


Abstract—In this paper the Hamming decoding model

development, and BER curve performance, including Error
histogram, target Mean Square Error, Training state,
Regression curve and the impact of employing a different
number of Neurons in RBF Neural network will be
investigated. The Hamming (15,11) will be used to develop the
results, and diagrams throughout this article. The results, and
simulations in this paper are generated via Matlab Neural
Network Toolbox 2013.

Index Terms— BER Performance, Hamming Code, Neural
Network, RBFN.

I. INTRODUCTION

HENEVER a transmitter broadcasts a signal over a
long distance, the received message may be different

than the original one due to a couple of reasons, including
but not limited to noise, fading, and jamming. The impact of
such an error could be as small as misunderstanding a word
in a telephonic conversation or as big as losing connection
to a space station thousands of miles away. Due to possible
catastrophic impacts of such errors in communication; the
detection, and error correction have always been the centers
of interest for scientists, engineers and researchers in the
field. One type of error control coding scheme is the linear
block coding. In this method, some extra bits are inserted
into the symbol stream emitted by the source. This is done
to, investigate the error detection process, as well as
correcting the transmission errors [1]. By using the channel

coding, the probability of bit error (PB
) will be reduced

significantly, at the cost of bandwidth, and added network
complexity [2].

 The very first step in error detection, and correction is
the error modeling and simulation. One of the most accurate,
and reliable modeling and identification algorithms
developed is Artificial Neural Networks (ANN). Artificial
neural networks are circuits, computer algorithms, or
mathematical representations of the massively connected set
of neurons that form artificial biological networks that
mimic the neuron behaviors. They have been shown to be

Manuscript received July 12, 2014; revised August 9, 2014.
Omid Haddadi, M.Sc. research assistant of Electrical Engineering,

Department of California State University, Fullerton (Phone: 310-349-
7533; e-mail: Omid.haddadi@csu.fullerton.edu).

Zahra Abbasi, B.Sc. in Radiation Technology, independent research
assistant at Saddleback and Irvine Valley Colleges (Phone: 949-616-4551;
Email: zabbasi1@saddleback.edu).

Hossein Tootoonchy, M.Sc. research assistant of Electrical Engineering
Department at California State University, Fullerton (Phone: 949-616-6249;
Email: Tootoonchy@csu.fullerton.edu).

useful, as an alternative computing technology, and have
proven to be useful in a variety of tasks such as pattern
recognition, signal processing, estimation, and control
problems. Their Ability to learn from examples has been
particularly useful. Among the diverse set of neural network
algorithms, the RBF method will be adopted in this paper
due to various advantages that will be discussed in the
subsequent sections.

In this paper, the Hamming code (15,11) is simulated via
RBF neural network, and different outputs, including the
BER curve performance, Error histogram, and target MSE
are discussed. The different sections of this paper are
organized as follows. In sections II, and section III a review
and introduction to Hamming code, and Neural Networks
will be presented, respectively. In section IV the simulation
results are developed and discussed. Finally, in sections V
and VI the results and conclusion will be presented
respectively.

II. HAMMING CODE

A. A brief Introduction to Hamming Code

In the late 1940’s Claude Shannon was developing an

information theory, and coding as a mathematical model for
communication. At the same time, Richard Hamming, a
colleague of Shannon’s at Bell Laboratories, found a need
for error correction in his work on computers. The parity
checking was already being used to detect errors in the
calculations of the relay based computers at the time, and
Hamming realized that a more sophisticated pattern of parity
checking can be used to correct a single error along with the
detection of double instances.

In 1950s, Hamming published what is now known as the
Hamming code. The single error correcting binary
Hamming code, their single error correcting and double
error detecting extended version, marked the beginning of
coding theory. These codes remain important to this day, for
theoretical, practical as well as historical reasons.

Hamming code is a class of block codes characterized by

the structure (n,k)= (2m  1, 2m  1 m) where m=2,3,….
This is an error detecting or error-correcting binary code,
which transmits n, bits for every k source bits. They are
capable of correcting all single errors or detecting all
combinations of 2 or fewer errors within a block. For
performance over a Gaussian channel using coherently
demodulated BPSK, the channel symbol probability can be

expressed in terms of as follows:

The Hamming Code Performance Analysis
using RBF Neural Network

Omid Haddadi, Zahra Abbasi, and Hossein TooToonchy, Member, IAENG

W

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

 (1)

Where is a code symbol energy per noise spectral
density and Q(x) is called the complementary error function.
[2]. In this paper, the m=4, is considered. Thus, the (n,k)
Hamming code will be (15,11) . For this Hamming code the
generator matrix is:

So the parity check matrix is given by:

B. Syndrome and Error Detection

Let V  (V0,V1,...,Vn1) be a code word that was

transmitted over a noisy channel and r  (r0, r1,..., rn1) be

the received vector at the output of the channel. Upon
receiving r, the decoder must first determine whether r
contains transmission errors. So when r is received, the
decoder computes the following (n – k)- tuple:

 (2)

Which is called the syndrome of r. The s=0 if and only if r

is a code word and receiver accepts r as the transmitted code
word. The s≠0 if and only if r is not a code word and the
presence of errors has been detected. [3]

C. Error correction:

After finding the syndrome s, the coset leader (error
pattern) whose syndrome equals will be found. Next, the
received vector r will be decoded into the code vector v:

 (3)

III. NEURAL NETWORK AND RBF

A. Introduction to Neural Network

Among the available computational intelligence
techniques, the Artificial Neural Networks (ANNs) attempts

to mimic the behavior of biological neurons. Among the
benefits of ANNs, are the ability to process complex, and
interconnected data, arrays, systems’ input/output
relationships, and nonlinear models, which are notorious for
simulation and development. Neural Networks are able to
infer, and learn from complex relationships, by generalizing
from a limited amount of training data through a process
known as training. This concept comes from the fact that
animals, and humans are able to learn through observation.
Any new situation is training and an experience through
which the agent can gain experience that will be used when
later is confronted with new, and unpredicted situations.
Although, the exact learning mechanism is still unknown,
the attempt to mimic the pattern has been successful. Based
on scientists’ observations, brain consists a large number of
interconnected cells called neurons. These cells are known
as the critical information-processing units.

Human brain consists of millions of interconnected
intelligent agents known as neurons. These neurons will
respond to electrical impulses sent from other neurons. In
1943, McCulloch and Pitts developed a simple mathematical
model of the neuron that had multiple inputs, and was
connected to the output of a neuron via other influencing
factors known as weights. Fig. 1 shows the proposed model.
It is very interesting to observe that how such a simple
model can solve many sophisticated problems.

 Later, it was shown that if the perceptrons from
different layers were grouped together, also known as
multilayer perceptrons. The input layers merely do not
perform any computations but distribute the input to the
summation through weight factors.

For the neurons in the hidden layer, first the weighted
sum of inputs is calculated. Weights play an important role
in operation of neural networks. Some inputs are more
important than others, and their influence and importance
can be highlighted via weights in neural networks.

On the other hand, a nonlinear transfer function, also

known as activation function is used so the desired output
can be calculated. A sample of such function is shown as
below:

X
j
 f W

jk
x

k

k

  (4)

Fig. 1 Neural Network with one Input layer, one hidden and one

output layer

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

Transfer functions add the required nonlinearity to the

system. Another important feature in ANNs is the ability to
learn. Neural networks lack the elements to store data, what
they do instead is to utilize the power of weights that shows
the importance of each connection. Training of the network
means, these weights are selected in such a way that the
error between the desire output, and the network output is
minimized. There are two steps involved, first is the feed
forward calculation of the weights and inputs, and the
second is the comparison of the error to plant output. Once
the input values to the transfer function were created, the
result will be compared to the desired output, the difference,
the error then is used to adjust the weights first in the last
layer, and then the layer before, etc. This process will
continue until the error is minimum.

min E
2 

1

2
y

i
x

n
   Y x

n
  

i


n

 2



1

2
y

i
x

n
   f w

ij
. f w

jk
, x

kn

k





j









i


n


2
 (5)

The gradient descent optimization, and the updated output

weights can be found by differentiating the cost function
given by equation No. 5. Because these differences are in
terms of the other layer outputs, the desired result can be
found using the chain rule that the errors are fed backward
through the network layer by layer using gradient descent
algorithm, and thus this method is called back propagation.

During the recent years, the Neural Networks have been

the center of attention for researchers, and scientists. New
architectures, and learning algorithms are developed all the
time. Even though the present neural networks do not
achieve human-like performance, they offer interesting
means for pattern recognition, including a large collection of
very different types of mathematical tools (preprocessing,
extraction of features, final recognition). In many cases, it is
difficult to say what kind of tool would best fit to a
particular problem. Neural networks make it possible to
combine these steps, because they are able to extract the
features autonomously. They are practical to use, because
they are nonparametric. It has also been reported that the
accuracy of neural classifiers is better than of traditional

counterparts [4][5]. Selection of the proper learning
algorithm is vital, because through selecting the right one, it
is possible to train those networks that can not be trained
with simple algorithms. For example, The error back
propagation known as EBP method, is one of the most
widely used training algorithms, however, they are more
suitable for networks with large number of neurons. On the
other hand, the EBP is very efficient in learning, yet to the
cost of reduced generalization ability. In other words, the
neural network may produce incorrect answers for patterns
that were not introduced in the training sets[6][7].

IV. RBF HAMMING CODE MODEL

Different techniques have been developed for correction
of errors from the received data. Instead of using traditional
error correcting techniques, Artificial Neural Networks have
been used because of their adaptive learning, self-
organization, and real time operation, and to project what
will most likely happen on the analogy of the human brain.
 Many researchers have contributed much in the field of
channel decoding with artificial neural networks (ANN). L.
G. Tallini and P. Cull proposed a scheme of using ANN
technology to decode Hamming codes and Reed-Muller
codes [8]. S.E. El-Khamy used ANN to decode block codes
and compared the performance between soft-decision
decoding and hard-decision decoding [9]. Due to their
parallel processing capability, ANNs are a promising
technology for error correction to meet the needs of high
data-rate transmission. R. Annauth et al proposed a scheme
of using error back propagation (EBP) algorithm to decode
Turbo codes [10]. However, they only got rather poor
performance results although the decoding complexity was
reduced. [11]

Radial Basis Function (RBF) Algorithm for the Artificial
Neural Networks has been simulated using Matlab for
decoding block codes. The Simulator is trained on all the
possible code words to detect/correct the errors.[12]

The model explained here is designed to code, and decode
the (15,11) Hamming algorithm, which was presented in
section II. For a better result, it is advised that a large
number for N is selected. For instance, assume N=10^6
where N is the number of bits which are emitted from the
transponder through the channel. The modulation used in
this paper is BPSK with the channel noise of Additive White
Gaussian Noise (AWGN).

The RBF decoder could be treated as a Single-Input-
Single-Output (SISO) model from the viewpoint of code-
words, where its input or output is corresponding to 1-
codeword information. There are two stages of decoding for
Hamming codes with RBF technology, i.e., the first stage of
training the RBF network and the second stage of testing,
and validating the RBF network. [11]
Training stage:

Based on the principle of Minimum Mean Square Error
(MMSE), the known information is used to train the RBF
network, and the weights of the NN are accordingly changed
during training to obtain the optimal output. The number of
samples for training influences the performance of RBF
decoder a lot. There should be neither too few nor too many
training samples. In the first case of too few samples, the
weights of the RBF network would not be correct, which
would lead to poor decoding performance. On the other

Fig. 2: McCullock-Pitts Neuron Model

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

hand, if too many samples were applied, the performance
would not be improved substantially while it would prolong
the training time.

Based on default of “nftools” in Matlab codes and our
experiments, 70% of data is allocated for training stage.
Figure 3 illustrates the train data and Regression plot.

For the test, and validation stage, the time for training and
network learning is allocated. Similar to training state, some
portions of information should be allocated to testing, and
data validation. In this paper, 15% of the information is
considered for each of them. Figure 4 shows the testing data,
and Regression plot.

Figure 5, depicts a more comprehensive collection of data
sets used to derive the simulation results. For creating, and
training the RBF network, the NEWRB Matlab code is
employed. According to “newrb” Matlab code, different
parameters can be modified to achieve a better result in
terms of performance, and error reduction. Table 1, depicts
the important parameters that were used in the simulation
process.

Table 1
 Parameter used in RBF tool

Parameter Value
Desired Minimum Error 0
Spread 1
Maximum number of neuron 7
DisplayAt 1
Percentage of training data 70
Percentage of testing data 15
Percentage of validation data 15

Table 2
The value of Mean Square Error (MSE) for using different

number of Neurons.

Table 2: MSE for different number of neuron
Number of neuron MSE

2 6.24836e-005
3 3.03697e-005
4 1.9699e-007
5 1.71009e-007
6 1.43405e-007
7 3.28795e-008

V. RESULTS

In order to simulate the results, a proper training data set
was used for a (15,11) Hamming code. This simulation was
performed with the presence of an additive white Gaussian
noise (AWGN). The whole simulation was carried out with
Matlab Neural Network Toolbox 2013. In order to achieve
the desired minimum square error, the “newrb” function is
employed. This function will increase the number of
neurons in the hidden layer of the radial base network
(RBN) until the desired MSE is achieved.

After training the RBF network with proper data set, and
running the algorithm, the following result was achieved.
Fig.6 is known as the Bit Error Rate (BER) curve, which is

Fig. 3: Train data and Regression

Fig. 4: Test data and Regression

Fig. 5: All data and Regression

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

an indicative of the channel conversion accuracy in using
different SNRs. The simulation consists of four graphs
including, theory, symbol error rate, hamming BER, and
RBFN Hamming.

Fig 6: SNR vs BER Gragh for RBFN (15,11) Hamming code

According to simulated results all graphs showed a

decreased error rate while increasing SNR. This decrease
was not the same for different algorithms. It is shown
through numerous papers, and articles that the Hamming
code will produce better results than uncoded BER in terms
of performance and error reduction. The Hamming code
simulation results in this paper, also advocates the same
theory.

Increasing new layers, and neurons will add to the
complexity of the network but not necessarily improves the
results. It is shown that sing optimized neural network
algorithm, along with Hamming code could produce much
lower BER while maintaining the network simplicity. This
feature will make network debugging and troubleshooting
much easier than complex networks.

REFERENCES

[1] H. Abdelbaki and E. Gelenbe, “Random Neural Network Decoder
for Error Correcting Codes 3 The Random Neural Network.”

[2] B. Sklar, Digital communications, vol. 2. Prentice Hall NJ, 2001.
[3] J. Micolau, D. Rodriguez, and J. A. Vidal, “Hamming Block

Codes,” no. January, 2000.
[4] T. Sorsa, H. H. N. Koivo, and H. Koivisto, “Neural networks in

process fault diagnosis,” Syst. Man Cybern. IEEE Trans., vol. 21,
no. 4, pp. 815–825, 1991.

[5] S. R. Naidu, E. Zafiriou, and T. J. McAvoy, “Use of neural
networks for sensor failure detection in a control system,” Control
Syst. Mag. IEEE, vol. 10, no. 3, pp. 49–55, 1990.

[6] B. WILAMOWSKI, “How Not to Be Frustrated with Neural
Networks,” eng.auburn.edu, no. December, pp. 56–63, 2009.

[7] B. G. Lipták, Instrument Engineers’ Handbook, Volume Two:
Process Control and Optimization, vol. 2. CRC press, 2005.

[8] L. G. Tallini and P. Cull, “Neural nets for decoding error-
correcting codes,” Ital. J. Pure Appl. Math., vol. 10, pp. 91–106,
2001.

[9] S. E. El-Khamy, E. A. Youssef, and H. M. Abdou, “Soft decision
decoding of block codes using artificial neural network,” Proc.
IEEE Symp. Comput. Commun., pp. 234–240, 1995.

[10] R. Annauth and H. C. S. Rughooputh, “Neural network decoding
of Turbo codes,” Int. Jt. Conf. Neural Networks (IJCNN’ 99),
vol. 5, pp. 3336–3341, 1999.

[11] X. Liu, Z. Chen, Z. Wang, and P. Cull, “Decoding of Block
Turbo Codes with RBF Networks,” Int. Conf. Sensing, …, pp.
1986–1990, 2006.

[12] A. Haroon, “Decoding of Error Correcting codes Using Neural
Networks,” 2012.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

