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Abstract—Quantitative MRI (qMRI) is one of the techniques
which shows a high potential to close the observed gap between
imaging and clinical findings in patients with multiple sclerosis
(MS). The current work employed image data acquired with
a multidimensional quantitative MRI protocol in combination
with a supervised learning model to predict the presence
or absence of MS. Only data from normal appearing brain
tissue was employed to define the relevant image features
which are used for classification. Using a proper parameter
selection, we have observed a false prediction rate of 12.5%.
This demonstrates that (1) normal appearing brain tissue is
already affected by the disease and that (2) qMRI allows for
an objective and automated assessment of such pathological
alterations at stages of the disease where the conventional MRI
does not show any pathological findings.

Index Terms—quantitative magnetic resonance imaging, mul-
tiple sclerosis, supervised machine learning

I. INTRODUCTION

MULTIPLE sclerosis is the most common neurological
disease in the first decades of life. It manifests itself

by a diversity of symptoms, including speach disorders,
paralysis, visual disturbances or many other forms of symp-
toms which are associated with a disturbed neurological
signal transmission [1]. Although MS can be diagnosed by
a combination of clinical and imaging findings, today no
accurate and reliable markers exist for the study of disease
progression or therapy response [2]–[4].
Extensive research is therefore devoted to search for new
methods to better predict the individual patients outcome.
Here, new quantitative magnetic resonance imaging protocols
are one of the most promising tools to close the gap between
the clinical appearance of patients and the corresponding
findings on standard MRI images [5]–[12].
The signal received in a MR coil is determined by various
physical and physiological parameters such as tissue specific
relaxation times, the diffusion of water molecules, magneti-
sation transfer between different magnetisation pools or the
concentration of protons in a sample (Ref). Conventional
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parameter weighted MRI, which forms the basis for most
exams performed in todays clinical routine, is a powerful
tool to detect and correctly diagnose diseases of various
origins. However, the signal is determined by a mixture of
the different underlying tissue properties, where the relevance
of each individual factor is adjusted by the specific sequence
properties and parameters. Moreover, the conventional pa-
rameter weighted signal is perturbed by external factors
which are often unknown, temporarily unstable and which
are not explicitly controlled for. Such factors include e.g.
room temperature, receive coil calibration, patient position
within the scanner (which result in different magnetic sus-
ceptibility gradients, due to the changing geometry with
respect to the external ~B-field) or flip angle and magnetic
shim adjustments which are perfomed seperately for each
individual exam. Therefore, the absolute signal intensity is
of no significance and only the contrast between different
tissues can be employed to yield a proper diagnosis.
However, it is important to notice that the signal received
can typically be expressed as a mathematical function of
the underlying tissue properties (where the imaging sequence
which was employed to acquire the images has to be properly
considered) E.g., for most MR sequences, the received signal
is a linear function of the proton density. This forms the basis
for a quantiative measurement of fat or tissue water content
as the MR signal from protons not residing in fat or H2O
molecules decays too fast and therefore escapes detection
[18]. However, one has to determine properly all other
confounding parameters such as tissue specific differences of
relaxation times which also influence the received signal in a
MR sequence. Furthermore, all other factors such as coil cal-
ibration or RF flip angle inhomogeneity have to be measured
for each individual patient and their influence on the image
has to be corrected. When all parameters and influencing
factors are known, the mathematical relationship beween
the signal intensity and the other tissue specific parameters
can be used to quantify the parameter of interest, such as
the total water content. A proper qMRI scheme performes
such an analysis for each voxel individually and displays the
resulting parameter, which is determined for each voxel, as a
quantitative map. The most striking feature of such a map is
the quantitative nature of the data displayed. Each grey value
is no longer an arbitrary number as with conventional MRI,
but now displays the corresponding value of the parameter
measured within this voxel (with a corresponding physical
unit attached).
The attraction of quantitative magnetic resonance imaging
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for an improved diagnosis of MR is therefore due to two
of its inherent properties: First of all, images acquired with
quantitative MRI are independent of environmental influ-
ences as they are properly controlled and calibrated. As
MS is a chronic disease which requires regular MR scans
over multiple decades of life, environmental influences such
as scanner hardware, room temperature, hardware calibra-
tion, measurement sequences and protocols, employed field
strength etc. undergo natural changes. Therefore, images
acquired in the past can not directly be compared to the
latest exams and require deep knowledge of the reading
radiologists.
Second, and probaly even more important, qMRI allows to
measure parameters which are much more directly linked to
important pathological processes underlying multiple scle-
rosis, foremost demyelination and inflammation. As MRI
is sensitive to water residing in different compartments, it
allows for the absolute quantification of total tissue water
content which is a good surrogate marker for inflammatory
processes. Moreover, water molecules residing between the
myelin bilayers surrounding the axons show a very distinct
MR relaxation behaviour. It can therefore be identified by a
multiexponential analysis of the transverse MR decay signal.
It has been convincingly shown that the resulting measure
of myelin bound water content correlates with the myelin
content in the brain [13], [14]. Quantitative MRI is therefore
today the only non-invasive tool to measure the amount
of myelin in the brains of MS patients. This is of high
importance as the destruction of the myelin sheets is one of
the major pathological processes resulting in the symptoms
observed in multiple sclerosis [1].
Finally, it is important to notice that the quantitative nature
of the data observed allows for an objective comparison
between healthy and diseased tissue as a cohort of subjects,
which are not affected by any neurological disorder, can
be studied to define a control normative. This significantly
increases the diagnostic power of qMRI protocols as it
enables the study disease process in brain tissue which is
still normal appearing on conventional MR scans. Here,
small but possibly clinically relevant changes do not result in
visible image features such as plaques and therefore escape
detection during a conventional reading by a radiologist. As
a consequence, the study of normal appearing brain tissue
has received great attention in the scientific community.
From a theoretical point of view, each pixel of an image
represents an individual measurement of a single quantitative
parameter. Even though pixels in an image are correlated, the
amount of data acquired is in the order of 107 datapoints for
a typical acquisition with matrix size of 256 × 192 × 50
pixels. This presents a huge amount of information, espe-
cially when employing a multidimensional qMRI (mqMRI)
as the one described in [15]–[17] which allows for the
reconstruction of multiple MR parameters such as relaxation
times and total/myelin water content. However, in a clinical
setting one is typically interested in information of very
low dimensionality (often even binary information) such as
therapy responder vs. non-responder or presence vs. absence
of a disease etc. Therefore, data reduction schemes which
effectively condense the immense information contained in
mqMRI measurements are required to fully employ the
quantitative nature of the the data acquired.

In the current work, such a data reduction scheme was
investigated. Specifically, the goals of the the current work
were (1) to investigate if normal appearing brain matter
contains all relevant information to differentiate between MS
patients and healthy subjects, which is one of the basic
assumptions underlying qMRI and (2) to investigate if the
corresponding information can be employed to automatically
predict the presence or absence of MS using simple and ro-
bust dimensionality-reduction schemes in combination with
supervised learning models.

II. METHODS

A. Quantitative magnetic resonance imaging

Quantitative parameter maps of longitudinal (T1) and
effective transverse (T ∗

2 ) relaxation times were acquired
with the protocol specified in [16]. Furthermore, the total
(H2O

Tot) and myelin bound (H2O
Myelin) water content

were reconstructed from the same data [17].
In short, the reconstruction of the quantitative parameters
is based on the acquisition of two mulit-echo gradient
echo sequences (MEGE) with different parameters and the
measurement of three fast echo-planar-imaging sequences.
The first MEGE sequence (MEGE1) was used to acquire the
decaying MR signal at ten equidistantly spaced timepoints
between TE = 4.8ms and TE = 42ms. Based on MEGE1,
two quantitative MR parameters were determined: the effec-
tive transverse relaxation time, T ∗

2 , and the myelin bound
water content, H2O

Myelin. While the first parameter was
obtained from fitting a single exponential function to the
signal intensities at the ten different decay times for each
voxel, the myelin bound water content required a proper
analysis of the different water comparements in an imaging
voxel. The feasibility to map H2O

Myelin was based on the
fact that water molecules trapped between the myelin bilayers
are significantly restricted in their motility. As the transverse
MR relaxation time is correlated with the proton mobility
(which can formally be expressed by a parameter called cor-
relation time, τc, which represents the mean interaction time
between two magnetic dipoles [18]), the MR signal of myelin
bound water molecules decays fast. The resulting transverse
decay signal therefore shows a multiexponential behaviour
with a least two distinct relaxation times, characteristic of
myelin bound and free water, respectively. However, a simple
unconstrained bi-exponential fit of the decaying signal is
not feasible given the sparse sampling of the decay curve.
Therefore, constrained quadratic programming was used to
fit the amplitudes of the myelin water and free water pool as
described in [17]. Adaptive constraints were chosen based on
the measured signal and were optimised in simulation studies
to minimise the measurement bias, resulting in an average
systematic error of ±9% [17]. H2O

Myelin was defined as the
ratio between the myelin water pool amplitude and the full
amplitude of all pools (myelin bound water and free water).
Futhermore, the latter is proportional to the total proton
density in a voxel. As mentioned above, only protons residing
on H2O or fat molecules contribute to the MR signal, which
further simplifies in the human brain giving its negligible
fat content. Therefore, the total proton density correlates
with the total water content in a voxel, H2O

Tot. In order
to quantify H2O

Tot, all other factors which result in a
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Fig. 1. Conventional T ∗
2 -weighted (top left) and T1-weighted (bottom left) magnetic resonance images of a transverse slice through the brain of a MS

patient. The corresponding quantitative maps are shown color coded in the middle (T ∗
2 and total H2O content) and in the right (T1 and myelin-bound

H2O) column of the figure, respectively.

modulation of the MR signal have to be measured and
properly corrected. Basically, the following three sources of
signal modulation need to be considered: (1) differences in
signal saturation, which are governed by the longitudinal
relaxation time, T1; (2) imperfections of the receive coil
system and (3) inhomogeneities of the transmitting ~B1 field,
resulting in a spatial variation of the effective excitation flip
angle.
T1 was quantified using a second MEGE sequence (MEGE2)
with the same echo times as MEGE1, but different flip
angle and repetition time. The ratio of the MEGE1 and
MEGE2 signal intensities is then a function of T1 and the
effective real flip angle at the location of each voxel, αreal.
The latter was obtained from the ratio of two echo-planar
imaging sequences with different nominal flip angles of 30◦

and 90◦, respectively. Given the knowledge of αreal, T1
was determined from the known mathematical relationship
between T1, αreal and the signal intensity ratio of the two
gradient echo sequences [16].
As the spatial variation of αreal characterises the imperfec-
tion of the transmitting ~B1 field, the final unknown for a
proper measurement of the total water content is the receive
coil inhomogeneity. The latter was determined from the
signal intensity ratio of two fast EPI scans with identical

sequence parameters. However, the first scan employed the
body coil for signal transmission and reception while in the
second sequence the standard head coil was used for signal
reception. The corresponding ratio between signal intensities
therefore characterises the inhomogeneity of the receiver
(head) coil. After a proper application of all correction
factors, the total water content, H2O

Tot, was defined by ratio
of the corrected signal intensity at each voxel to the signal
intensity in voxels which contain 100% water. As the brain
contains a significant portion of cerebral spinal fluid (CSF),
the average signal intensity in the CSF compartment was
used as an internal standard for voxels with a water content
of 100%.
All resulting maps are reconstructed with a resolution of
1×1×2mm3 and a spatial coverage of 256×192×150mm3,
which is sufficient to cover the whole brain of a human
adult. Details on the acquisition parameters, the protocol
setup and its validation on real and simulated datasets can
be obtained from [16], [17]. All maps were automatically
reconstructed based on the acquired raw images using the
inhouse developed open source tool predictMS (Professional
REmagen Diagnostic Image Calculation Tool for MS, [19]).
The total measurement time for the full protocol was approx.
10 minutes and can easily be further reduced by the straight-
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TABLE I
QUANTITATIVE IMAGE FEATURES USED FOR CLASSIFICATION

σ1 White matter longitudinal relaxation time, T1,WM

σ2 White matter transverse relaxation time, T ∗
2,WM

σ3 White matter total water content, H2OTot
WM

σ4 White matter myelin water content, H2O
Myelin
WM

σ5 Grey matter longitudinal relaxation time, T1,GM

σ6 Grey matter transverse relaxation time, T ∗
2,GM

σ7 Grey matter total water content, H2OTot
GM

σ8 Grey matter myelin water content, H2O
Myelin
GM

σ9 σ3/σ7

forward application of parallel imaging techniques which are
available on any modern MR system. The approach has al-
ready been sucessfully applied to study various pathological
processes in the brain such as hepatic encephalopathy [20],
[21] or multiple sclerosis [22], [23].
As intra-exam subject motion might be strong and results in
the formation of artefacts, images which showed significant
artefacts were removed from the analysis. One of the charac-
teristic signs of motion induced blurring is the formation of
ghosts along the phase encode (PE) direction. Therefore, the
average signal intensity in the PE direction was determined
for each subject and normalised to the image noise level.
The latter was obtained from the average signal intensity in
a 5× 5× 50 pixel structure in top left corner of the images
which does not contain visible brain structures. I.e., the signal
intensity in that volume will be zero in the absence of noise
and no ghosts are expected to occur here. Subjects where the
normalised PE signal intensity exceeded the corresponding
group average by more than three standard deviations were
removed from the analysis.
For all remaining subjects, masks of grey (GM) and white
matter (WM) were obtained by a simple histogram based
segmentation approach using the quantitative T1 maps [24].
Specifically, voxels with a longitudinal relaxation time in
[600ms, 850ms] were assigned to white matter whereas the
T1 interval [851ms, 1250ms] defines the corresponding grey
matter segment. For each of the four quantitative MR param-
eters, T1, T ∗

2 , H2O
Tot and H2O

Myelin, the average values
in grey and white matter were determined. Furthermore, the
ratio between the absolute water content in WM and GM was
determined to reduce the sensitivity to global miscalibrations
of the water reference signal ( [15], [16]). The corresponding
9-dimensional feature vector (see Table I) is used as input
for the supervised classification described below.

B. Subjects

54 MS patients and 44 healthy controls were scanned
at the Radiological Institute Hohenzollernstrasse Koblenz
on a standard clinical 3T MRI scanner (TRIO, Siemens
AG, Erlangen). The mean age of the patient group was
37.7 ± 11.9 years and it was comprised of 18 male and
36 female subjects. Their expanded disability status scale
(EDSS) scale, which is a standard clinical parameter for
the assessment of the MS severity, ranged between 0 and 8
[2]. The corresponding age matched control group consisted
of 31 male and 15 female subjects with an average age
of 38.1 ± 6.6 years. Fifteen patients and nine volunteers

were removed from the analysis as their images showed
significantly blurring due to subject motion during the exam
as described above. Informed written consent was obtained
from each subject before the start of each MR scan.

C. Supervised classification

For the supervised classification, each subject was pre-
sented by a 9-dimensional feature vector (see Table I) and
the corresponding class label. As the goal of the current
study was the prediction of the presence or absence of
multiple sclerosis, subjects within the patient/control group
were assigned with categorial class labels termed MS and
CONTROL, respectively. Given the relatively small num-
ber of data points, a k-nearest-neighbour (kNN) classifier
with k = 5 was trained and validated employing a leave-one-
out crossvalidation scheme [25]. Specifically, all N possible
combinations of N −1 subjects were formed for the training
step whereas the remaining subject was used to validate the
resulting model. The performance of the kNN classifier was
then evaluated by counting the number of true and false
positives (NTP and NFP ) as well as the number of true
and false negative classifications (NTN and NFN ).
However, not all features of the full 9-dimensional feature
vector add sufficient discrimination power to differentiate
between MS subjects and healthy controls. Therefore, the
procedure described before was repeated again for all 29

possible subsets of all parameters. The combination which
resulted in the smallest average error rate, NFP+NFN

N , was
employed to evaluate the final performance of the supervised
classification approach.
Finally, the Parzen-window estimated univariate probability
density distributions of the corresponding MR features were
determined and plotted for both MS patients and healthy
subjects. Based on the measured distributions, a cutoff was
determined for each parameter which resulted in the smallest
overlap between both groups. The resulting number of false
positive and false negative classifications were recorded from
which the sensitivity, the specificity and the false discovery
rate (FDR) were calculated.

III. RESULTS

Figure 1 shows typical conventional parameter weighted
MR images along with the corresponding quantitative maps
from the brain of a patient with MS. The different contrasts
offered by the different parameters can easily be recognised.
E.g., the myelin water content map (bottom right image)
shows that the concentration of myelin water is much higher
in white than in grey matter, consistent with the known
distribution of myelin as obtained from histological studies.
Furthermore, the quantitative T21∗ and the total water content
maps show a significant spatial heterogeneity of those param-
eters white matter which can not be seen on the conventional
MR images on the left side of Fig. 1.
The multivariate kNN model resulted in the four false
positive and seven false negative predictions. Specifically, the
following numbers were observed: NTP = 29, NFN = 7,
NTN = 34; NFP = 4. These results translate into a
sensitivity of 80.6%, a specificity of 89.5% and a positive
predictive value TP

TP+FP of 87.9%. The corresponding false
discovery rate is 12.1%. This minimum value was obtained
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Fig. 2. Univariate distributions of the six quantitative MR parameters which were included in the multivariate classifier as described in the results.
The Parzen-window estimated probability densities are shown separately for healthy subjects (red dots) and MS patients (blue solid line). The vertical
black line shows the value of the corresponding parameter where the overlap between both distributions is minimal, i.e. where the smallest number of
misclassifications was observed.

with a kNN classifier using H2O
Tot
WM , T ∗

2,WM , H2O
Myelin
WM ,

T1,GM , T ∗
2,GM and the ratio between grey and white matter

total water content, , H2O
Tot
WM/H2O

Tot
GM , as input features.

All other feature combination resulted in an increased false
prediction rate.
The falsely classified patients were approx. five years older
than the MS cohort studied (42.5 years vs. 37.7 years) but
had similar EDSS score (1.42 units versus 1.25 units in the
full group). In the control subjects, EDSS is of no relevance.
Here, the age of the falsely classified subject (31.7 years)
was lower than the average age of the full group (36.9 years).
Interestingly, only female subjects in the healthy group were
classified as MS subjects.
The univariate distributions of the six features employed
in the multivariate classifier are shown in Fig. 2 for both
patients (blue line) and healthy control subjects (red line).
The strong overlap between both distributions can easily be
recognised. The figure also shows the cutoff (black line)
which best discriminates MS subjects from healthy controls
for each parameter. Interestingly, the myelin water content
in white matter showed the smallest overlap whereas the
grey matter T1 distribution is very similar for both groups.
This is also confirmed by the results shown in Table II.
Classification based on H2O

Myelin
WM alone resulted in a false

discovery rate of 15.3% whereas the corresponding FDR
of T1,GM was more than twice as high. The remaining
parameters ranged between those extreme values. However,
even though the FDR of some univariate classifiers are close
to the FDR of the multivariate model, it has to be noticed
that the number of falsely classified subjects is approx. 36%
higher for the univariate classifier with the smallest number
of misclassifications (H2O

Tot
WM ) as compared to the full

multivariate model (15 vs. 11 misclassifications).

TABLE II
PERFORMANCE OF THE UNIVARIATE CLASSIFIERS

Parameter Best Cutoff FP FN Sens. Spec. FDR

σ2 49.4ms 11 5 86.1% 70.3% 26.2%

σ3 70.1p.u. 7 8 77.8% 81.1% 20%

σ4 8.57p.u. 4 14 61.1% 89.2% 15.3%

σ5 1127.5ms 14 8 77.8% 62.1% 33.3%

σ6 54.4ms 9 11 69.4% 75.7% 26.4%

σ9 0.855% 9 8 77.8% 75.7% 24.3%

IV. CONCLUSION

Quantitative MRI offers many benefits for the assessment
of multiple sclerosis. Due to its independence on environ-
mental influences, qMRI allows for an objective assessment
of chronical diseases over the whole course of the disease. In
case of multiple sclerosis, this period typically covers several
decades of life where environmental influences naturally
change. More importantly, the quantitative nature of the data
acquired allows for a study of otherwise normal appearing
brain as it enables a direct comparison to a healthy collective.
Therefore, the current work focused on this aspect of qMRI
by investigating the hypothesis that the presence or absence
of multiple sclerosis can already be predicted from normal
appearing brain tissue. To be more concrete, no information
on the amount and spatial localisation of plaques visible
in conventional MRI (and also in qMRI) was used for the
assessment of MS, which presents one of the cornerstones
for the ultimate radiological diagnosis of the disease.
We have shown that a proper multivariate combination of
the tissue specific qMRI averages allows for a precise and
accurate prediction of MS with a false discovery rate of only
12.5%. Therefore, normal appearing brain matter already
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contains sufficient information for an accurate prediction
of the presence of MS. Moreover, the features employed
were very simple but robust at the same time. An increased
classification performance might be expected by adding in-
formation e.g. on the spatial heterogeneity of each parameter
or higher-order histogram based features such as those used
in [24] to predict age and gender using quantitative MRI.
In contrast to the multivariate analysis, the evaluation of
single parameters shows a lower classification performance
with an increased number of falsely classified datapoints.
Here again two white matter parameters, the total and myelin
bound water content, resulted in the lowest error rates. This
shows that normal appearing white matter of MS patients
is already affected by the disease. Specifically, the average
myelin water content is reduced whereas the total amount
of water is increased at the same time. The first observation
is a characteristic sign of demyelination whereas the latter
is a strong surrogate marker for inflammation, where both
processes are important in the pathogenesis and progression
of mutliple sclerosis [1].
We have observed that the falsely classified subjects differed
in age and gender from the corresponding cohort. Therefore,
a future study should include more subjects and use age and
gender as additional covariates to the classification model.
Due to the relatively small number of subjects, such an
analysis was not feasible here. Instead, age and gender
matched groups were used to minimise a possible bias
associated with these two phenotypes.
This work presents a first step towards a more comprehensive
study of disease progression and effects of therapeutic inter-
ventions in individual patients. The main goal of the current
study was the proof-of-principle that a combination of super-
vised learning and quantiative MRI data of normal appearing
brain matter provides information about the disease that
is not contained in conventional MRI images. As such, it
forms the basis for future studies on the above mentioned
aspects and might ultimately lead to the determination of
biomarkers that allow for a much more accurate classification
of individual MS patients and a closing of the gap between
imaging and clinical findings.
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