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Abstract—Bio-inspired communication (BC) is the next gener- Absorbing
ation of communications at nano-scale, especially, in fluid media. boundary L
Recent researches on BC still remains limited, questions on how S
to build a communication system from a bio-physical environ- o [ ] o
ment, or how to modulate information in such a environment o ] ®
are really challenging. Further, geometric shape of medium (free RN ® o Y @
space, half space, box...) also affects ways what we approach to P ®
build a BC system. In this paper, we build a BC system from )
a half space with an absorbing boundary at receiver. We then o ® ([
express how to signify logical bits by using nano-scale particles,
derive the channel capacity, and finally show numerical results.
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Index Terms—Nano-network, Brownian motion, capacity. Fig. 1. DbBC with an absorbing boundary at RN (x=0).

. INTRODUCTION implement a BC system can be listed here: Based on the free
Bio-inspired communication is a new interdisciplinary fieldiffusion of particles in the fluid medium (e.g., blood stream)
that spans many different research areas including nano, bb-{7]; based on utilizing gap junctions between cells to allow
and communication technologies [1], [2]. BC is inspired bgamcles _to go through from_ the departure c_eII to destination
observing communication mechanisms in biological systenf&!l [8]; finally, based on using molecular railways as a way
e.g., communication among cells. Compared to tradition®@ direct particles to specific place [9]. .
communication, BC has some outstanding advantages such d48€Cent works have been aiming to build physical models
low power consumption, ability to communicate with nano?f @ BC system in half space [5], [6] and mathematical
machines in biophysical systems [2]. For a BC system, tf&Pressions involved, e.g., capacity [6], mod_ula_tlo_n techniques
information exchange is performed at nano-scale by nanonha?l- However, these researches still remain limited and the
chines that can be biological devices (e.g., proteins, cells) eoretical development of a DbBC isimfancy. In our work,
artificial devices. These devices must be capable of performiff§ consider is a diffusive fluid medium with an absorbing
tasks such as sensing, counting... In relative fields, bagfgundary at RN. The mechanism of the DbBC is as follows:
capabilities of nanomachines have been studied, some iniffd} ncodes information onto particles and then releases them
results reveal that nanomachines can be engineered to perfég medium. Because the medium is diffusive fluid, particles
above-mentioned tasks for future applications [3], [4]. tend to diffuse far away from TN and obey diffusion laws
A BC system has its own characteristics, hence there ([§ stable medium, Fick’s law is used to describe the motion
a need to investigate the nature of the propagation. Frdth diffusing particles such as particles, atoms) [3]. Finally,
perspective of communication, a simple BC system contaiR@'ticles reach the receive RN. Thus, there is a need to
components: A transmitter nanomachine (TN) encoded tHBderstand the nature of diffusion process, we study and
information onto particles and releases them into the mediufPress it in this paper. Moreover, we derive the channel
the motion of the particles follows some biological and physg@pacity of a BC system based on such a diffusive fluid
cal laws that depend on the properties of the medium; and oABgdiUM. _ _ _
the particles reach a receiver nanomachine (RN), they will be The rest of the paper is organized as follows. In Section
decoded. Such a BC system is called a diffusion-based BlcWe describe a biophysical model and present its essential
(DbBC). A remarkable point is that the motion of particle@SPects. In Section Ill, we propose a binary channel based
will be modeled according to the biological characteristics &N the biophysical model and then derive the capacity of the
the medium. For example, if the medium between TN and Rq;@annel_. In Sectlop v, _numerl_cal results are provided. Finally,
is only fluid (Figure 1), the motion of particles can be modelegPnclusions are given in Section V.
as Brownian motioh that describes the random motion of
particles suspended in fluid medium. Il. BIOPHYSICAL MODEL
Up to now, question on how to build a BC system from We assume that TN is a source of identical particles
existing medium is really challenging. Some methods tand transmits particles into the fluid medium. After being
. : , transmitted from TN, particles diffuse in the medium obeying
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At first, we consider the motion of particles in full space 1-a
. o 0 0
(—o0, +00) without any boundary condition. Thus, we con-
sider the natural conditions that are defined as follows a
p(z,0) = 6(x)
{ p(Fo0,t) =0~ @) b
. . . 1 1
Let pe(xz,t) be the solution of equation (1) with 1-b

the natural conditions. It is given bype(z,t) =

(1/ /47rDt) exp (—xQ/(4Dt)). Derivation of p.(x, t) Fig. 2. Binary channel with the dependence of probabilitieand b upon

. . - . . . . the first passage time.

is shown in more detail in appendix B. This solution is only

basic one whereby we can find out solutions to eq. (1) in

more complex cases. o ~ wherep,(z,t) is defined in (44), Appendix C. We also like to
In our problem, we take boundary conditions into considergsmind that the region of diffusion is half-space< 0 with

tion, i.e., we consider the motion of particles in half space (Fiﬁbsorbing boundary at = 0. So the integral is calculated
1 is provided as an illustration). This is to say that WheneVS(/er(—oo,O].

particles reach the absorbing boundary (e.g., the membrane afinally, the CDF of7 is given by
the cell), they will be absorbed. Lety = — L be TN’s position

0

and 0 be RN’s location. Mathematically, absorbing boundary 1,y _ 4 _/ N — erfc( L ) 8
conditions are defined as 7() —oo pe(@,t)d V4Dt ®

p(+00,t) =0 and then by taking the first order derivative 6% (¢), we

p(0,t)=0 . (3) obtain the PDF as follows

p(z,0) = 6(x) )

| | | | Fr(t) = LFr(t) = 2 e22/aP0 - (g)

Let p,(z,t) be the solution of equation (1) with the absorbing ot VAr D3
boundary conditions. Thep, (z, t) is given by

IIl. BINARY CHANNEL BASED ON DIFFUSION PROCESS
p*(I,t):p.(I—FL,t)—p.(I—L,t). (4)

o _ _ . _ We consider a binary channel sketched in Figure 2.
Derivation ofp,(z,t) is shown in more detail in appendix C.

A. Preliminaries

Let M/ be a discrete variable denoting the number of
particles transmitted at the beginning of tié& and get
absorbed in thg'" slot.

Let M% be the total number of particles absorbed in the

A. The first passage time.

In researches on diffusion with absorbing boundary condi-*
tion, one of the most important aspects is the first passage/hit-
ting time that is defined as the duration of time that a particle
moves from the origin TN to the absorbing boundary RN for *

the first time [11], [12]: j* slot, it is given by
i J
T=inf{t >0:X(t) <b(t)} (5) Mg:ZMg:ZMijJFMf' (10)
where X (¢) is a diffusion process described as a continuous i=1 i<j

time random walk (CTRW) andl(¢) is an absorbing boundary . j j
(in our casep(t) = 0). The distribution of7" will be derived ~ OPViousl. we havell; < M;. _ _
in this subsection. o Let M; .be. the totalltgumbe.r gf p.artlcles transmitted at
. Note: This subsection presents shortly how to derive M€ Peginning of thg™ slot, it is given by
the di_stributio_n of T fr(_)m the solu_ti_onp*(:z:,t) of the Mt = M7+ ZM?. [0, bit 0
equation (1)with the Dirichlet condition. To understand i =M T L T n (particley,  bit 1
how to obtain p,(z,t), please see Appendix B and =7
Appendix C sequentially.
Let S; denote the event that a particle is absorbed at thes Letp;; be the probability that a particle from thg" slot
boundarybeforetime ¢. Let So denote the event that a particle gets absorbed in thg" slot, it is given by
still remains diffusing in the mediumntil time ¢. We have o .
Pr{S} + Pr{S:} — 1. Let Fr(t) be the CDF ofT, it is pij = Fr((G —i+Dla) = Fr((G —9)Ta) (12)
obviously the probability that a particle reaches the absorbing, Let , i |m™) be the probability thatn’ out
boundarybefore time ¢. Thus, we have the relation Pf"fﬂM? (mz i ) P 4 ‘
of m particles get absorbed. Due fd = {0,n}, we

(11)

Fr(t)=Pr{Si}=1-Pr{Ss} (6) have two cases
In addition, the probabilityPr {S>} is given by —If M = mj =0, thenm? = 0 and
0 _
N _ j . 1, mz =0 )
Pris:} = lmp*(x’t)dx % P |f (mi |0) - { 0, otherwise (13)
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— If M =m] =n, thenm? € {0,1,...,n} and

( m? >pijl (1=piy)" "
(14)

Passjary (] 1)

B. Mutual Information

The time synchronizatiofetween TN and RN is assume
to be perfect. At TN and RN, time is slotted ;. Par-

ticles are always transmitted at the beginning of time slo

{1,2,...,00}. At RN, we determine a thresholgl < n so
that if the number of received particled! = m{ < 7, we
have bit 0. In contrast, we have bit 1.

Let Q) =Y, M ’mI, ...,m}_, be the number of “re-
dundant” particles absorbed jit" given they are transmitted
from 1° to (j — 1)"* slots. ThusQ7 = {0, 1,...
and the PMF ofQ] is given by

Poi () = @Passjasy (!
1<J

m!) (15)

wherem! € {0,n} andm? < m].

Given thatM, = m! wherei < j is known, we make the

connection between physical channel and binary channel as

follows:
a=P{Ml = njml =0}
=P {M{ > ‘ml ) = }
:P{Q;'erj Zn’mﬁ = }
_p {Q% > 77} (16)
b=P{M] <n|m)=n}
=P {M{ <n ‘mI, 7m371’m} = "}
:P{Q%erj <n’m§ €{0.1, ’”}}
n—1 nla
= Pos (q1) Z 7)1\4]7|M]T (mZ |n) (7
71=0 m3=0

The mutual informationZ;(M],M{) in nats/s/Hz is a
function of P {MjT = n} = ¢ and is given by

L(M], M) = I;(p)
=en (MT]) — (I =¢g)en (]Vf,g |0) — pen (]Vf,g |n)
=—[1-a)—p(l—a—-0b)log[(1 —a) = (1l —a—0b)]
—la+ (1l —a—>b)|logla+ p(1 —a—"b)]
+ (1 =) [(1—a)log(l—a)+alogal

+ @ [(1 —b)log(1 —b) + blogb) (18)
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whereg¢ = eXp{

where

en (M,?) =—P {M,? > n}logIP {M,? > 17}
—IP{M{ < n}logIP{Mg < n}
en (MjT |O) = —(1—a)log(l —a) —aloga = en(a) (20)

en (MJT |n)

(19)

= —(1—>b)log(1 —b) —blogh = en(b) (21)

fre respectively entropy and conditional entropies.

Taking the first derivative of ;(¢) w.r.t ¢ and putting it to
zero, we obtain the extreme value of
aI;(p) 1—a(g +1)
dp (1—a-b)(g+1)

=0= (22)

%} Moreover, taking the second

derivative ofI;(¢) W.r.t ¢, we have% < 0. ThusI;(y)

,ZKJ, mlT} is a concave function op, the optimafvalue ofp is exactly
the extreme value.

Substituting the optimal value @f into (18), we obtain the
channel capacity corresponding to tji& slot

C; = max I;(p)
©

_(c%l%g(cil) B (gi1>log(gi1)

[c —b(c+1)]en(a) + [1 —al(c+1)] en(b)
a0+ 1) - @3

IV. NUMERICAL RESULTS

In this section, we provide an illustration of diffusion
process and some numerical examples of the channel capacity.
Regarding the illustration of diffusion process, we use a
CTRW to simulate the motion of particles suspended in fluid
medium. The relation between CTRW and diffusion process

(i.e., diffusion equation) is shown in appendix A.
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Fig. 3. 10 Brownian paths from time 0 to 1 with 1000 steps anit theerage.

Regarding the channel capacity, we depict Fig. 4 and 5. In
Fig. 4, we depict the channel capacity (i.e., the4” slot is
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e s L e - APPENDIX
Vo\g;\j A. Continuous Time Random Walk and Diffusion Equation

1) Continuous Time Random Walk (CTRW):CTRW is
generated by a sequence of independent identically distributed

e
S

K {mr,m;m;}:{n,0,0},{n,O,n},{n,n,n}‘

S Pe--e) . ) ..
3 Tahed (iid) random jumpsAX; = z; — z;—; and a sequence of iid
2 050 / positive random waiting (or stopping) times7l; =¢; — t;_1
| | between two successive jumps.
=2 L=1(um) . .. .
3 , In general, the jump length and the waiting time depend
g K=10(gm’ /) I .
S on each other, their distributions can be drawn from a joint
0.25} " . 1
RN: 4" slot counts m} probability densityo(z,t) as follows
1 ,ifn=1
T4 =0:5s; Threshold 7 = {Ln/ZJ ifn>1 / (b x, t (24)
O‘001 2 3 4 5 6 }( 8t Ié) 10 11 12 13 14 15
n (particles.
¢@w=/ o, t)da (25)
—0o0

Fig. 4. The capacity is a function of. Three out of eight cases of Bgsed on the above notion, the PRFEr,t) of a particle
{m{,m3,m}} are exhibited for comparison. being in positionz at timet is given by

t [e%}
N R =S TR p(x,t) = §(x)W(t) +/ / p(a’ " )p(x — 't — ¢')dt'da’
P P . 0 J—-oc0
o e (26)
075¢ . ;o ’ N Where5( ) is the delta function® (t) = [ ¢(t')dt’ =
3 ° ,a—"a L=1,2,3(um) fo Y(t')dt' is thesurvival probabllltythat the quantityr does
k. ;e not change value during the time interv@l, t). We note that
§ 050} /ﬁ,--; /,w‘ {mﬁ,m;mi}: n01) ] U (t) can also _be und_erstood. as the probability that a particle
S , —tolumts only changes its positioafter instantt.
8 o? K210 /5] On the right hand side (RHS) of eq. (26), the first term im-
05310 RN: 4% slot counts ! 1 plies the persistence of being in initial positiog = 0. While
o 1 ifn=1 the second term (space-time convolution) relates t) to the
T =0:3s: Threshold 7= {Ln/ZJ itn>1 event that the particle just arrived at positiohe (—o0, o)
O 4 ¢ 7 5 v 10 1 12 1311 15 at instantt’ < t, and then jumps to positiom at instantt

n (particles)

(after waiting timet — t').
Applying Fourier - Laplace transform to both sides of the

Fig. 5. The capacity is a function of the number of transmifiedicles. The equation (26), we get
distance between TN and RN takes valye2 and3 pm in turn.

(k S {['t {p(x t)vs}vk}
under consideration) w.r.t. the number of transmitted particles = U(s) + p(k, s)Ak)i(s) )
n given that the first three slots transmltte;dLl,mQ,mg} To = {1 — (s )} /s + p(k, s)A(k)(s) (27)

examine the effect of previous slots on the channel capa va]
at the 4’ slot, the values of the streafm!, m},ml} are, -
respectively, assumed to Ke, 0,0}, {n,0,n}, {n,n,n}. We Lolp(a,t); s} = pla, 5) :/ e~tp(a, t)dt, (28)
see that the worst case is when all previous slots transmit 0
bit 1. When the number of particles increases, the effect of .

P Felple, k) = i) = [
{ml,mQ, } on C4 becomes trivial even |n the worst case.

In fig. 5, we also depicCy but let{m],m},mi} = {n,0,n} denote the Laplace transform with respect to (wrt) time
fixed and examine the effect df. The result shows thaty yariablet and the Fourier transform wrt position variabte

e*p(z,t)dx (29)

— 00

decreases inversely with. respectively. After a simple manipulation, we obtain
V. CONCLUSIONS p(k,s) = LGN S (30)
In this paper, we propose a scheme for signifying logical ’ L= Ak)Y(s)

bits and formulating the capacity of such a system. NumericaAccording to basic theory of CTRW, we recall two follow-
results show that we can achieve high channel capacity ¢ Lemmas:

using a large number of particles regardless of the transmissj@finma 1. If the PDF A(xz) satisfies symmetric property
of previous slots and the increase of the distahcén future -a Az)de = f A(z)dz for a > 0, then in Fourier space

work, other aspects of this system (e.g., the reliability) WI(Le have the asymptonc

be examined. Moreover, we are going to examine different o9

models and propose suitable schemes. 1— A(k) = 0.5(A2?)k? for k — 0. (31)
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Lemma 2. In Laplace space we have the asymptotic The equality(b) follows from thatL*{s=*;t} = t*71 /T(2);
~ the equality(c) is the use of the definition of the Mittag-Leffler
1=9(s) = (32) function. Finally, we apply the inverse Fourier transform to the
Let us make smaller all random jumpsX; by a factor above equation and obtain
p > 0, all random waiting timesA7T; by a factorp > 0. 1 D2t
Consequently, we get scaledCTRW that haver, ,, = pz, pe(,t) = F, {e ;x} =
andt,, = ot,. Thus, the PDFE\,(z) of the scaled jumps

pAX; and the PDF),(t) of the scaled waiting timegAT; ¢ piffusion equation with absorbing boundary conditions
are, respectively, given by

(At)s for 0 < s — 0.

1
e—m2/(4Dt)_

42
4 Dt (42)

Given pe(z,t) in (42), the solutionp,(z,¢) can be found
(@) = p Az /p) (33) out through a so-calleinage method [13]. For our problem,
by(t) = 0~ Mb(t/0) (34) the region of diffusion is just half space-oc,0], thus the
resulting probabilityp, (z, ¢t) will be the superposition of two
Using the scaling relations in (33)-(34) and the approximatioggmponent solutions (one caused by particle, the other caused
in the Lemmas, we approximate the equation (30) to by image antiparticle):

2 —1
ﬁ(k, s) &~ (s + £k2>
ve wherew is the weight. By substituting (43) into the conditions
asp— 0 ando — 0. in (3), we find outw = —1. Finally, the probabilityp, (z, t)
2) The connection between CTRW and DEplace trans- in (43) is rewritten as
form for Op(z,t)/0t is given by

Du(x,t) = po(x + L, t) + wpe(x — L, t) (43)

(35)

8 ( t) p*(a?,t):p.(a:—i—L,t)—p.(I—L,t). (44)
T
£ {2t — s (36)
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De(k,t) = Z(_Dk2)l£—1 {8_(l+1);t}
=0
> T

=0

2lmage method: We consider raal particle initially at zo = —L < 0
and animage antiparticleinitially at —zo = L. Both of them diffuse freely
on (—oo, +00). According to Appendix B, the probabilities of real particle
and image antiparticle are, respectively,(xz — xzo,t) = pe(z + L,t) and
p.($ + :I,‘(),t) = p.(l‘ - L7 t)'

(~Dk*t)!
r(+1)

(

=

—Dk?t, (41)
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