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Abstract—In this paper the Hamming decoding model 

development, and BER curve performance, including Error 
histogram, target Mean Square Error, Training state, 
Regression curve and the impact of employing a different 
number of Neurons in RBF Neural network will be 
investigated. The Hamming (15,11) will be used to develop the 
results, and diagrams throughout this article. The results, and 
simulations in this paper are generated via Matlab Neural 
Network Toolbox 2013.  
 

Index Terms— BER Performance, Hamming Code, Neural 
Network, RBFN.  
 

I. INTRODUCTION 

HENEVER a transmitter broadcasts a signal over a 
long distance, the received message may be different 

than the original one due to a couple of reasons, including 
but not limited to noise, fading, and jamming. The impact of 
such an error could be as small as misunderstanding a word 
in a telephonic conversation or as big as losing connection 
to a space station thousands of miles away. Due to possible 
catastrophic impacts of such errors in communication; the 
detection, and error correction have always been the centers 
of interest for scientists, engineers and researchers in the 
field. One type of error control coding scheme is the linear 
block coding. In this method, some extra bits are inserted 
into the symbol stream emitted by the source. This is done 
to, investigate the error detection process, as well as 
correcting the transmission errors [1]. By using the channel 

coding, the probability of bit error ( PB
) will be reduced 

significantly, at the cost of bandwidth, and added network 
complexity [2].  

 The very first step in error detection, and correction is 
the error modeling and simulation. One of the most accurate, 
and reliable modeling and identification algorithms 
developed is Artificial Neural Networks (ANN).  Artificial 
neural networks are circuits, computer algorithms, or 
mathematical representations of the massively connected set 
of neurons that form artificial biological networks that 
mimic the neuron behaviors. They have been shown to be 
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useful, as an alternative computing technology, and have 
proven to be useful in a variety of tasks such as pattern 
recognition, signal processing, estimation, and control 
problems. Their Ability to learn from examples has been 
particularly useful. Among the diverse set of neural network 
algorithms, the RBF method will be adopted in this paper 
due to various advantages that will be discussed in the 
subsequent sections.  

In this paper, the Hamming code (15,11) is simulated via 
RBF neural network, and different outputs, including the 
BER curve performance, Error histogram, and target MSE 
are discussed. The different sections of this paper are 
organized as follows. In sections II, and section III a review 
and introduction to Hamming code, and Neural Networks 
will be presented, respectively. In section IV the simulation 
results are developed and discussed. Finally, in sections V 
and VI the results and conclusion will be presented 
respectively.  

II. HAMMING CODE  

A. A brief Introduction to Hamming Code 

 
In the late 1940’s Claude Shannon was developing an 

information theory, and coding as a mathematical model for 
communication. At the same time, Richard Hamming, a 
colleague of Shannon’s at Bell Laboratories, found a need 
for error correction in his work on computers. The parity 
checking was already being used to detect errors in the 
calculations of the relay based computers at the time, and 
Hamming realized that a more sophisticated pattern of parity 
checking can be used to correct a single error along with the 
detection of double instances.  

In 1950s, Hamming published what is now known as the 
Hamming code. The single error correcting binary 
Hamming code, their single error correcting and double 
error detecting extended version, marked the beginning of 
coding theory. These codes remain important to this day, for 
theoretical, practical as well as historical reasons.  

Hamming code is a class of block codes characterized by 

the structure (n,k)= (2m  1, 2m  1 m)  where m=2,3,…. 
This is an error detecting or error-correcting binary code, 
which transmits n, bits for every k source bits. They are 
capable of correcting all single errors or detecting all 
combinations of 2 or fewer errors within a block. For 
performance over a Gaussian channel using coherently 
demodulated BPSK, the channel symbol probability can be 

expressed in terms of  as follows: 
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            (1) 
 

Where is  a code symbol energy per noise spectral 
density and Q(x) is called the complementary error function. 
[2]. In this paper, the m=4, is considered. Thus, the (n,k) 
Hamming code will be (15,11) . For this Hamming code the 
generator matrix is: 
  

 
So the parity check matrix is given by: 
 

 

B. Syndrome and Error Detection 

 
Let V  (V0,V1,...,Vn1 )  be a code word that was 

transmitted over a noisy channel and r  (r0, r1,..., rn1 )  be 

the received vector at the output of the channel. Upon 
receiving r, the decoder must first determine whether r 
contains transmission errors. So when r is received, the 
decoder computes the following (n – k)- tuple: 

 

                      (2) 
 
Which is called the syndrome of r. The s=0 if and only if r 

is a code word and receiver accepts r as the transmitted code 
word. The s≠0 if and only if r is not a code word and the 
presence of errors has been detected. [3] 

C. Error correction: 

After finding the syndrome s, the coset leader  (error 
pattern) whose syndrome equals will be found. Next, the 
received vector r will be decoded into the code vector v:  

 

                  (3) 
 

III. NEURAL NETWORK AND RBF 

A. Introduction to Neural Network 

Among the available computational intelligence 
techniques, the Artificial Neural Networks (ANNs) attempts 

to mimic the behavior of biological neurons. Among the 
benefits of ANNs, are the ability to process complex, and 
interconnected data, arrays, systems’ input/output 
relationships, and nonlinear models, which are notorious for 
simulation and development. Neural Networks are able to 
infer, and learn from complex relationships, by generalizing 
from a limited amount of training data through a process 
known as training. This concept comes from the fact that 
animals, and humans are able to learn through observation. 
Any new situation is training and an experience through 
which the agent can gain experience that will be used when 
later is confronted with new, and unpredicted situations. 
Although, the exact learning mechanism is still unknown, 
the attempt to mimic the pattern has been successful. Based 
on scientists’ observations, brain consists a large number of 
interconnected cells called neurons. These cells are known 
as the critical information-processing units.  

Human brain consists of millions of interconnected 
intelligent agents known as neurons. These neurons will 
respond to electrical impulses sent from other neurons. In 
1943, McCulloch and Pitts developed a simple mathematical 
model of the neuron that had multiple inputs, and was 
connected to the output of a neuron via other influencing 
factors known as weights. Fig. 1 shows the proposed model. 
It is very interesting to observe that how such a simple 
model can solve many sophisticated problems.  

 Later, it was shown that if the perceptrons from 
different layers were grouped together, also known as 
multilayer perceptrons. The input layers merely do not 
perform any computations but distribute the input to the 
summation through weight factors.  

For the neurons in the hidden layer, first the weighted 
sum of inputs is calculated. Weights play an important role 
in operation of neural networks. Some inputs are more 
important than others, and their influence and importance 
can be highlighted via weights in neural networks.  

 
On the other hand, a nonlinear transfer function, also 

known as activation function is used so the desired output 
can be calculated. A sample of such function is shown as 
below:  
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Fig. 1 Neural Network with one Input layer, one hidden and one 

output layer 
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Transfer functions add the required nonlinearity to the 

system. Another important feature in ANNs is the ability to 
learn. Neural networks lack the elements to store data, what 
they do instead is to utilize the power of weights that shows 
the importance of each connection. Training of the network 
means, these weights are selected in such a way that the 
error between the desire output, and the network output is 
minimized. There are two steps involved, first is the feed 
forward calculation of the weights and inputs, and the 
second is the comparison of the error to plant output. Once 
the input values to the transfer function were created, the 
result will be compared to the desired output, the difference, 
the error then is used to adjust the weights first in the last 
layer, and then the layer before, etc. This process will 
continue until the error is minimum.  
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The gradient descent optimization, and the updated output 

weights can be found by differentiating the cost function 
given by equation No. 5. Because these differences are in 
terms of the other layer outputs, the desired result can be 
found using the chain rule that the errors are fed backward 
through the network layer by layer using gradient descent 
algorithm, and thus this method is called back propagation.  

 
During the recent years, the Neural Networks have been 

the center of attention for researchers, and scientists. New 
architectures, and learning algorithms are developed all the 
time. Even though the present neural networks do not 
achieve human-like performance, they offer interesting 
means for pattern recognition, including a large collection of 
very different types of mathematical tools (preprocessing, 
extraction of features, final recognition). In many cases, it is 
difficult to say what kind of tool would best fit to a 
particular problem. Neural networks make it possible to 
combine these steps, because they are able to extract the 
features autonomously. They are practical to use, because 
they are nonparametric. It has also been reported that the 
accuracy of neural classifiers is better than of traditional 

counterparts [4][5]. Selection of the proper learning 
algorithm is vital, because through selecting the right one, it 
is possible to train those networks that can not be trained 
with simple algorithms. For example, The error back 
propagation known as EBP method, is one of the most 
widely used training algorithms, however, they are more 
suitable for networks with large number of neurons. On the 
other hand, the EBP is very efficient in learning, yet to the 
cost of reduced generalization ability. In other words, the 
neural network may produce incorrect answers for patterns 
that were not introduced in the training sets[6][7].   

 

IV. RBF HAMMING CODE MODEL 

Different techniques have been developed for correction 
of errors from the received data. Instead of using traditional 
error correcting techniques, Artificial Neural Networks have 
been used because of their adaptive learning, self-
organization, and real time operation, and to project what 
will most likely happen on the analogy of the human brain. 
 Many researchers have contributed much in the field of 
channel decoding with artificial neural networks (ANN). L. 
G. Tallini and P. Cull proposed a scheme of using ANN 
technology to decode Hamming codes and Reed-Muller 
codes [8]. S.E. El-Khamy used ANN to decode block codes 
and compared the performance between soft-decision 
decoding and hard-decision decoding [9]. Due to their 
parallel processing capability, ANNs are a promising 
technology for error correction to meet the needs of high 
data-rate transmission. R. Annauth et al proposed a scheme 
of using error back propagation (EBP) algorithm to decode 
Turbo codes [10]. However, they only got rather poor 
performance results although the decoding complexity was 
reduced. [11] 

Radial Basis Function (RBF) Algorithm for the Artificial 
Neural Networks has been simulated using Matlab for 
decoding block codes. The Simulator is trained on all the 
possible code words to detect/correct the errors.[12] 

The model explained here is designed to code, and decode 
the (15,11) Hamming algorithm, which was presented in 
section II. For a better result, it is advised that a large 
number for N is selected. For instance, assume N=10^6 
where N is the number of bits which are emitted from the 
transponder through the channel. The modulation used in 
this paper is BPSK with the channel noise of Additive White 
Gaussian Noise (AWGN).  

The RBF decoder could be treated as a Single-Input-
Single-Output (SISO) model from the viewpoint of code-
words, where its input or output is corresponding to 1-
codeword information. There are two stages of decoding for 
Hamming codes with RBF technology, i.e., the first stage of 
training the RBF network and the second stage of testing, 
and validating the RBF network. [11] 
Training stage: 

Based on the principle of Minimum Mean Square Error 
(MMSE), the known information is used to train the RBF 
network, and the weights of the NN are accordingly changed 
during training to obtain the optimal output.  The number of 
samples for training influences the performance of RBF 
decoder a lot. There should be neither too few nor too many 
training samples. In the first case of too few samples, the 
weights of the RBF network would not be correct, which 
would lead to poor decoding performance. On the other 

 
Fig. 2: McCullock-Pitts Neuron Model 
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hand, if too many samples were applied, the performance 
would not be improved substantially while it would prolong 
the training time.  

Based on default of “nftools” in Matlab codes and our 
experiments, 70% of data is allocated for training stage. 
Figure 3 illustrates the train data and Regression plot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For the test, and validation stage, the time for training and 
network learning is allocated. Similar to training state, some 
portions of information should be allocated to testing, and 
data validation. In this paper, 15% of the information is 
considered for each of them. Figure 4 shows the testing data, 
and Regression plot. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5, depicts a more comprehensive collection of data 
sets used to derive the simulation results. For creating, and 
training the RBF network, the NEWRB Matlab code is 
employed. According to “newrb” Matlab code, different 
parameters can be modified to achieve a better result in 
terms of performance, and error reduction. Table 1, depicts 
the important parameters that were used in the simulation 
process.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 
 Parameter used in RBF tool 

Parameter Value 
Desired Minimum Error 0 
Spread 1 
Maximum number of neuron 7 
DisplayAt 1 
Percentage of training data 70 
Percentage of testing data 15 
Percentage of validation data 15 

 
 

Table 2 
The value of Mean Square Error (MSE) for using different 

number of Neurons. 
 

Table 2: MSE for different number of neuron 
Number of neuron MSE 

2 6.24836e-005 
3 3.03697e-005 
4 1.9699e-007 
5 1.71009e-007 
6 1.43405e-007 
7 3.28795e-008 

 

V. RESULTS 

In order to simulate the results, a proper training data set 
was used for a (15,11) Hamming code. This simulation was 
performed with the presence of an additive white Gaussian 
noise (AWGN). The whole simulation was carried out with 
Matlab Neural Network Toolbox 2013. In order to achieve 
the desired minimum square error, the “newrb” function is 
employed. This function will increase the number of 
neurons in the hidden layer of the radial base network 
(RBN) until the desired MSE is achieved.  

After training the RBF network with proper data set, and 
running the algorithm, the following result was achieved. 
Fig.6 is known as the Bit Error Rate (BER) curve, which is 

Fig. 3: Train data and Regression 

 

Fig. 4: Test data and Regression 

 

Fig. 5: All data and Regression 
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an indicative of the channel conversion accuracy in using 
different SNRs. The simulation consists of four graphs 
including, theory, symbol error rate, hamming BER, and 
RBFN Hamming.  

 
 
 

 
Fig 6: SNR vs BER Gragh for RBFN (15,11) Hamming code 

 
 
According to simulated results all graphs showed a 

decreased error rate while increasing SNR. This decrease 
was not the same for different algorithms. It is shown 
through numerous papers, and articles that the Hamming 
code will produce better results than uncoded BER in terms 
of performance and error reduction. The Hamming code 
simulation results in this paper, also advocates the same 
theory.  

Increasing new layers, and neurons will add to the 
complexity of the network but not necessarily improves the 
results. It is shown that sing optimized neural network 
algorithm, along with Hamming code could produce much 
lower BER while maintaining the network simplicity. This 
feature will make network debugging and troubleshooting 
much easier than complex networks.  
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