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Effect of Antibodies on HCV Infection

B. D. Aggarwala

Abstract — We present a mathematical model which
describes the development of HCV, and its resistant variants,
in a patient. We assume that, apart from the variants that are
already in the patient's blood stream, it requires only one more
mutation at a specific nucleotide for an HCV virus to become
resistant to the antiviral drug being administered, i.e. for u,
(virus, together with all its variants, present when the
treatment starts) to change into u; (virus which is resistant to
the drug). We assume that, in the presence of drug pressure, it
is easier for u, to change to u; than the other way around. The
Model will say that there are exactly two outcomes of
treatment: either the patient has a REBOUND of virus or SVR,
sustained virologic response. The model will also outline the
important role of a patient’s immune system and say that if the
immune system of the patient is strong enough, then HCV does
not take hold.

Index Terms — Hepatitis C Virus, Immune System,
Mathematical modeling, Sustained Virologic Response

I. INTRODUCTION

NE hundred and seventy million people are infected

with HCV worldwide [1]. In the United States, more
than five million people are supposed to be living with HCV
[2]. Approximately 30,000 new cases are diagnosed each
year. This situation is likely to get worse as the number of
people infected with HCV from blood transfusions before
1990 come to be newly diagnosed. This is because, before
1990, there was no screening of blood against HCV, so that
millions of patients must have been infected through blood
transfusions. These cases are now coming to light.

Presently, there is no vaccine against HCV, and the
standard treatment consists of weekly doses of peginterferon
alpha and daily doses of ribavirin along with some protease
inhibitor. In the beginning, cases of HCV were treated with
ribavirin only but with very little success [3]. When
peginterferon alpha was added, a sharp drop in virion was
observed within a couple of days. However, even this
treatment is unsuccessful in over half the patients, and many
of these non responders go on to develop cirrhosis and then
liver cancer. If the liver is transplanted in such patients,
chances of their getting infected again are relatively high.

Like the Human Immunodeficiency virus (HIV), HCV
can stay dormant for twenty years and more while attacking
the liver all this time. This accounts for HCV cases
transmitted through blood transfusions before 1990 now
coming to light. HCV mutates easily which makes for a
large number of mutant viruses. There are six known
genotypes (numbered 1 through 6) and more than 50
subtypes (e.g., la, 1b, 2a...) [4]. Because HCV mutates
easily, some mutated virus is observed in patients who have
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never been treated, so that HCV exists in infected patients as
HCYV quasi-species.

While HIV has received major attention from the medical
community in recent years, HCV is just as serious. While it
is true that HIV positivity was a death sentence before the
discovery of HAART, and is a manageable illness now,
HCV is still a death sentence for a large percentage of
people that get infected. It has been suggested that, apart
from the liver, which is the main target of the virus, HCV
may also affect the nervous system [5]. The genotype 1 of
HCV is responsible for most of the infections in North
America.

We present a mathematical model which describes the
development of HCV, and its resistant variants, in a patient.
It is known that, in an HCV virus, some virus mutations are
hundreds of times more effective against the drug being
administered than others. As an example, it has been
reported that the variant V36A/M confers ~3.5-fold
resistance, whereas A156V/T confers ~466-fold resistance
to telaprevir [6]. Ignoring the mild resistance, we assume
that, apart from the variants that are already in the patient’s
blood stream, it requires one more mutation, at a specific
nucleotide, for an HCV virus to become resistant to the
antiviral drug being administered, i.e. for u, (virus, together
with all its variants, present when the treatment starts) to
change into u; (virus which is resistant to the drug being
administered). We assume that, in the presence of drug
pressure, it is easier for u, to change to u, than the other way
around, so that we assume that the probability of u,
changing to u, is much smaller than the one of u#, changing
to u;. We also assume that u, changes to u; after one
specific mutation at a given nucleotide. HCV has
approximately 9600 nucleotides, and its copying mechanism
is error prone at the rate of 1 in about 10,000. The virus lives
for 2-3 hours outside a cell, so that new viruses are being
produced inside the infected cells at about the same rate. On
average, it replicates about ten times in a day. The
probability of its mutating at any given site in 9 replication
cycles comes out to be 9.37031x10™ and 1.04109x107 in 10
such cycles. We take this probability to be 107 which is the
value of Q; in our model.

We also consider the effect of antibodies in our model.
The antibodies are produced in response to the presence of
the virus and decay when they encounter a virus. We show
that if the rate of production of antibodies is high enough,
the virus does not develop a chronic state. This says that, if
the (adaptive) antibody response of the host is strong
enough, an HCV infection does not take hold. We speculate
that this may be the reason why a significant number of
HCYV infected patients do not develop the chronic state of
the disease.

Our model will also say that, depending upon the
antibody response of the host, there is a chronic state of the
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disease in an untreated patient. This state is an equilibrium
state of our model in the absence of any treatment.
However, there is also an (unstable) equilibrium state in a
treated patient when the drugs have taken effect and reduced
the virus count but the virus has not developed any
resistance yet (so that #; = 0), and also an equilibrium state
when all the virus has become resistant to the drugs being
administered (i.e. when u, = 0 after a very long time). The
former state (with #; = 0) is unstable in a patient under
treatment, because the virus is slowly developing resistance,
i.e., up is slowly turning into u,. As for the third state (the
equilibrium state with %, = 0), if this state is stable, we have
a rebound, otherwise we have SVR.

II. THE MODEL

A. Set Up
We take one day as the unit of time and write

Fi(x1,u0,uq,y1) = Ay — Azxg — (1 — e1)x1(Asug

+ Aguy) M)
Fy(x1, U, Uy, 1) = AgA4(1

—e1e;)[(1 — Qpox1Ug (2)

+ Q2p1x1U] — C1Ug — C3Y1U]
F3(x1,ug, Ug, 1) = AgAs(1 — e€5)[Q1pox1Ug

+ (1= QIpixyw] — cry 3)

— G3Y1Uy
F(xq, U, g, Y1) = Ago(Uo +uy) — co(ug +u)y;  (4)
with x; = Fj, uy = F,, uy = F; and y; = F;

In these equations, the quantity x; stands for the number
of susceptible cells in one unit of volume, which cells are
attacked by the viruses uy and u; at the rates A; and Ag
respectively. Generally A; > A4 because of the higher fitness
of the 'wildtype' virus u,. Since HCV is not (or is only
mildly) cytopathic, we have not included a separate
equation for the infected cells as is done in most models of
HIV where the virus is highly cytopathic. It should be noted
that half-life of infected cells is not very different from those
of susceptible cells and they may also multiply like the
susceptible cells. The life cycle of infected cells is,
therefore, very much like that of susceptible cells. The
infected cells produce both wild type and resistant virions at
the rates py and p; respectively. Since, eventually, most of
the virions produced will be of the resistant type, we assume
that p; > po. The antibodies y; are produced in response to
the presence of both uy and u, at the rate 4,y (uo+u;) and are
neutralized at the rate cy(ugtu;)y; as and when they
encounter a virus. The parameter 44 < 4; accounts for a
protease inhibitor.

The value of 4, the rate at which the susceptible cells are
being created, has been estimated at anywhere from one to
180,000/mL in the literature while the value of 4,/4,, the
equilibrium value of total number of cells, has been
estimated to be anywhere from 4 million to 13 million
cells/mL [7]. We take this value to be one million in an
(appropriate) one unit of volume, and look at the effect of
taking different values of 4, in the model.

B. Equilibrium Points
We begin to analyze our system by taking an example.
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We take the equilibrium value of y; as (obviously) 4;¢/c,.
We assume that

A, =10; 4, = 4,/1,000,000; 45 = 0.00000001; 4, = A3; A5
= 0.005; 46 = 0.543; A9 = 1000; 4,0 = 0.1; Q; = 0.0000001;
Q2 = Ql*Ql;pO = 09,p1 = 099, e = 01, e :09, Cc = 8, Cy
= 0.0000001; ¢; = 0.0000001; and solve our system
numerically (on Mathematica 8.0). The result is the three
points {(x, ug, u;) = (1,000,000, 0, 0), (989,011, 12.3456,
0), (899,101, 0, 249.383)}

Apart from the disease free solution, there are two other
solutions. Notice that u#, = 0 in one solution and #; = 0 in the
other solution. What is happening? To see this, we solve the
same system with the same values of parameters as above,
but with e; = e, = Q; = Q, = 0, i.e. without any treatment.
The result is the three points {(x1, uo, #1) = (1,000,000, 0, 0),
(900,000.0, 111.111, 0), (818181.8, 0, 444.444)}.

The relevant solution without any treatment is the one
with u; = 0, which has x; = 900,000; and #, = 111.111. This
is the so called chronic equilibrium point. It is intuitively
clear that as the treatment starts, the number of virions
should come down, and the body may reach another
(unstable) equilibrium point where the treatment has
reduced the virus count but no resistance has developed yet.
Later on resistance may develop, which will result in a
rebound. This is exactly what happens in our model. As the
treatment starts, the number of healthy cells goes up and the
system (i.e. the body) reaches another equilibrium point
when the number of healthy cells has gone up (as expected,
from 900,000 to 989,011), and the number of virions has
come down (as expected, from 111.111 to 12.3456), but no
resistance has developed yet. As the treatment continues, the
resistance slowly develops, and we reach the next
equilibrium point, where the number of healthy cells has
gone down (as expected, from 989011 to 899101), all the
virions have changed to the resistant type (as expected), and
the number of resistant virions has gone up (as expected, to
249.383).

Alternatively, we may calculate the two equilibrium
points (one with #, = 0 and the other with u,=0) by
assuming that #y, = 0 for one point and that u; = 0 for the
other point. For u; = 0, the result is

Ay
(G u) = (7,0),
€163 + AqoCs
(A4A9Cz (e1e; — Dp,(Q1 — 1)° ®)

Ay (€163 + AgoC3) — A1A4Agcy (818, — 1)po(Qr — 1))}
Az(c16; + Agpc3) (e — 1)

and for uy= 0, the result is

{Ceuy) = <j—:, 0).

€163 + Aq0C3
(A4A9C2(91‘32 - Dp(Q; -1’ (6)

Ay(c16y + Agocs) — AjALAqcr (616, — 1)p1 (Q2 — 1))}
Ag(c165 + Agocs) (e — 1)
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The former equilibrium point (other than the disease free
solution) with #; = 0  is seen to be unstable, if p; is
sufficiently large compared to p.

For e; = e, = Q) = 0, =0, (i.e. without any treatment), the
value of uy (with #,=0) turns out to be

w = —Ay(c,c; + Agpcs) + A1A4AqCop,
0 Az(c ey + Agpcs3) '

We write
_ A1A4A9C;p0
0 Az(c ey + Agocs)

If Ry < 1, the corresponding value of u, is less than zero,
and consequently, the chronic state will not develop. It
follows that if

A1A4AgCopy — AzciCy

Ay > Ac ) @)

the chronic state will not develop and the infection does not
take hold. We speculate that this is the reason why a large
number of people do not proceed to a chronic state and self
cure after being infected with HCV. Their adaptive
immunity is just too strong. For the values of the parameters
assumed above, we get the critical value of 4, as 1.0.

Noting that, with the values of the parameters as assumed
above, (x|, u;) = (818,182, 444.444) which is what (7) gives
and (x1, #p) = (900,000, 111.111) which is what (6) gives,
we notice that these values coincide with those calculated
directly (i.e. without the additional assumption that #, = 0 in
one solution and #; = 0 in the other).

C. Positivity of the Solution

It is obvious that if a solution starts in {x;, ug, #1, y1} > {0,
0, 0, 0}, then it stays in that region. This is because at x; =0,
x;'> 0. A similar argument applies to the other variables.

D. Boundedness of the Solution

The quantity x, is clearly positive and bounded by 4,/4,.
Also y; is positive and bounded by A¢/c;. We have also
assumed that py < p; < 1. It follows that

(o +uy)" = —cq(uo +uy)
+ AyA(1 — 9132)(P0uo
+pu)xg — c3(uy +uyy, 8

< (U + uy)[A145(1 — ee)p1 x4

— =yl

For given values of u, and u;, the equilibrium value of x;
is
Ay
Ay + (1 = e)(Azup + Aguy)’
which value is clearly a maximum. Also, this value is less
than (or equal to)

Ay
Ay + (1 —ep)(uy +upAy
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so that we get
(uo +uq)'
(uo + uy)A1A,45(1 — ese,)p, 9)
[A; + (1 —e)Ag(ug +u)] — ¢ — 3y,

It follows that, for large enough values of uytuy, (uptu,)'
is negative for arbitrarily small values of ¢; and c;.

This proves the boundedness of the solutions of our
system.

E. Treatment Outcomes
Since the equilibrium point with #; = 0 is unstable, there

are only two possible outcomes of treatment. They are either
the rebound, i.e. the solution with %, = 0 obtained above, or
SVR, the disease free solution.

We write
_ A1A4Agc,p1 (1 — ere;)(1 — Q2)
’ Az(c16p + AgoC3) .

If R; >1, we have REBOUND, otherwise we have SVR.

This says that if
Ca[—Azc1 + A1 A Aopi (1 — e1e;)(1 — Q3)

Ajcq ’
we will have an SVR. Notice that the right hand side may be
made as small as we like depending upon the parameters
that define the treatment, so that for a sufficiently strong
treatment, we should have SVR. But of course, we must be
mindful of the side effects of a strong treatment. We also
recall that if statement (8) holds, then the chronic state will
not develop. All these results are in line with what actually
happens in a real situation.

F. Examples

We shall now give some examples to illustrate our model.
We take 4, = 10; 4, = 4,/1000000; A5 = 0.00000001; A4 =
As; As = 0.005; Ag= 0.54;; 49 = 1000; Q; = 0.0000001; O, =
QI*QI; Po = 09, P11 = 099, Cc = 8, e = 01, ey = 09, Cy =
0.0000001; ¢; = 0.0000001; and solve our model on
Mathematica 8.0 for several values of 4;,. The results are
given in Figs. 1 and 2 where the values of Log;o[uo(t)+u(t)]
are indicated along the vertical axis against time (in days).

4

(]

Fig. 1. The behavior of our model, showing drop in virus count with
treatment, for several values of 4,y for the first forty days (a) 4,0 = 0.1
(long dashes), (b) 4jp = 0.5 median dashes (c) 4o = 0.99 (short dashes).
Notice that higher values of Ajy, the antibody production rate, result in
lower values of u,, the initial virus count at the chronic equilibrium point.
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Fig. 2. The same case as in Fig. 1, showing the rebound of virus in each
case during the next few weeks (from 40 to 100 days).

Decay of Virus:

It should be noted that in our examples, the virus decays
in a bi-phasic manner over the first forty days. In actual
studies, this decay of virus is noted to take place in tri-
phasic ways, with virus coming down significantly during
the first few days. A lot of attention has been paid in the
literature to explain this tri-phasic delay. According to one
opinion, "In such studies, the first phase is assumed to be an
initial sharp decay related to the antiviral ‘efficacy’ of IFN
in clearing of free virus by blocking viral production and
secretion which occurred after a delay of about 8-9h from
the beginning of therapy. The second decay phase showed a
more gradual slope in HCV RNA levels, thus representing
the rate of killing, clearance of virally infected cells while
the third phase of viral decay may be attributed to the effect
of RBV that may be related to restoration of a previously
suppressed cellular immune response." [8]. According to
another author, "the slope of the “shoulder phase” in patients
with tri phasic viral decay represents the pre-treatment death
rate of infected cells and the third-phase slope represents the
treatment-enhanced death rate of infected cells due to the
immune modulatory effect of RBV."[9]. The ‘shoulder
phase’ refers to the second phase of tri-phasic decay. If the
half life of infected cells is reasonably long, these
explanations appear suspicious.

We argue that this tri-phasic decay may happen because
of decay in the effectiveness of the drug during the first few
days. We change the values of ¢; in our model with time,
and show the results as Log;o[uo(t)+u(t)]. Fig. 3 illustrates a
situation where the effect of the drug is very high in the
beginning and is maintained at a low level later on.
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Fig. 3. Decay of virus when ¢, changes as e;(t) = 0.1 + 0.85¢™. All other
parameters are the same as in Fig. 1. Tri-phasic decay of virus is clearly
visible in all cases of Ajy = 0.1(long dashes), 0.5 (median dashes), and
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0.99(short dashes).

G. Number of Virions

It is to be noted that the number of virions in the chronic
state in our model is of the order of a few hundreds. In
actual cases, this number is in millions. We introduce an
appropriate scaling factor A;; in our model and rewrite it as

Fi(xy,ug,ug, y1) = Ay — Agxq

— A1 (1 — e)x1 (Azug + Aguy)
Fp(x1, U, Ug, 1) = AgAs(l

—e;ex)[(1 — Q)poxsug

+ Q2p1 W] — crug

— A11¢3Y1U0]
F3(xq,Ug, Up, Y1) = AgAs(1 — e1€3)[Q1pox1Ug

+ (1 = QP x1us] — cuy

— A3
Fy(x, U, uq,¥1) = Aqo(uo + )

— A116, (U + Uy
with x; = Fj,ug = F,,uy = Fzand y; = Fy;

(10)

(11)

(12)

(13)

The solution of this model for 4, = 1000; 4, =
A,/1,000,000; A3 = 0.00000001; A4 = 0.99943; A5 = 0.005;
A¢=0.545; Ay = 1000; Q; = 0.0000001; O, = O*0y; p¢=0.9;
p1=0.99; ¢;=8; ¢;=0.0000001; c;= 0.0000001; 4;,=0.1;
ei(t) = 0.1 +0.85¢"; e, = 0.9; 4;; = 0.00001 is shown in the
next figure, once again as Logjo[uo(t) + u(t)]. The curve
closely follows the actual readings of a patient reported by
Reluga et al [7] over a span of 14 days.

Fig. 4: Decay of virions in a particular case for the first 14 days. The curve
closely follows the actual readings of a patient reported in the literature.
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