
 

  
Abstract—Many investigators have assumed that some 

physical and physiological mechanisms of hearing can be 
elucidated by crafting equations for the voltage-spike-firing 
rate of an auditory-nerve fiber as a function of the root-mean-
square (RMS) intensity of an applied single-frequency tone. In 
this vein, Heil, Neubauer, and Irvine proposed an “improved” 
variation of the well-advertized saturating power function of 
Sachs and Abbas. Here it is shown, however, that Heil et al. 
committed a number of egregious errors that render their 
contribution spurious, and in so doing, they misrepresented an 
existing equation, the Nizami-Schneider equation, which does 
many of the things that other equations (including those of Heil 
et al.) do not. Heil et al. failed because of an unrecognized 
problem that continues to elude mention in the literature, 
namely, that there are contradictory limits for the stimulus 
intensity which is called “threshold”. Effectively, Heil et al. 
assumed that threshold is infinitely low in decibels, a notion 
widely attributed to Swets. But a closer look at Swets’ paper 
reveals no compelling evidence for infinitely low thresholds. In 
contrast to Heil et al., the Nizami-Schneider equation avoids an 
infinitely low threshold, because their threshold corresponds to 
some firing rate just in excess of the spontaneous firing rate. 
This interpretation of threshold jibes with recent realizations 
that loudness, a sensation caused by auditory-nerve-fiber firing, 
must be nonzero at the psychological tone-detection threshold. 
Finally, for some fibers, the slope of the plot of firing rate 
versus intensity suddenly decreases in the middle of the fiber’s 
range of firing, and remains lower until firing rate eventually 
saturates. Any truly “improved” rate-level function might 
attempt to describe this so-called “sloping-saturation”, but Heil 
et al. ignored it. Sloping-saturation is, in fact, well-fitted by an 
extended version of the Nizami-Schneider equation. 
 

Index Terms—auditory, equation, firing, loudness, spikes 
 

I. INTRODUCTION 
VER the preceding five decades, it has been thought 
useful to devise equations, having regression-fitted 

parameters, to describe the voltage-spike-firing rate of 
auditory primary afferent neurons as a function of the root-
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mean-square (RMS) level of the applied pure-tone (i.e., 
single-frequency) stimulus. It was thought that a well-fitting 
rate-level equation would aid in the comprehension of the 
underlying physical and physiological mechanisms of 
hearing. The plot of firing rate versus stimulus intensity (the 
“rate-level plot”) of the neuron, given a stimulus at the 
neuron’s CF (characteristic frequency, that pure-tone 
frequency at which it responds most strongly), has four 
salient properties: spontaneous firing rate (in spikes/s), 
threshold intensity for firing above spontaneous rate (in dB 
SPL), saturation (i.e., maximum observed) firing rate, and 
dynamic range (colloquially, the width of the rising portion 
of the plot, in decibels). How well any proposed rate-level 
equation accounts for these properties may be defined 
qualitatively as that equation’s efficacy. Various rate-level 
equations have been published, but none has proven ideal 
(as discussed in [1]-[3]). 

Hence, any claim of improvement is worthy of scrutiny. 
Heil, Neubauer, and Irvine [4], in “An improved model for 
the rate–level functions of auditory-nerve fibers”, proposed a 
saturating power function to describe pure-tone-driven 
empirical rate-level plots for primary auditory afferents of 
the cat. Their equation is a variation on one published by 
Sachs and Abbas [5] for the same purpose, but which, 
contrary to some implications in Heil et al. [4] and in Sachs 
and Abbas [5], was not the first of its kind (Appendix). 
Regardless, Heil et al. ([4], p. 15424) perceived a flaw in the 
Sachs-Abbas equation: “This model … does not predict the 
correlation of spontaneous [neuronal firing] rate with ANF 
[auditory-nerve fiber] sensitivity observed in mammals and 
cannot account for spike rates lower than the spontaneous 
rate” (terms in square brackets are supplied). Heil et al. [4] 
perceived other flaws, but their attempts to correct the flaw 
that is mentioned in the quotation forms the core of Heil et 
al. [4]. By “sensitivity”, Heil et al. [4] effectively meant the 
stimulus intensity at which the fiber fires just above its 
spontaneous firing rate, the stimulus intensity commonly 
known as the fiber’s “threshold”. It takes some reading to 
discern this, however, as the concept of “sensitivity” has 
been used by them and others to refer to the intensity that 
corresponds to some other point on a rate-level plot, such as 
its midpoint. 

Mistakes and Misrepresentations in Heil, 
Neubauer, and Irvine (2011): Why Their 

Improved Equation is Not, and the Root Cause 
of Their Failure, and How the Nizami-Schneider 

Equation Already Deals with that Root Cause 
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II. THE HEIL, NEUBAUER, AND IRVINE [4] SATURATING 
POWER FUNCTION, PART 1: “RA” (RATE-ADDITIVITY) 

A. The Heil et al. [4] “RA” (Rate-Additivity) Equation 
Heil et al. ([4], p. 15426) first note that “At frequencies 

around the fiber’s CF, BM [basilar membrane] displacement 
grows in a nonlinear (“compressive”) manner with stimulus 
amplitude” (terms in square brackets are supplied). Hence, 
Heil et al. (p. 15426) chose to “consider only responses to 
frequencies well below the CF, where BM displacement can 
be well approximated as a linear function of stimulus 
amplitude P (in pascals)”. Note well that “stimulus 
amplitude” must, as in all relevant papers, refer to RMS 
(root-mean-square) amplitude of the pressure wave, not its 
instantaneous amplitude above or below ambient air 
pressure. 

Most of the relevant published literature concerns tones at 
CF (reviewed in [1], [6], [7]). Heil et al.’s [4] focus would 
therefore seem too off-CF to render their work very useful. 
As Heil et al. ([4], p. 15426) themselves noted, the Sachs 
and Abbas [5] equation itself was not restricted to off-CF 
frequencies. But for Heil et al. [4] such restriction “reduces 
the number of [our] model parameters from six to four” ([4], 
p. 15426; terms in square brackets are supplied), although 
why six parameters would have been needed in the first 
place was not explained. In Section 5 of the present paper, a 
likely explanation will be supplied. Heil et al. [4] would 
have been well-justified in noting the Nizami and Schneider 
[1] equation, which has a version that can describe 
nonlinearity at CF using six parameters reduced to five (e.g., 
[1], [3], [8]). More on this in Section V. 

Heil et al. ([4], p. 15426) next introduced the parameters 
of their equation. spontR  denoted the spontaneous voltage-

spike-firing rate of the fiber; dmaxR  denoted the maximum 

“driven rate”, that is, the maximum firing-rate that the fiber 
is capable of, minus it’s spontaneous rate. Heil et al. ([4], p. 
15426) then rewrote the principal equation of Sachs and 
Abbas [5], as follows: 
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where “The parameter RAK  is a measure of sensitivity (in 

units of pascals (Pa) raised to the power of – α, Pa– α)” ([4], 
p. 15426). In Sachs and Abbas [5], P  refers to RMS 
stimulus pressure. 

B. The Shortcomings of the Heil et al. [4] “RA” Equation, 
According to Heil et al. Themselves 

Remarkably, having introduced this model, Heil et al. [4] 
then abandoned it. Their primary reason was evidently that 
“it provides no explanation of differences in spontaneous 
activity or of why ANFs should be spontaneously active at 
all” ([4], p. 15427). Heil et al. did not explain why their 
model should have properties whose origins would seem to 
depend upon profound issues of biophysics, which require 
profound skills to understand. Regardless, Heil et al. (p. 

15427) made a further complaint, regarding an issue implied 
to be related (although they did not explain how): “The 
model also provides no explanation of the tight positive 
correlation in mammals between spontaneous rate and what 
we will term ‘intrinsic sensitivity’”. By ‘intrinsic sensitivity’, 
as Heil et al. explained (but in a somewhat convoluted 
fashion), they apparently meant threshold of response of a 
fiber to a tone of a given frequency. Threshold is well-
known to vary across fibers at a given CF (reviewed in [1]; 
citations too numerous to mention). Heil et al. ([4], p. 
15427) further declared that “A tight positive correlation 
between spontaneous rate and intrinsic sensitivity, however, 
is universally observed in mammalian ANFs”. They cited, as 
support, four papers that altogether represent two 
laboratories. 

There are, however, far more than four papers published 
on the matter, representing many more than two laboratories. 
And indeed, whether there is any correlation at all between 
spontaneous rate and ‘intrinsic sensitivity’ in any 
mammalian species seems to be a matter of opinion, at best. 
Nizami and Schneider [1] – a paper cited by Heil et al. [4] – 
noted a lack of correlation between spontaneous rate and 
‘intrinsic sensitivity’, and cited four supporting papers [9]-
[12], altogether representing three laboratories. Since that 
time, no convincing evidence of correlation has emerged.   

This point will prove important, and will be returned to 
later. Meanwhile, let us attend to another important point. 
That is, Heil et al. ([4], p. 15427) declared that there was yet 
another limitation of Eq. (1), namely, that “it cannot account 
for spike rates lower than the spontaneous rate”. And, 
indeed, a drop to below-spontaneous firing rates has 
sometimes been observed immediately post-stimulus. (This 
phenomenon is not in question, hence the numerous 
supporting citations are presently omitted.) But the Heil et 
al. approach to quantifying the phenomenon proves to be 
extraordinary, as will be described. 

C. The Values (Allegedly Derived from Nizami [6]) of the 
Parameter α in the Heil et al. [4] “RA” equation: Part 1 

First, however, yet another problem that Heil et al. ([4], p. 
15427) noted about Eq. (1) must be mentioned: “the lack of 
any physiological explanation” of published values of the 
parameter α. The latter are quite variable (cited in [4]). Heil 
et al. [4] had nonetheless calculated α “from the parameters 
listed in his paper” ([4], p. 15428), “his” referring here to 
Nizami [6]. 

The calculations of Heil et al. [4] are unusual and deserve 
scrutiny. To do so, some backtracking is needed. Heil et al. 
([4], p. 15426) had noted that Sachs and Abbas [5] had 
presented a normalized version of their equation, which in 
Heil et al.’s [4] notation is 
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Heil et al. then noted that this equation is a logistic, and that 
“Nizami and Schneider (1997) and Nizami (2002) proposed 
the logistic equation, with threshold (in decibels SPL) and 
dynamic range (DR; in decibels) as explicit parameters 
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instead of RAK  and α, without acknowledging its 

equivalence to the saturating power function proposed by 
Sachs and Abbas (1974)” ([4], p. 15427). This quotation 
implies a lack of collegiality by Nizami and by Schneider, 
and it deserves a response. And indeed, Nizami and 
Schneider [1] and Nizami [6], as well as a variety of other 
sources co-authored by Nizami ([2], [3], [13]-[16]), did not 
declare equivalence of the Nizami–Schneider rate-level 
equation to the saturating power function of Sachs and 
Abbas [5], because the two equations are not in fact 
equivalent, as follows. 

D. A Proven Alternative to the Heil et al. [4] “RA” 
Equation and Other Saturating Power Functions: the 
Nizami-Schneider Rate-Level Equation 

 In keeping with the Nizami and Schneider [1] notation, 
let us use r in place of R. The Nizami–Schneider equation is 
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Here x is RMS (root-mean-square) intensity, expressed in 
dB SPL, of the single-frequency (“pure-tone”) stimulus. c is 
a unitless dynamic-range-associated parameter, to be set by 
the user. There were four parameters to be obtained by 
fitting Eq. (3) to rate-level plots: maxr , sr , ε , and λ . 

maxr  is saturation firing rate (i.e., the maximum that the 

neuron can produce) in spikes/s; sr  is spontaneous firing 

rate; ε  is threshold, in dB SPL, for firing above 
spontaneous rate; and λ  is dynamic range, in decibels. The 
fit of Eq. (3) does not depend upon c, which can assume any 
value between 0 and 50 during fitting to data; to achieve a 
sensible fitted value for λ , the user must choose a sensible 
value for c. c = 2 proves to be appropriate [6]. Note that 

( ) srxr →  as SPL dB  ∞−→x  and that ( ) maxrxr →  as 

SPL dB  ∞→x . That is, the spontaneous and saturation 
rates are approached infinitely slowly. 

Infinitely low limits for the stimulus-evoked firing of 
auditory-nerve fibers is unrealistic (this point is explained in 
Section IV.B. below). In this respect, the Nizami-Schneider 
formulation is actually advantageous, as follows. At fiber 
threshold ε  it allows a firing rate in excess of sr . Now, the 

experience of loudness has always been presumed to arise 
from above-spontaneous-rate firing in auditory-nerve fibers 
(no citations required). Hence, if the auditory-nerve-fiber 
threshold is the origin of the threshold for loudness – a 
reasonable assumption – then loudness at its “threshold” 
should be non-zero, a result arising from experiment as well 
as theory (e.g., [17]-[20]). 

Following Nizami ([6], p. 19), we can define terms 
( )( )[ ]cc−= 100ln2λζ  and ( )2λεη += , so that from 

Eq. (3), 
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Nizami and Schneider [1] and Nizami [6] showed that when 
Eq (4) was fitted to any sigmoid-shaped empirical plot of 
firing rate versus stimulus intensity, the parameters ζ and η  
proved to have the same values across curve-fits when those 
fits commenced using different starting values of the 
parameters (non-sigmoidal data-plots will be dealt with 
shortly). This is a highly desirable outcome, referred to by 
engineers, for whom consistent values are crucial, as 
“robustness”. 

Equation (3) was derived from first principles. Its purpose 
was to do something that had evidently not yet been 
attempted by Sachs and Abbas [5] or by anyone else 
working in auditory neuroscience, namely, to bring dynamic 
range into a rate-level equation as a parameter ([1], [2], [6], 
[13], [14]). In contrast, saturating power functions inherently 
imply a fixed dynamic range, when the latter is inferred 
according to mathematical rules set in the literature, those 
that relate to the fit of rate-level equations (see Nizami 2002, 
p. 23 and Appendix). This insight was separately and 
simultaneously made by L. Nizami and by B. A. Schneider. 
Their conclusion has never been disputed. Remarkably, Heil 
et al. ([4], p. 15432) acknowledged their insight: “According 
to the RA model, and in the absence of BM nonlinearities, 
the DRs of all rate-level functions would be identical if the 
exponent α were fixed [a point made by Nizami (2002)]”. 
But Heil et al. [4] failed to clarify a related important point, 
namely, that the old procedures used by Sachs and Abbas [5] 
and by others for estimating the dynamic range of a neuron 
are still employed. The insight of Nizami and of Schneider 
formed the impetus for Eq. (3), which was introduced in 
Nizami and Schneider [15] and later thoroughly explained 
and explored ([1]-[3], [6]-[8], [13], [14], [16], [21]-[23]). 

E. The Nizami-Schneider Equation Versus That of Sachs 
and Abbas [5] 

Recall again Heil et al.’s statement ([4], p. 15427) that 
“Nizami and Schneider (1997) and Nizami (2002) proposed 
the logistic equation, with threshold (in decibels SPL) and 
dynamic range (DR; in decibels) as explicit parameters 
instead of RAK  and α, without acknowledging its 

equivalence to the saturating power function proposed by 
Sachs and Abbas (1974)”. Emphatically, the Nizami-
Schneider derivation was not modeled on a Sachs and Abbas 
[5] derivation of a saturating power function, because Sachs 
and Abbas [5] did not provide such a derivation per se. 
Indeed, the Sachs-Abbas equation bears a striking 
resemblance to an earlier equation for auditory response, 
that of Adams [24] (see the present Appendix). All told, any 
credit to Sachs and Abbas [5] by Nizami and by Schneider 
would have been inappropriate and misleading. 

In sum, Nizami and Schneider [1] and Nizami [6] had not, 
as Heil et al. ([4], p. 15427) implied, unfairly ignored the 
work of Sachs and Abbas [5]. On the contrary, Nizami and 
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Schneider [1] and Nizami [6] had given it such rigorous 
scrutiny that they had found a significant hidden drawback to 
it, one that Heil et al. ([4], p. 15432) had credited to Nizami 
[6]. Note that Eq. (4) can be rewritten as 
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Equation (5) is not, contrary to Heil et al. [4], equivalent to 
Eq. (2). A lack of equivalence is evident from term-by-term 
comparison. The parameters of Eqs. (2) and (5) have 
different meanings. 

F. The Values (Allegedly Derived from Nizami [6]) of the 
Parameter α in the Heil et al. [4] “RA” Equation: Part 2 

The reader is now hopefully sufficiently informed to 
return to Heil et al.’s [4] claim to have calculated α “from 
the parameters listed in his [i.e., Nizami’s] paper” ([4], p. 
15428). Remarkably, Heil et al. did not show how they did 
this. Personal communications to Professor Peter Heil did 
not clarify the matter. What relations did Heil et al. [4] 
actually use to infer α from RAK  and η  and ζ ? No 

answer is apparent; Heil et al. [4] also failed to explain from 
what part of Nizami [6] they had inferred the necessary 
values of η  and ζ . In fact, the latter two alone can be 
respectively derived from the values of ε  and λ  found in 
Table 2 of Nizami [6]. 

Using data from Nizami [6], Heil et al. ([4], p. 15428) 
allegedly found “a negative correlation between α and the 
logarithm of spontaneous rate”. But their data source from 
Nizami [6] could only have been Nizami’s Table 2, which 
was meant only to show a limited number of examples of the 
fitted parameter values of Eq. (3). Hence Nizami’s Table 2 
contained just fifteen entries of each of ε  and λ  (of which 
7 were obtained by fitting rate-level plots from Sachs’ own 
laboratory) for any given value of the user-chosen Nizami-
Schneider parameter c (see above). Now, fifteen entries 
hardly seems sufficient to find any convincing relation of α 
to [the logarithm of] spontaneous rate, and the magnitude of 

Heil et al.’s [4] relevant correlation coefficient 2r , 0.19, is 
too small to suggest any real “correlation”. 

Aside from speculation about how Heil et al. [4] had 
actually processed the Nizami [6] data, the poor correlation 
declared by Heil et al. [4] is important in its own right, 
because Heil et al. ([4], p. 15427) used it as partial 
justification for abandoning their “RA” model (Eq. (1)) and 
replacing it with their “AA” model, to now be described. 
The description of the “AA” model will reveal fatal flaws 
that render the Heil et al. [4] approach unusable overall. 

III. THE HEIL ET AL. [4] SATURATING POWER FUNCTION, 
PART 2: “AA” (AMPLITUDE-ADDITIVITY), AND SOME HIDDEN 

PROBLEMS WITH IT 

A. The Heil et al. [4] “AA” Equation: Heil et al. Invoke 
the “Physiological Stimulus” 

Heil et al. ([4], p. 15428) then proceeded to take a 

different tack. Their change of approach is best expressed in 
their own words: “We assume that spontR  is produced by a 

physiological stimulus that is present at rest and that is 
identical in nature to that produced by the sound”. Their next 
line stated that “The stimulus at rest, like the sound stimulus, 
can therefore be expressed in terms of amplitude”. A 
“physiological stimulus”, Heil et al.’s “The stimulus at rest”, 
is presumably something within the body that is equivalent 
to an external stimulus. Heil et al. proposed to assign to the 
“physiological stimulus” an actual stimulus intensity, 
presumably so as to avoid mixing internal units (those of the 
“physiological stimulus”) and external units (those of the 
actual external stimulus, what Heil et al. called the “sound”). 
At first glance, Heil et al.’s new approach seems like 
gibberish. On second reading, it has a familiar ring to it. This 
particular gambit dates at least as far back as Zwislocki [25], 
whose work was later emulated concept-by-concept (and 
hence equation-by-equation) by Moore, Glasberg, and Baer 
[26], whose equations were incorporated into a new ANSI 
Loudness Standard [27]. But Heil et al. [4] cite neither 
Zwislocki [25] nor Moore et al. [26] nor the ANSI Loudness 
Standard. 

Heil et al. ([4], p. 15428) refer to “the amplitude of the 
resting stimulus” as 0P , “which sets the point of operation 
and to which the effects of the sound amplitude add” ([4], p. 
15428). Hence the name “Amplitude-Additivity” for their 
model. But “sets the point of operation” seems unclear. 
Regardless, the Amplitude-Additivity equation ([4], p. 
15428) was then 

 

( ) ( )

( )
0   ,, 0

0
1

AA

0max
>−≥

++

+⋅
=

−
β

β

β

PP
PPK

PPR
PR ,  (6a) 

 
 
( ) 0,0 PPPR −<= .              (6b) 
 

Heil et al.’s maxR  denoted the maximum spike-firing-rate 

achievable by the fiber (called maxr  by Nizami and 

Schneider [1]; see Eq. (3) above). The symbol β replaced α, 
and the term AAK  replaced RAK . Note well the absence 

of the spontaneous firing rate spontR . Note also that the 

limit { }0P−  will be a negative number, because 0P  itself 
was clearly meant to be a positive number. The stimulus 
amplitude P is always defined in the literature as a root-
mean-square (RMS) – that is, as a positive – quantity. 
Hence, Eq. (6a) allows voltage spikes for a subzero stimulus 
intensity, which is an impossibility when stimulus intensity is 
RMS as usual. But a negative pressure does not account for 
the spontaneous firing of the fiber and, more to the point, is 
unphysical. A negative P is not a feature of the Nizami-
Schneider equation (Eq. (3)). 

B. The Heil et al. [4] “AA” Equation: Heil et al. Re-
introduce the Spontaneous Firing Rate 

To continue: Heil et al. ([4], p. 15428) then re-introduced 
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spontR , by stipulating that ( ) spont0 RR = . For Heil et al. 

[4], from Eq. (6a) above, 
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Now Heil et al. introduced S, defined as 

 

spontmax

spont
0 RR

R
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Heil et al. ([4], p. 15428) then rewrote their Amplitude-
Additivity rate-level equation (Eq. (6a) above) as 
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11 PPS
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Bearing in mind that 0>β , then for compliance with Eqs. 

(6a) and (6b), ( ) 00 =− PR . 

C. The Heil et al. (2011) “AA” Equation: “Emergent” 
Properties 

Heil et al. (2011, p. 15429) next declared that 
“Spontaneous activity and its hitherto unexplained tight 
correlation with the intrinsic sensitivity of ANFs are 
emergent properties of the AA model”. They qualified this 
alleged “tight correlation” – which, as noted above, was 
questionable – by arguing that from Eqs. (7)-(9), if 

spontmax RR >>  then SRR ⋅≅ maxspont . Heil et al. ([4], p. 

15429) then declared that “ spontR  will vary in nearly direct 

proportion to the fibers’ intrinsic sensitivity, S”. They failed 
to note an important point – namely, that most auditory-
nerve primary afferents in mammals do not in fact obey 

spontmax RR >>  (reviewed in [1], [6], [7]). Also, what Heil 

et al. [4] call a “tight correlation” is not an emergent 
property of the AA model; on the contrary, Heil et al. had 
engineered it in all along, by stipulating that ( ) spont0 RR = , 

which is hardly “emergent” from Eqs. (6a) and (6b). 
Heil et al. ([4], p. 15429) also claimed that “The AA 

model can also readily account for spike rates lower than 

spontR ”. That is, “It merely requires P to be negative” ([4], 

p. 15429). But a negative pressure is a key assumption of the 
Heil et al. approach, and, as noted above, the very idea of a 
negative P is absurd. Heil et al. continued: “On this view, 

0P  defines the point of operation about which ( )PR  can be 

modulated up to maxR  or down to 0 by positive and 
negative amplitudes, respectively (e.g., by positive and 
negative instantaneous pressures at low frequencies” ([4], p. 
15429). This statement represents an even tighter restriction 
than before; the Heil et al. rate-level equation (Eq. (6a)), at 
first only applicable to pure tones of frequencies well-below 

CF, is now effectively restricted to low CFs as well, 
although we are not told how low. The answers may lie in 
Heil et al.’s [4] new implication, namely, that their stimulus-
amplitude variable, P , refers to “positive and negative 
instantaneous pressures”, rather than to the stimulus-
amplitude measure used by their claimed progenitors, Sachs 
and Abbas [5], namely, RMS pressure. 

Heil et al. ([4], p. 15429, and onwards) devoted eight 
further printed pages to attempting to justify various values 
for the parameters of their equation, through a variety of 
allusions to the literature, as well as through various curve-
fitting exercises. However, in view of the flaws revealed 
above, such efforts seem spurious. 

IV. WHY DO THE HEIL ET AL. [4] EQUATIONS FAIL? THE 
ROOT CAUSES ARE IN THE LIMITS THAT SUCH EQUATIONS ARE 

REQUIRED TO ACCOUNT FOR 

A. Contradictory Stimulus-Intensity Limits for “Threshold” 
It is time to introduce a crucial point that is not discussed 

in the literature on hearing, but for which discussion is well-
overdue. First note that the literature contains no agreement 
on how to discern the intensity at which an auditory primary 
afferent fiber reaches its threshold for stimulus-evoked 
firing. Rather, threshold criteria are used, which represent 
opinions rather than certainties (reviewed in [1], [3], [6], 
[7]). The reasons for the uncertainties, now to be discussed, 
represent fundamental problems for the crafting of rate-level 
equations. 

Let us imagine RMS stimulus amplitudes P , and the 
resulting evoked firing rates, as both decrease. Then 

( ) spontRPR →  as 0→P . However, if we stipulate thP  to 

be “threshold” amplitude, then ( ) spontRPR →  as 

thPP → . Thus, there are contradictory amplitude limits for 
“threshold”, which are independent of the actual value of 

spontR . Those limits cannot be dealt with by assuming that 

0th =P , because a pressure amplitude of 0 corresponds to 
SPL dB  ∞− , the unreachable low-intensity extent of the 

decibel scale. Such an infinitely low threshold defies the 
very concept of threshold as something finite. (A decibel 
scale is used because just-noticeable-differences in intensity 
are closer to constant on such a logarithmic scale (“Weber’s 
Law”) than on a linear scale.) As Wever and Zener had 
noted many years earlier ([28], p. 491), “we could not take 
seriously a measure of sensitivity at infinity”. Prima facie it 
seems ludicrous to believe that a stimulus of, say, - 200 dB 
SPL could ever be “detected”, even if ongoing. 

Heil et al. [4] showed no inkling of the problem of 
contradictory intensity limits as firing rate approaches the 
spontaneous rate. Heil et al. [4] assumed that 

( ) spontRPR →  as 0→P , i.e., they effectively assumed 

that 0th =P  under the intuitive notion that threshold is the 
stimulus value at which spike-firing-rate just exceeds the 
spontaneous firing rate. But Heil et al. [4] also allowed 
lower-than-spontaneous firing rates for negative values of 
P . When P  has its normal interpretation as RMS stimulus 
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amplitudes, the notion of negative values of P  is ludicrous. 
Nizami and Schneider [1] and Nizami [6] avoided this 
illogicality by assuming that ( ) srxr →  as 

SPL dB  ∞−→x . At first, this appears to confirm an 
infinitely low fiber threshold, but note well that Nizami and 
Schneider avoided 0th =P  by engineering their threshold 

ε  to occur at a firing rate just in excess of sr , in agreement 

with the notion that loudness is non-zero at stimulus-
detection threshold (see Section II.D., above). 

B. Is Threshold Infinitely Low? 
The notion of threshold at SPL dB  ∞−  has been 

accepted by many. Therefore, before proceeding further, let 
us briefly examine its origins. It is widely attributed to Swets 
[29]. Swets’ arguments concerned a model of 
psychophysical behavior called Signal Detection Theory 
(here, denoted SDT), to which he contributed (e.g., [30]). 
Swets [29] produced a review of SDT as it was laid out at 
the time, including a key SDT concept, that of the “ideal 
observer”. Swets noted that in a typical psychophysical 
detection task, the listener decides whether a Signal is 
present, or only a background Noise, based (hypothetically, 
according to SDT) upon the logarithm of the ratio of the 
likelihood of Signal+Noise to the likelihood of Noise alone. 
That log-likelihood ratio obeys two distributions B one for 
Signal+Noise and one for Noise B and the listener places a 
hypothetical decision-making criterion somewhere along that 
log-likelihood-ratio continuum. Because those distributions 
have infinitely long tails, an infinitely-low-decibel threshold 
is (hypothetically) possible. 

Swets [29] proceeded by reviewing the successful 
application of SDT to data from Yes/No, second-choice, and 
rating experiments, in the context of what that success meant 
for five threshold models (which were not SDT models) 
“concerning the processes underlying these data” ([29], p. 
175). Swets’ analysis was long and complicated, and it 
defies synopsis. But his conclusions were hardly firm; in 
fact, Swets was oddly equivocal. First, he noted that one of 
the models that he examined fit none of the data; then, that 
two of the models fit some of the data; then, that another of 
the models could not be evaluated at all using the data; and 
finally, that one of the models fit all of the data, as too did 
SDT. Swets ([29], p. 176) concluded that “The outcome is 
that, as far as we know, there may be a sensory threshold” 
(italics added). He started his next paragraph with “On the 
other hand, the existence of a sensory threshold has not been 
demonstrated”. The latter turnabout seems especially odd, in 
light of some shortcomings of SDT which Swets ([29], p. 
172) noted, namely, that “the human observer, of course, 
performs less well than does the ideal observer in the great 
majority of detection tasks, if not in all”. That finding has 
been replicated many times over (see [30]; for intensity 
discriminability, for example, see [1], [7], [23]). In sum, 
Swets [29] did not produce compelling evidence of an 
infinitely low threshold. 

The same year that Swets implied an infinitely low 
threshold, Hellman and Zwislocki ([31], p. 687) stated the 
contrary view that “The threshold of audibility is a natural 

boundary condition which cannot be eliminated”. There is 
no reason to debate that view. 

V. SLOPING-SATURATION: A PHENOMENON CONSIDERED 
IMPORTANT, BUT IGNORED BY HEIL ET AL. [4] 

A. Sloping-Saturation of the Firing Rates of Auditory-
Nerve Fibers 

Recall from above that Heil et al. [4] restricted their 
equation to single-frequency (“pure”) tones whose effects 
are far from the BM locus for which the pure-tone-evoked 
firing has its lowest thresholds (i.e., the position of the CF). 
Their reasoning was that, off-CF, “BM displacement can be 
well approximated as a linear function of stimulus amplitude 
P” ([4], p. 15426). Their statement implies that nonlinear 
BM displacement at CF results in rate-level plots that are not 
sigmoidal when rate is plotted versus amplitude using a 
logarithmic scale for amplitude (for example, dB SPL). That 
is, Heil et al. [4] implied that rate-level plots are “sloping-
saturating”, that is, having a sharp bend in its middle 
followed (with further increase in stimulus amplitude) by an 
upper, lesser slope (see for example [5]; [32], Fig. 1; also 
[1], [6], [7]). However, as Nizami and Schneider [1] and 
Nizami [6] had noted in passing, most rate-level plots are 
sigmoidal even at the CF place on the BM. Notwithstanding, 
many authors alleged (and none proved) a relation between 
sloping-saturation and the intensity-dependence of the BM 
displacement. Such a relation may reflect only wishful 
thinking, as Nizami [7] noted based on strong empirical 
evidence (see [11], [32], [33]).  

Regardless of the origin of sloping-saturating firing, there 
are “ideal-observer” computations ([1], [7]) taken after 
Signal Detection Theory [30] which suggest that sloping-
saturating firing does not add appreciably to the encoding of 
stimulus intensity. The requisite analysis first required that 
sloping-saturating firing-rate plots be fitted well to an 
equation (one soon to be described). In contrast, Heil et al. 
[4], as noted above, had avoided “the complications of BM 
nonlinearities” ([4], p. 15426). Their reluctance is 
remarkable, especially considering that the equation which 
they chose to “improve” upon, that of Sachs and Abbas [5], 
contained within itself an equation for nonlinear BM 
displacement ([5], p. 1840; see the present Appendix). Heil 
et al. [4] ignored the displacement equation offered by Sachs 
and Abbas [5]. Instead, Heil et al. [4] chose to phrase the 
Sachs-Abbas firing-rate equation in a generalized form as a 
function of the amplitude of the pure-tone stimulus (e.g., Eq. 
(1) above). 

Sachs, Winslow, and Sokolowski [34] had already 
attempted one of Heil et al.’s [4] stated goals, namely, of 
improving upon the Sachs and Abbas [5] equation. 
Therefore, we might expect Heil et al. [4] to have discussed 
the changes that Sachs et al. [34] had effected. Remarkably, 
however, Heil et al. [4] largely ignored Sachs et al. [34], 
save to casually cite them in passing ([4], p. 15427). 

B. The “Sloping-Saturating” Equation of Sachs et al. [34] 
It proves worthwhile to explore what Sachs et al. [34] did. 

They introduced their efforts by stating, with respect to 
Sachs and Abbas [5], that “Although that model was able to 
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provide qualitatively good fits to the auditory nerve data, its 
dependence on the basilar-membrane data limited its 
computational usefulness” ([34], p. 61). Of course, the Sachs 
and Abbas [5] equation did not, in fact, “provide 
qualitatively good fits to the auditory nerve data”. Rather, 
“Such equations, when fitted, show systematic deviations of 
the smooth curve from the data, deviations that can be 
discerned with the naked eye” ([6], p. 23). Nizami [6] 
explained that such deviations are due to the fixed dynamic 
range that ensues when the exponent α is held constant (as 
noted well-above). 

Sachs et al. ([34], p. 64) used an exponent that they called 
α, which they held constant. Sachs et al. ([34], p. 62) 
nonetheless described their new model as “a computationally 
tractable form of the original Sachs-Abbas model”. Their 
new equation was (in their own notation) 

 

[ ]
[ ] SP77.1

E

77.1
EM

TOT R
P1

PR
R +

+
=

θ

θ




.        (10a) 

 

MR  is the equivalent of srr −max  in Eq (3) above; Eθ  

“effectively determines the excitatory threshold of the 
model” ([34], p. 64); and SPR  is the spontaneous firing 

rate. P


 is the stimulus-amplitude, defined as 
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where Iθ  was called the “compression threshold”, the 

stimulus intensity at which the bend in sloping-saturation 
occurs ([34], p. 64). Sachs et al. ([34], p. 65) set 31=α , 
after the same displacement data that they had used in Sachs 
and Abbas [5] to set the power exponent there (see the 
present Appendix). As such, Eq. (10a) has four parameters 
to be obtained through fitting to rate-level plots. Those 
parameters are not independent; as Nizami [6] had noted, 

Eθ  inversely correlates to both the lower slope and the 

upper slope of sloping-saturating rate-level plots. Altogether, 
these restrictions prevent a necessary feature (see [6]), 
namely, sigmoidality at high thresholds. 

C. The Sloping-Saturating Version of the Nizami-Schneider 
Equation 

Nizami and Schneider [1] recognized such shortcomings, 
and were motivated to offer an alternative to the Sachs et al. 
[34] formulation for sloping-saturation, namely, 
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where, defining ( )( )[ ]cc−= 100ln2ii λζ  and 
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Numerous exercises have demonstrated that Eq. (11a) fits 
well to sloping-saturating rate-level relations ([1], [2], [6]-
[8], [13], [15], [16], [21]-[23]). However, the parameters to 
be fitted are now six in number: maxr , sr , ε ,  γ , 1λ , and 

2λ . With six free parameters, the fit is no longer robust. 

Note well that six parameters also characterize a rate-level 
equation for auditory-nerve fibers published by Yates and 
used heavily by Yates and colleagues ([35], [36]). It was 
based upon saturating power-functions, like the Sachs et al. 
[34] equations. But Eq. (11a) fits better than the Yates et al. 
or Sachs et al. equations when the bend in the sloping-
saturating plot is a sharp one. 

For sloping-saturating neurons in the cat, the animal 
examined by Sachs and Abbas [5] and by Sachs et al. [34], 
the uncertainties of the parameters of Eq. (11a) can be 
somewhat mitigated by setting 0=sr , because sloping-

saturating neurons in cats seem to have very low firing rates 
(reviewed in [1], [6]). The same may not be true, however, 
of other species. Equation (11a) also fits adequately to 
“straight” rate-level relations [8], which may be considered 
as sloping-saturating relations with brief initial sections and 
extensive sloping-saturating sections [36]. Heil et al. [4] did 
not mention “straight” rate-level relations. 

The observably excellent fit of the Nizami-Schneider 
double-sigmoid (Eq. (11a)) to sloping-saturation suggests 
that sloping-saturation is an artifact, caused by recording 
spikes simultaneously from two sigmoidally-saturating 
neurons with low spontaneous firing rates, one neuron 
having a notably higher threshold than the other. This would 
help to explain another observation, namely, that many 
sloping-saturating rate-level plots, unlike sigmoidal rate-
level plots, do not reach a maximum firing rate at the highest 
intensity used in the experiment (typically 90-95 dB SPL). 
Artifactuality of sloping-saturation would account for a 
phenomenon that becomes apparent when reading the 
literature, namely, that sloping-saturating fibers represent 
startlingly different proportions of the auditory-nerve fibers 
from study to study, not just across-species, but even within 
a single species (reviewed in [2], [7]). 

VI. SUMMARY AND CONCLUSIONS 
In auditory neuroscience, it has long been thought that a 

well-fitting function of the root-mean-square (RMS) 
intensity of an applied single-frequency tone, a “rate-level” 
equation, would aid in the comprehension of the physical 
and physiological mechanisms of hearing. Heil, Neubauer, 
and Irvine [4] proposed an “improved” variation on a 
saturating power function published by Sachs and Abbas [5] 
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as an auditory rate-level equation. Heil et al. [4] then 
abandoned their own equation, because it could not explain 
the observed spontaneous firing of auditory-nerve fibers, 
particularly (1) a correlation (alleged by Heil et al., but 
perhaps illusory) between spontaneous firing rate and the 
fiber’s threshold, that is, the lowest tone intensity at which 
the fiber fires above its spontaneous rate, and (2) the 
existence of sub-spontaneous-rate firing, which is seen post-
stimulus. Heil et al. [4] noted that their equation could be 
rewritten as a logistic, such as that of Nizami and Schneider 
[1] and Nizami [6]. Heil et al. [4] alleged that the Nizami-
Schneider equation is equivalent to the Sachs and Abbas [5] 
equation. It is not. This is one of several egregious errors 
made by Heil et al. [4] which altogether make their 
“improvement” inconsequential. The Nizami-Schneider 
equation provides a viable alternative, but has been 
underused due to the ongoing fixation on the Sachs-Abbas 
equation, which has a crucial flaw: a fixed dynamic range for 
the firing of the auditory-nerve fiber. 

The Nizami-Schneider formulation is advantageous in that 
it defines threshold such that firing rate just exceeds the 
spontaneous rate at threshold, allowing nonzero loudness at 
threshold, a phenomenon implied by experiment and by 
theory. Further, it is the only rate-level equation to include 
dynamic range as a parameter. The Nizami-Schneider 
equation was emphatically not modeled on the Sachs-Abbas 
equation. The latter even appears to be unoriginal, bearing a 
striking resemblance to an equation of Adams [24]. 

Heil et al. [4] allegedly used data from Nizami [6] to find 
a correlation between spontaneous firing rate and a threshold 
parameter of their equation. How Heil et al. [4] did so, from 
the limited data of Nizami [6] which was meant to serve 
other purposes, was not explained, and Heil et al.’s 
correlation coefficient is too small to suggest any 
correlation. This alleged correlation is important, because 
Heil et al. [4] used it as partial justification for abandoning 
their initial equation and replacing it with another, one based 
upon a new assumption about the spontaneous firing of 
auditory-nerve fibers, namely, that it is due to a mysterious 
“physiological” (i.e., internal) stimulus. Heil et al. [4] fail to 
mention that this gambit is not new; it dates at least to 
Zwislocki [25], whose work was later emulated concept-by-
concept (and hence equation-by-equation) by Moore, 
Glasberg, and Baer [26], whose equations were, in turn, 
incorporated into a recent ANSI Loudness Standard. Further, 
the Heil et al. [4] newer equation predicts that the fiber will 
fire below its spontaneous rate at subzero stimulus 
intensities, the latter being impossible when stimulus 
intensity is expressed in the customary RMS units. 

The newer Heil et al. [4] equation did not include 
spontaneous rate as a parameter. Heil et al. [4] compensated 
for this by stipulating that spontaneous rate is reached when 
the stimulus is absent, thereby creating a relation of 
spontaneous rate to threshold that they refer to as 
“emergent”. Of course, it only “emerges” because of (1) the 
aforementioned stipulation, and (2) the notion that RMS 
intensity can be subzero. They excused the latter through an 
extraordinary claim: that their variable is instantaneous 
pressure, rather than the RMS pressure used by their 
progenitors, Sachs and Abbas [5]. 

Altogether, the Heil et al. [4] rate-level equation is not an 
“improvement”. Their attempts failed, because of a problem 
that they showed no recognition of, and which goes 
unmentioned in the literature. That is, there are contradictory 
limits for the intensity called “threshold”. This is reflected in 
a lack of agreement in the literature on how to discern 
“threshold”. Effectively, Heil et al. [4] assumed that 
threshold occurred at SPL dB  ∞− . That situation is 
unrealistic. The notion of threshold at SPL dB  ∞−  is 
widely attributed to Swets [29], but Swets did not produce 
compelling evidence for it. The Nizami-Schneider equation 
avoids it, by assuming that threshold [intensity] corresponds 
to some firing rate just in excess of the spontaneous rate. In 
principle, this allows nonzero loudness at threshold. 

Finally, some fibers appear to have rate-level plots which 
are “sloping-saturating”, having a sharp bend in the middle, 
followed (with further increase in RMS stimulus amplitude) 
by an upper, lesser slope. Any “improved” rate-kevel 
function might be expected to fit such plots. One attempt 
was made by Sachs, Winslow, and Sokolowski [34], who 
modified the Sachs-Abbas equation. Heil et al. [4] largely 
ignored Sachs et al. [34]. Heil et al. [4] failed to mention 
that an extended Nizami-Schneider equation can fit sloping-
saturating plots better than other proposed equations. 

APPENDIX 
It is necessary to correct a misconception that persists in 

the literature. Sachs and Abbas (1974) introduced their 
saturating power function without citing earlier use of it, 
implying that their own use was original. Subsequent 
authors, including Sachs and his various co-authors, cited 
Sachs and Abbas [5] as the equation’s source. In the notation 
of Sachs and Abbas, the equation was 
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([5], Eq. 2). Here, “P is sound pressure at the tympanic 
membrane” and “d is the amplitude of basilar-membrane 
displacement” ([5], p. 1839). SPR  is the neuron’s 

spontaneous firing rate ([5], p. 1839), the equivalent of sr  

in Eq (3); mR  ([5], p. 1839) is the equivalent of srr −max  

in Eq (3). N was taken as 1.77, based on an argument 
provided by Sachs and Abbas. 

Unfortunately, Eq. (A1) did not originate with Sachs and 
Abbas [5], as will now be demonstrated. In 1971, William 
B. Adams showed that voltage-spike firing rate in the more 
sensitive of the two primary auditory afferents in each 
hearing organ of the Noctuid moth could be described by (in 
Adams’s notation) 
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bxk
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([24], 1971, Eq. (1)), where 
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Note immediately the word “displacement”, referring to 
physical “displacement of the transduction region” ([24], p. 
577). Note well the exponent of 1.7. Equation (A2) ([24], 
Eq. (1)), with Eq. (A3) substituted into it, differs little from 
what Sachs and Abbas published three years later [5]. 
Adams himself ([24], p. 575) in fact credited his equation 
for “response” to Loewenstein [37], for the generator 
potentials of Pacinian corpuscles. Loewenstein [37] indeed 
shows the equation as “Eq. 1”, present also in Loewenstein’s 
Figs. 6-8. 
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