelated parameters using principal component analysis. 

Secondly, a LR value for each of these transformed 

parameters is determined using univariate kernel density 

analysis (UKD). Given the assumption of uncorrelated 

parameters, the individual LRs are multiplied to produce a 

final LR value. In UKD, the LR is calculated using the 

following equation [15]. 
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where, 
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x,  y are the means of offender and suspect data 

respectively. jz is the mean of an individual speaker data in 

the background. 
2 , ks  are the within and between speaker 

variances respectively. 
2σ  is the combined suspect and 

offender variance. λ  is a smoothing factor. N, k are the 

number of tokens per speaker and the number of speakers in 

the background respectively. Finally, m and n are the 

number of tokens of the offender and suspect data 

respectively.  

C. Log-Likelihood ratio cost  

The accuracy of a FVC experiment measures the 

closeness of the obtained result to its true value. Log-

likelihood ratio cost (    llrC ) is one such tool recommended 

in the speech forensics arena [16]-[18], defined as  

  
so do

j

i

N N

2 2 do

i 1 j 1so so do

1 1 1 1
        log 1   log 1  LR  

2 N LR N
llrC

 

  
     

  
  

 
(15) 

so doN , N are the number of same- and different-speaker 

comparisons and so do,LR LR  are their corresponding LRs. 

The lower the    llrC value, the more accurate is the analysis 

and vice versa. 

D. Credible interval (CI) as a precision measure  

The precision of a FVC analysis is the amount of variation 

expected in the LR due to the variability in the source. Once 

CI is calculated, one can be confident that the true LR value 

lies within the 95% of it. Of the two approaches proposed 

for calculating CI, the non-parametric approach is the one 

typically used [19], [20] and this has been chosen for the 

following experiments to measure precision. 

E. Tippett plot   

A Tippett plot is a graphical way of presenting the LLR 

results of a FVC analysis. It represents the cumulative 

proportion of LLR results obtained for the same- and 

different-speaker comparisons [12], [21]. As a large positive 

LLR value supports the prosecution and a larger negative 

value the defence, the further apart are the same-speaker (to 

the right) and different-speaker curves (to the left), the better 

are the results. 

F. Applied Probability of Error (APE) plot   

The losses in the    llrC  value can be teased out using an 

APE plot [22], [23].  Two major losses: discrimination 

( llr minC ) and calibration loss ( llrcalC ) are present in every 

FVC system. The former corresponds to the lowest    llrC   

that can be achieved while preserving the discrimination 

power, while the latter is the difference between the obtained 

   llrC value and llr minC . An APE plot comprises a number of 

APE curves and bar graphs. 

APE curves plot the error rate against the logit prior and 

they include three curves: dashed, solid and dotted with 

circular marker. The dashed curve shows error rate of the 

optimized LLRs, whereas the solid curve shows the error 

rate of the system under evaluation. Finally, the dotted curve 

with circular marker shows the error rate of the reference 

system (     0llrC  ). The bar graph gives the area under the 

dashed and solid curves.  Importantly, the height of the 

bottom bar gives llr minC and is proportional to the area under 

the dashed curve, while the height of the top bar gives 

llrcalC and is proportional to the area between solid and 

dashed curves. 
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III. METHODOLOGY 

A. Speech database and Speech parameters 

The XM2VTS database has been used in our experiments. 

It includes speech recordings of 295 speakers [24]. Speakers 

were recorded on four different occasions separated by one 

month and during each session every speaker read three 

sentences twice. Only male speakers have been considered 

for our experiments. Among the 156 males, 26 were 

discarded as they either sound less audible or appeared to 

have a different accent from the rest. The vowel segments 

/aI/, /eI/ and /i/ were extracted from the words “nine”, 

“eight” and “three”, respectively, from the first two 

sentences for every speaker. 

The database with 130 speakers has been divided into 

three groups: 44 speakers for the Background set, 43 

speakers for the Development set and 43 speakers for the 

Testing set. Note that the sole purpose of the Development 

set is to train the logistic regression fusion system [25], the 

resultant weights of which are used to combine LRs 

calculated from individual vowels. 

In summary, four tokens of three different vowels (two 

diphthongs and one monophthong) from three non-

contemporaneous recordings were used in the following 

experiments. Using three different sessions, two same-

speaker comparisons and three different-speaker 

comparisons are possible.     llrC values were calculated from 

the mean LR values and will be referred to as Mean   .llrC  

Credible interval was calculated by finding the variation in 

LR values over a set of speech recordings for a particular 

comparison. 

B. Experimental methodology 

A number of experiments have been considered. In 

Experiment 1, a set of MFCCs extracted from the entire 

vowel segment have been used. Experiment 2 uses both 

MFCCs as well as deltas. With this experiment, a vowel 

segment has been segmented into 30ms Hamming windowed 

frames. MFCCs have then been computed for each and the 

average of these has produced a set of Mel-frequency 

cepstral coefficients. Deltas are computed by determining 

difference of MFCCs in adjacent frames. Exactly the same 

procedure has been used in Experiment 3 which includes 

MFCCs, deltas and delta-deltas. With Experiment 4, CCCs 

have been calculated from the entire speech segment.  

In the first Experiment, 23 MFCCs were extracted from 

the entire vowel segment (Note: all the DCT coefficients 

have been considered here). The maximum number of 

MFCCs that can be extracted is determined by the data’s 

sampling frequency [5]. In our experiments we have down-

sampled the speech data to 8 kHz, this being the standard 

value used in both the landline and mobile phone arena. At 8 

kHz sampling frequency a maximum of around 23 MFCCs 

can be extracted. We felt it important in this investigation to 

use as many parameters as possible in a feature set in order 

to ensure fairness when comparing results between feature 

sets. Experiments 2 and 3 follow the conventional way of 

MFCC extraction by segmenting a speech segment into 

frames of 30 ms. MFCCs along with their corresponding 

deltas and delta-deltas, extracted from short-term speech 

segments, have been used around for a while and have 

shown good results in respect to FVC analysis. For 

Experiment 2, 12 MFCCs and 12 deltas were considered. An 

additional 12 delta-deltas have been added in Experiment 3. 

A maximum of 12 MFCCs are traditionally used when 

undertaking an analysis on a frame-by-frame basis because 

of the small amount of data that is then being analysed, 

which introduces noise into the higher-order MFCC filter 

banks. For Experiment 4, a total of 100 CCCs were 

considered (50 Causal and 50 anti-causal components). This 

number has been chosen based upon early research 

examining the use of CCCs when applied to speech [5]. 

Again, we wanted to use the maximum number of 

parameters per feature set that it made sense to use. The 

performance of FVC using these parameters was analyzed 

using    llrC and CI.  

IV. EXPERIMENTAL RESULTS 

Table 1 compares the resulting FVC performance for each 

of the experiments described. On the basis of both    llrC and 

CI, it is clear that CCCs (i.e., Experiment 4) have 

outperformed the other experiments. The combination of 

MFCCs and deltas (i.e., Experiment 2) has resulted in a 

marginally better performance in terms of accuracy among 

the various MFCC realizations. However, its precision 

seems significantly worse. MFCCs tend to have larger 

variation when computed over a range of stationary speech 

frames. In contrast, those extracted from the entire speech 

segment reflect less variation and result in a better precision. 

 
TABLE I 

PERFORMANCE OF VARIOUS SPEECH PARAMETERS 

 

Experiment 

 

Parameter 

 

Mean    llrC  

 

CI 

1 MFCCs 0.167 2.299 

2 MFCCs + deltas 0.137 3.231 

3 
MFCCs + deltas + 

delta-deltas 
0.148 3.167 

4 CCCs 0.099 1.523 

 

 

Fig. 1. Tippett plot showing FVC performance using MFCCs + deltas. 
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The results have been further analyzed using Tippett 

plots. Fig. 1 shows a Tippett plot for the best performing 

MFCC set in terms of accuracy (i.e., Experiment 2). Tippett 

plots of the other MFCC-based sets are very similar to those 

of Fig. 1 and have not been shown. Fig. 2 shows the 

corresponding Tippett plot for CCCs (i.e., Experiment 4). In 

the Tippett plots shown, the solid curve with dotted marker 

rising towards the right represents the same-speaker 

comparison results and the solid curve rising towards the left 

the different-speaker comparison results. The dashed lines 

on either side of the same- and different-speaker results 

curves represent the variation found in a particular LLR. 

 
Fig. 2. Tippett plot showing FVC performance using CCCs. 

Fig. 3. APE plots showing the losses in Cllr for various speech feature sets. 

It might be concluded from Fig. 1 and 2 that MFCCs have 

outperformed CCCs (in Fig. 1 the curves are further apart 

than they are in Fig. 2). However, the performance of an 

FVC experiment in the vicinity of the LLR = 0 decision 

boundary is more important than the performance of higher 

magnitude LLRs. As can be seen from Fig. 1 and 2, CCCs 

have outperformed MFCCs in this region for the same-

speaker comparisons. However, MFCCs have outperformed 

CCCs in terms of different-speaker comparisons. The 

proportion of same-speaker misclassifications is lower for 

CCCs (almost none) compared to MFCCs, but the opposite 

is true for different-speaker misclassifications. For larger 

LLR magnitudes, MFCCs have outperformed CCCs for both 

same- and different-speaker comparisons. The APE-plot in 

Fig. 3 shows that the improvement in    llrC when using 

CCCs is attributable to the improved discrimination 

performance of this feature set (i.e., CCCs have resulted in a 

llr minC  of 0.040 as compared to MFCCs’ 0.117, MFCCs + 

deltas’ 0.082 and MFCCs + deltas + delta-deltas’ 0.083). 

However, the calibration performance ( )llrcalC for all these 

feature sets is comparable (i.e., CCCs have resulted in a 

llrcalC  of 0.059 as compared to MFCCs’ 0.050, MFCCs + 

deltas’ 0.055 and MFCCs + deltas + delta-deltas’ 0.065). 

V. CONCLUSIONS 

This paper has compared the performance of MFCCs with 

CCCs in the context of FVC. The result is shown for clean 

speech. It is clear from the results that CCCs have 

outperformed MFCCs. This is specifically in terms of 

discrimination. The results presented suggest that CCCs 

fundamentally contain more speaker-specific information. 

This is of potential interest when analyzing mobile phone 

speech because the speech in that arena is never directly 

impacted by transmission artifacts such as channel noise and 

channel distortion. However, the extent to which CCCs are 

impacted by other factors in a real forensic situation, such as 

mismatch in recording conditions between suspect and 

offender data, still needs to be investigated. 
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