
Trans-Floating-Point Arithmetic
Removes Nine Quadrillion Redundancies

From 64-bit IEEE 754 Floating-Point Arithmetic
James A.D.W. Anderson

Abstract—IEEE 754 floating-point arithmetic is widely used
in modern, general-purpose computers. It is based on real
arithmetic and is made total by adding both a positive and
a negative infinity, a negative zero, and many Not-a-Number
(NaN) states. Transreal arithmetic is total. It also has a
positive and a negative infinity but no negative zero, and it
has a single, unordered number, nullity. Modifying the IEEE
arithmetic so that it uses transreal arithmetic has a number
of advantages. It removes one redundant binade from IEEE
floating-point objects, doubling the numerical precision of the
arithmetic. It removes eight redundant, relational, floating-point
operations and removes the redundant total order operation. It
replaces the non-reflexive, floating-point, equality operator with
a reflexive equality operator and it indicates that some of the
exceptions may be removed as redundant – subject to issues of
backward compatibility and transient future compatibility as
programmers migrate to the transreal paradigm.

Index Terms—transreal arithmetic, transreal numbers,
floating-point arithmetic.

I. INTRODUCTION

IEEE floating-point arithmetic [1] [2] is widely used
in modern, general purpose computers. This is both a

strength, promoting interoperability of computer programs
on different hardware, and a weakness where the standard
itself has infelicities. The standard has been revised but
its constant feature is that it provides a total computing
system in which any floating-point operation can be applied
to any floating-point objects, with the result being a floating-
point object. But, strictly speaking, it is not an arithmetic
because it applies to Not-a-Number objects, NaNs, that are
not numbers.

The original IEEE standard [1] developed floating-point
arithmetic in terms of bit patterns that support a finite model
of real arithmetic. But division by zero is not defined in real
arithmetic so, to make the floating-point model total, both
a positive infinity and a negative infinity were added, along
with a negative zero and many NaNs.

Here we develop a suggestion [4] to use transreal arith-
metic [5] as the basis for floating-point arithmetic. The next
section summarises relevant features of IEEE 754 floating-
point arithmetic. We then develop a trans-floating-point arith-
metic. Next we compare the two floating-point systems and
suggest that a single conceptual failure explains all of the
infelicities in the design of the IEEE 754 system. Finally we
conclude with a summary of the main original contributions
of the paper.

Manuscript received June 1, 2014; revised June 9, 2014.
J.A.D.W. Anderson is with the School of Systems Engineering, Reading

University, England, RG6 6AY e-mail: j.anderson@reading.ac.uk

II. IEEE 754 FLOATING-POINT ARITHMETIC

The IEEE floating-point arithmetic standard is quite com-
plex, running to 58 pages [2]. We summarise only the parts
that are immediately relevant to a comparison with trans-
floating-point arithmetic. A great deal more could be said in
a longer paper.

A. Redundancy

IEEE floating-point arithmetic is defined [1] in terms of
floating-point operations on bit patterns, interchange formats,
that are stored in memory to represent floating-point ob-
jects, and by a set of condition flags or exceptions that
handle exceptional cases. An operation may be carried out,
in the processor, at a higher precision than the floating-
point object’s storage class. There are two kinds of storage
class: unextended and extended. The revised standard [2]
also defines an extendable binary format and a decimal
format but we discuss only the binary formats here because
they have fewer redundancies. Thus the binary IEEE 754
formats provide stronger comparisons with trans-floating-
point numbers, which are irredundant.

An IEEE 754 floating-point object has three parts: a
sign bit, an exponent, and a significand (or mantissa). In
interchange format, the exponent is an unsigned integer from
which a bias is subtracted to provide positive, zero and
negative exponents during a floating-point calculation in the
processor. Two exponents are reserved: the smallest exponent
indicates subnormal numbers and the largest indicates infini-
ties and NaNs. There are two kinds of NaNs, silent NaNs
that propagate and signalling NaNs that trigger an exception
which may or may not terminate execution depending on how
the end-user programmer implements a program. Zero and
negative zero have the smallest exponent and all significand
bits zero. The zeros are distinguished by the sign bit. The
infinities have the highest exponent and all significand bits
zero: positive and negative infinity are distinguished by the
sign bit. The NaNs also have the highest exponent but the
significand has at least one non-zero bit. The NaNs are
not distinguished by the sign bit. Taking m as the number
of significand or mantissa bits, the number of bit patterns
reserved for NaNs is given in [4] as 2m+1 − 2. The +1
term arises from the sign bit and the −2 term from the
two codes reserved for the signed infinities; of these NaN
states, only 2m − 1 are distinguished so a total of 2m − 1
states are redundant. With a 64-bit storage class, m = 52
and the redundancy is approximately 4.5 × 1015 states, in
words, four and a half quadrillion states are redundant! The
eventual redundancy is twice this number.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014



B. Relational Operators
IEEE 754 floating-point arithmetic has both a bitwise rela-

tional operator and many floating-point relational operators.
The bitwise operator is implemented as the predicate

totalOrder(x, y) which implements a total order, x � y,
on floating-point objects in canonical form. The unextended,
binary formats enforce canonical form so they are totally
ordered. The extended and extendable binary formats may
or may not enforce a canonical form so they may or may
not be totally ordered. The decimal formats do not enforce a
canonical form so they are not totally ordered. Here we write
binary equality as x ' y. Binary equality holds, i.e. x ' y,
when x and y are in canonical form and totalOrder(x, y) is
true and totalOrder(y, x) is true.

The floating-point relational operators are constructed
from the four basic relations: less than (<), equal to (=),
greater than (>), unordered (?) which are said to be mutually
exclusive. Of the possible 2 × 24 = 32 operators, including
negations, only 22 are defined explicitly. The remaining 10
operators are not useful and are not all functionally distinct.
For example, the standard [1] [2] states that not equal to is
identical to unordered or greater than or less than. But any
lack of distinctness implies that the four, basic, relations are
not mutually exclusive, contradicting the claim made in the
standard.

The floating-point equality operator, =, is not reflexive.
Firstly the unequal bit patterns for negative and positive
zero compare equal. Secondly all NaN bit patterns compare
unequal, even if the bit patterns are identical. The bitwise
equality, x ' y is reflexive when x, y are in canonical form
but is not reflexive otherwise. Thus it is guaranteed to be
reflexive only in the unextended, binary formats.

If a floating-point relational operator, without ?, is applied
to any NaN object then the result is a signalling NaN which,
depending on how the end-user program handles it, will or
will not terminate execution.

C. Arithmetic
IEEE 754 ‘arithmetic’ defines a finite model of real

arithmetic, augmented with an arithmetic of positive and
negative infinity, which is consistent with the handling of
infinite limits in mathematics (measure theory and extended
real-analysis). It also defines operations on the many NaN
objects. Let the binary operator, ◦, stand for an arbitrary one
of the IEEE 754 binary operations of addition, subtraction,
multiplication and division; let f be a non-NaN floating-point
object and assume that all floating-point arguments are in the
same canonical format then NaNi◦f ' NaNi ' f ◦NaNi so
the result of operating on exactly one NaN is that NaN but
(NaNi ◦ NaNj ' NaNi) or (NaNi ◦ NaNj ' NaNj) so
that the result of operating on two NaNs is some, unspecified,
one of them.

D. Exceptions
IEEE 754 ‘arithmetic’ has both control-flow exceptions,

such as an invalid operation or other error, and behavioural
exceptions, i.e. corner cases. According to the IEEE 754
standard [1] [2], there are many invalid operations and other
exceptional states. There are also many corner cases. We give
one corner case here: the function negate(f) is not the same
as subtraction(0, f) so −f is not always identical to 0− f .

III. TRANS-FLOATING-POINT ARITHMETIC

The format of trans-floating-point numbers is given in
[4] by specifying modifications to the unextended, binary
formats for IEEE 754 floating-point arithmetic. Specifically
nullity, Φ = 0/0, replaces negative zero so that it is
encoded with non-zero sign bit and all other bits zero. The
signed transreal infinities, −∞ = −1/0 and ∞ = 1/0, are
distinguished by the sign bit and have all other bits non-
zero, that is they have the largest representable exponent and
magnitude. This format is irredundant so every bit pattern
encodes a unique transreal number. This lack of redundancy
almost doubles the range of real numbers encoded, falling
short by a single unit in each of the positive and negative
ranges. Incrementing the exponent’s bias, by unity, keeps the
real range almost the same, falling short by one unit in each
of the positive and negative ranges, but exactly halves the
magnitude of the smallest, representable, non-zero number.
Compared to IEEE 754 floating-point arithmetic, this trades
a total of two units of range for a doubling in precision (it
being understood that precision is measured here in terms of
the magnitude of the least, non-zero, representable number).

Numerical algorithms usually terminate on a tolerance
which is a modest function of the least, representable, posi-
tive number. Trans-floating-point arithmetic halves the size of
this number, compared to IEEE 754 floating-point arithmetic,
so implementations have the possibility of proceeding to
twice the accuracy in the same number of bits.

One must take care with negation to avoid the problem that
IEEE 754 floating-point arithmetic has where −f 6= 0 − f .
Negation shall toggle the sign bit of a trans-floating-point
number if and only if at least one other bit is non-zero. Hence
negate(Φ) = Φ and negate(0) = 0 by identity (the sign bit
is not toggled) and all other numbers have negate(f) = −f
where the signs of f and −f are made opposite by toggling.
This correctly negates all transreal numbers and is very cheap
to implement in hardware, with very fast execution.

Transreal arithmetic [5] is then implemented in the proces-
sor and, subject to the IEEE 754 floating-point prescriptions
on taking the result to specified units in the last place,
the processor should implement the arithmetic at a higher
precision and may do so in a redundant format, converting
the result to an irredundant, transfer format when the result
is transferred to memory or to an output device.

The earlier proposal [4] does not give much consideration
to rounding modes and the flagging of exceptions. Space pre-
vents us from doing that here but we could do so in a longer
paper. In essence one should keep all of the rounding modes,
should add the exception underflow from negative, but may
dispense with some of the current exceptions. The semantics
of transreal arithmetic lead to a clear indication of which
exceptions to dispense with, for example division by zero is
never exceptional and invalid operation never occurs so they
may be removed as being entirely redundant. Nonetheless
they may be desired for backward compatibility or transient
compatibility as programmers move from the IEEE 754
paradigm to the transreal paradigm. These issues call for
fine judgements of human psychology, commercial priorities
and scientific correctness. It would take considerable space to
give them proper consideration and would, almost certainly,
require consensus building, in various communities, before
a de jure standard should be established.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014



IV. DISCUSSION

Real arithmetic is partial – it fails on division by zero.
There are two ways to address the problem of partial perfor-
mance in any system: one can develop a total system or one
can seek to correct each of the, generally, infinitely many
consequences of partial performance. Transreal arithmetic
and trans-floating-point arithmetic take the former approach
and, the evidence examined here suggests, the IEEE 754
standard takes the latter approach. We now compare the two
floating-point arithmetics and illustrate how the design goal
of totality explains their differences in performance.

Trans-real arithmetic was designed to be a total arithmetic
which is consistent with real arithmetic and with infinite
limits as used in measure theory and (extended) real analysis.
It adds three definite numbers to the reals: negative infinity
(−∞ = −1/0), positive infinity (∞ = 1/0) and nullity
(Φ = 0/0). There is a machine proof that transreal arithmetic
is consistent [5]. By contrast IEEE 754 arithmetic is totalised
in an ad hoc way, which leads it into a number of difficulties,
some of which are discussed here. Nonetheless the two
arithmetics agree on all real and infinite calculations, except
those infinite calculations that involve IEEE 754’s negative
zero. Transreal arithmetic does not have a negative zero so
it has no expression corresponding to 1/(−0) = −∞ and
where IEEE 754 has 1/(−∞) = −0, transreal arithmetic
has 1/(−∞) = 0. The two arithmetics disagree in every
calculation that involves transreal nullity and IEEE 754
NaNs. For example transreal arithmetic has ∞ − ∞ = Φ
but IEEE 754 has ∞ − ∞ → NaNi 6= NaNi. To be
clear, subtracting two transreal infinities produces the unique
number nullity as a result, which, like all transreal numbers,
is equal to itself. This justifies writing the equals sign (=)
in ∞ − ∞ = Φ. By contrast, subtracting two IEEE 754
infinities produces some unspecified NaN, which justifies
both the production rule arrow (→) and the index (i) on
the NaN, but no NaN is equal to itself, which justifies the
not-equals sign (6=) in ∞−∞ → NaNi 6= NaNi. In short,
transreal arithmetic has ∞−∞ = Φ where IEEE 754 has
∞−∞ 6= NaNi for all i.

As an abstract mathematical system, transreal arithmetic
does not need a negative zero, nor do finite computer models
of transreal arithmetic. It is sufficient to switch execution
paths on an underflow from a negative number to zero so that
any division by that zero operates on a negated numerator.
Suppose we want to compute k/0 for some positive k. In
the case that the zero is exact or produced by an underflow
from a positive number, both arithmetics compute k/0 =∞.
In the case that the zero is produced by underflow from a
negative number, IEEE 754 floating-point arithmetic com-
putes k/(−0) = −∞ in a single execution path and trans-
floating-point arithmetic switches to a second execution path
to compute −k/0 = −∞. Thus both arithmetics compute an
equivalent result. The switch on underflow from negative is
an additional cost that trans-floating-point arithmetic pays,
conditionally, when dividing by zero. This is a consequence
of taking a finite approximation to transreal arithmetic. The
benefit is that it gains a simpler semantics than IEEE 754
floating-point arithmetic. This is an issue which would take
a great deal of space to explore in a longer paper.

There are three basic, transreal, relational operators: less
than (<), equal to (=), greater than, (>). All combinations

of these operators and logical negation (!) are distinct and
are, therefore, useful. Distinctness is proved in the Appendix.
Nullity is the only transreal number which compares not
less than zero, not equal to zero and not greater than
zero so transreal arithmetic does not require an unordered
operator (?). But this counter example proves that unordered
is logically redundant in IEEE 754 arithmetic.

Let us digress into a brief discussion of the meta theory
of mathematics and computer science because this may be
of interest to historians and philosophers of science, as
well as to those mathematicians and scientists who use
meta theory to direct their own research. What prevented
computer scientists from noticing that the unordered operator
is redundant? Those who did not read the standard would
not be aware of the claim that the floating-point, relational
operators are mutually distinct and would not be aware of
the contrary evidence that only 22 relations are defined,
where combinatorics requires 32. Those scientists would,
however, be faced with the difficulty of using the operators
but resolving their difficulties would require them to direct
their attentions away from the object of their study to a study
of the IEEE 754 standard. It is entirely understandable that
many would regard this as an unacceptable distraction. But
what of those who did read the standard? How can such
an elementary error escape the many computer scientists
who have worked on the standard and who have produced
formal proofs of its correctness? An historian would ask
them and read their notes, a philosopher might hypothesise
that division by zero is an exceptional case that is handled
sui generis so that it is not subjected to the usual tests of
correctness. Quite simply, most scientists do not know how
to divide by zero so they cannot test proposed properties of
division by zero. To guard against this class of failures, one
might explicitly propose that all sui generis cases should be
examined with a view to embracing them in a total theory.
We do this, here, by proposing the design goal of totality.

Our position is that the unordered operator of IEEE 754
floating-point arithmetic is logically redundant. If it has any
role, it can only be in IEEE 754’s model of exception
handling but, as transreal arithmetic demonstrates, division
by zero need not be taken as an exception so IEEE 754’s error
handling is redundant, in this case, making the unordered
operator entirely redundant.

Let us count the number of compound IEEE 754 floating-
point operations that are made redundant. IEEE 754 has 22
compound operators, transreal arithmetic and trans-floating-
point arithmetic have 16 so at least 22 − 16 = 6 of the
operators are redundant but of the 16 transreal operators
two, Epsilon and Not Epsilon, are not floating-point operators
so trans-floating-point arithmetic has only 14 floating-point,
relational operators. Hence 22−14 = 8 of the IEEE floating-
point, relational operators are redundant.

Observe that transreal arithmetic takes less than, equal to
and greater than as total operators that apply to all transreal
numbers where IEEE 754 introduces a special operator,
unordered, to handle the sui generis category of NaNs. The
IEEE 754 standard [1] fails, here, because it does not observe
the design goal of totality. This failure gives rise to further
exceptional cases which are tackled in a revision of the
standard. The revised IEEE 754 standard [2] provides a
special operator, totalOrder(x, y), that imposes a total order,

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014



x � y, on those x, y that are in canonical form. Taking NaNi

with the sign bit zero and −NaNi with the sign bit non-zero
and rj a positive, represented, real number, we have a total
ordering −NaNi ≺ −∞ ≺ −rj ≺ 0 ≺ rj ≺ ∞ ≺ NaNi for
specified i, j. This produces a correct, total ordering of the
bit patterns but, perversely, it makes all of the abstract objects
encoded by the bit patterns unordered. Recall that IEEE 754
does not distinguish between NaNs with different signs so
the bit patterns −NaNi and NaNi provide two representatives
of each abstract NaNi. Now any real or infinite number nj
is both greater and less than some abstract NaNi because
−NaNi ≺ nj ≺ NaNi and any abstract NaNi is both
greater and less than itself, both of which cases are proved by
−NaNi ≺ NaNi. Taking these cases together, every abstract
object represented by IEEE 754 bits is totally unordered.
This is perverse and having a function called totalOrder
produce a total unorder is both ironic and anti-mnemonic for
programmers. It succeeds only at the level of bit patterns, not
at the level of abstract objects, so it is an example of data
anti-abstraction and one which is mandated by the standard!

Transreal arithmetic does not have a total order operator:
nullity is the only unordered number and all other transreal
numbers are totally ordered by the transreal, relational oper-
ators. This entire order is encoded by these same relational
operators so no additional information is needed. If an end
user wants a particular total order, he of she is at liberty to put
nullity anywhere in the sequence; we generally recommend
taking it first so that the unique number nullity is processed
before arbitrarily many of the ordered numbers.

Now let us consider the cognitive burden on programmers,
further to the exceptions, anti-mnemonic and data anti-
abstraction noted above.

The ordering of transreal numbers is shared with trans-
floating-point arithmetic and trans-two’s-complement arith-
metic [3] so the same relational operators and control ex-
ceptions, such as inexact result, apply to both systems. The
programmer does not have to learn separate relations and
control exceptions for each system. Even better, the ordering
relations are just the ordering relations of real arithmetic so
the programmer, who is familiar with real arithmetic, need
only learn that nullity is the uniquely unordered number.

The transreal, relational operators are orthogonal in the
sense that every combination of operators is allowed. Hence
the programmer does not have to learn exceptions. Can the
reader say which 10 relational operators are not supported
by IEEE 754 floating-point arithmetic or explain the circum-
stances in which −f 6= 0− f? How much work will it take
the reader to answer these questions and what profit is there
in that labour? What is the cost to society in demanding such
unproductive labour of programmers?

Transreal arithmetic is total and can be used to totalise
certain functions so that they have no exceptions. For exam-
ple we may totalise the hardware square-root function so that
the square root of a negative number returns nullity. In this
case the number nullity is being used as a flag but as nullity
is absorptive over the transreal operations of arithmetic, so
that all sums, differences, products and quotients of nullity
are nullity, the flag, nullity, will propagate. Its meaning, in
this model, is that there is no extended-real number that is
the square root of a negative number. As nullity is not an
extended-real number, it carries this information faithfully.

We expect that similar arguments can be made for all of the
real functions of elementary algebra.

Of course transreal arithmetic cannot be used to totalise
all functions. For example the function f(a, b) = c that
returns some one transreal number, c, such that a <= c and
c <= b produces no result for f(1, 0). Such mathematical
functions can be totalised by operating on sets so that, in
this example, the solution set is empty. Another approach is
to use a separate, say Boolean, flag to indicate whether the
result of a function is valid or not. This is equivalent to using
a hardware invalid opearation exception but it remains to be
established that the transreal versions of any of the IEEE 754
floating-point functions do have such exceptions.

The reader is faced with a paradigm shift. The reader
was educated at a time when division by zero was generally
considered impossible. Consequently the reader was taught
a partial arithmetic that fails on division by zero and partial
mathematics that fail similarly. Working in that paradigm the
reader has little guidance on how to develop a total arithmetic
and so is thrown back on a series of ad hoc decisions;
each time an infelicitous decision is made, further ad hoc
additions must be made to try to correct them. By contrast
transreal arithmetic is now available. It supports division by
zero, is total, and is being developed, systematically, into
a transmathematics. If the reader makes the paradigm shift
to the new system, he or she will work from the basis of
a total system and will have the systematic guidance of
mathematical derivations to develop total computing systems.
This paper offers a deal: accept division by zero and gain a
simpler programming system with up to twice the accuracy
of IEEE 754 floating-point arithmetic or reject the deal and
carry on as now.

V. CONCLUSION

IEEE 754 floating-point arithmetic is widely used but it
is based on an ad hoc totalisation of real arithmetic with
many infelicities, some of which are discussed above. From
a mathematical point of view, the worst infelicity is that the
equality operator is not reflexive so that x1 = x2 is true
for some unequal bit patterns x1, x2 and is false for some
equal bit patterns x1, x2. It is certainly possible to maintain a
consistent semantics in the face of this and related difficulties
but it is not easy to do. The practical difficulty of achieving
consistency is demonstrated by inconsistent floating-point
behaviour between commercially important programming
languages that adhere to the relevant programming language
standards. A longer version of this paper could demonstrate
this fact with source code and could suggest software amelio-
rations based on the semantics of transreal arithmetic, thereby
demonstrating its utility as a superior total arithmetic.

The IEEE 754 floating-point arithmetic standard acknowl-
edges that some failures of interoperability are caused by
the Not-a-Number, NaN, elements. We have proved that
the standard is wrong when it says that its basic relational
operators - less than, equal to, greater than, unordered
- are mutually exclusive. Specifically we prove that the
unordered relation is logically redundant, having utility only
in the IEEE 754 model of error handling; then we show
that this error model is redundant when transreal arithmetic,
which has no NaNs, is used as the basis of floating-point
arithmetic. Thus transreal arithmetic simplifies the relational

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014



operators, simplifies programming and removes an entire
class of errors; all of which supports our view that trans-
floating-point arithmetic is a superior model of floating-point
arithmetic. We expect that trans-floating-point arithmetic will
be better suited to safety critical applications, especially
where formal verification of code is mandatory.

Transreal arithmetic is controversial but it offers both prac-
tical and theoretical advantages. For its proponents, the tran-
sreal numbers −∞ = −1/0, ∞ = 1/0 and Φ = 0/0 are all
valid numbers with well defined mathematical properties and
well defined semantics in mathematical models of practical
systems. We emphasise just two of its practical advantages.
Firstly transreal arithmetic uses only the ordinary relational
operators for less than, equal to and greater than, taking Φ
as the uniquely unordered number. When implemented as
a computer arithmetic, this reduces the number of relational
operators, as compared to IEEE 754 arithmetic, and removes
all exceptions from them. This makes programming both
simpler and safer, with fewer cases to verify. Secondly using
transreal arithmetic as a basis for floating-point arithmetic
would provide numerical computations with up to twice
the accuracy of IEEE 754 floating-point arithmetic. These
practical advantages ought to be of scientific and commercial
interest.

Finally we propose that there is a single, conceptual failure
in the design of IEEE 754 floating-point arithmetic that
explains all of its infelicities: the standard fails to impose
totality and instead attempts to impose solutions to each of
the consequences of partiality. As there are infinitely many
such consequences, all revisions of the standard will fail,
until totallity is accepted as a design goal. We observe that
this failure is almost universal in software design so adopting
the design goal of totality would improve the performance
and reliability of almost all software.

APPENDIX A
TRANSREAL RELATIONAL OPERATORS

There are three basic, transreal, relational operators: less
than (<), equal to (=), grater than, (>). These operators are
mutually exclusive so they can be combined in 23 = 8 ways.
All 8 combinations are distinct and meaningful, including the
empty operator with no occurrences of the basic operators.
All 8 combinations can be combined with the logical nega-
tion operator (!). This yields 2 × 23 = 24 = 16 distinct
and meaningful operators. The multiplication table for each
operator is given here.

The relational operators can be formalised as production
rules of the form a • b → c, where • is the operator.
Hence “a • b” is replaced by “c”. The empty operator is
indicated by epsilon (ε) so “aεb” is identical to “ab” whence
the empty operator implements the identity concatenation
ab → ab. This is shown in the first multiplication table,
entitled Epsilon. This operator occurs, trivially, in all written
languages, including computer languages. Combining the
empty operator with the logical negation operator yields
“a!εb” which is identical to “a!b” and, following custom, we
take the operator “!” as a unary, right associative operator, so
that, for example, “X!T” is replaced by “XF” where T stands
for True, F stands for False and X stands for an arbitrary
symbol. This is shown in the second multiplication table,
entitled Not Epsilon. This operator, with a possibly different

glyph, occurs in most high-level, computer languages. The
remaining multiplication tables are truth tables. The labels
on the rows and columns indicate the arguments: negative
infinity (−∞), an arbitrary real number (ri), positive infinity
(∞), nullity (Φ). As usual T stands for True and F stands
for False. In a departure from the usual notation, an asterisk
(*) stands for a conditional truth value. For example, in the
third table, entitled Less, the asterisk in the row labeled r1
and column labeled r2 is to be replaced by the truth value of
r1 < r2, and similarly in the other tables. This recruitment
of the real relation, less than, to define the corresponding
transreal relation, is a context-sensitive reading of the sym-
bol <. Computer scientists are generally comfortable with
context-sensitive readings but many mathematicians regard
them as an abuse of notation; even so, such notations are
very common and are easily understood.

It can be seen, by inspection, that the multiplication tables
are distinct. The labour of inspecting the tables can be
reduced by exploiting symmetries. It is sufficient to notice
that the first two elements, respectively FT, TF, FF of the
first row of the tables Less, Equal, Greater are distinct and,
similarly, TT, FT, TF of Less or Equal, Less or Greater,
Greater or Equal are distinct.

Epsilon

ε b

a ab

Not Epsilon

!ε F T

a aT aF

Less

< −∞ r1 ∞ Φ

−∞ F T T F

r1 F * T F

∞ F F F F

Φ F F F F

Equal

= −∞ r1 ∞ Φ

−∞ T F F F

r1 F * F F

∞ F F T F

Φ F F F T

Greater

> −∞ r1 ∞ Φ

−∞ F F F F

r1 T * F F

∞ T T F F

Φ F F F F

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014



Less or Equal

<= −∞ r1 ∞ Φ

−∞ T T T F

r1 F * T F

∞ F F T F

Φ F F F T

Less or Greater

<> −∞ r1 ∞ Φ

−∞ F T T F

r1 T * T F

∞ T T F F

Φ F F F F

Greater or Equal

>= −∞ r1 ∞ Φ

−∞ T F F F

r1 T * F F

∞ T T T F

Φ F F F T

Less or Equal or Greater

<=> −∞ r1 ∞ Φ

−∞ T T T F

r1 T T T F

∞ T T T F

Φ F F F T

Not Less

! < −∞ r1 ∞ Φ

−∞ T F F T

r1 T * F T

∞ T T T T

Φ T T T T

Not Equal

! = −∞ r1 ∞ Φ

−∞ F T T T

r1 T * T T

∞ T T F T

Φ F F F T

Not Greater

! > −∞ r1 ∞ Φ

−∞ T T T T

r1 F * T T

∞ F F T T

Φ T T T T

Not Less or Equal

! <= −∞ r1 ∞ Φ

−∞ F F F T

r1 T * F T

∞ T T F T

Φ T T T T

Not Less or Greater

! <> −∞ r1 ∞ Φ

−∞ T F F T

r1 F * F T

∞ F F T T

Φ T T T T

Not Greater or Equal

! >= −∞ r1 ∞ Φ

−∞ F T T T

r1 F * T T

∞ F F F T

Φ T T T F

Not Less or Equal or Greater

! <=> −∞ r1 ∞ Φ

−∞ F F F T

r1 F F F T

∞ F F F T

Φ T T T F

ACKNOWLEDGMENT

The author would like to thank the members of Trans-
mathematica for many helpful discussions.

REFERENCES

[1] Ieee standard for binary floating-point arithmetic. 1985.
[2] Ieee standard for floating-point arithmetic. 2008.
[3] James A.D.W. Anderson. Perspex machine xi: Topology of the transreal

numbers. In S.I. Ao, Oscar Castillo, Craig Douglas, David Dagan Feng,
and Jeong-A Lee, editors, IMECS 2008, pages 330–33, March 2008.

[4] James A.D.W. Anderson. Evolutionary and revolutionary effects of
transcomputation. In 2nd IMA Conference on Mathematics in Defence.
Institute of Mathematics and its Applications, Oct. 2011.

[5] James A.D.W. Anderson, Norbert Völker, and Andrew A. Adams.
Perspex machine viii: Axioms of transreal arithmetic. In Longin Jan
Lateki, David M. Mount, and Angela Y. Wu, editors, Vision Geometry
XV, volume 6499 of Proceedings of SPIE, pages 2.1–2.12, 2007.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014




