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Abstract-The Mean Integrated Squared Error (MISE) is a 
measure of discrepancy between the estimated and true density 
in kernel density estimation. A more global measure is the 
Asymptotic Mean Integrated Squared Error (AMISE). This 
measure (AMISE) is used to quantify the performance of the 
estimator. However, the focus of this paper is to obtain the 
efficiency values of some symmetric beta kernels. This is 
necessary in the sense that it enables one to choose an 
appropriate kernel, especially in the multivariate setting. We 
derive formulas to generalize the AMISE and the efficiency. The 
efficiencies are obtained by taking the ratio of the product 
(multivariate) kernels considered and the Epanechnikov kernel. 
This kernel (Epanechnikov kernel) form the basis for the 
optimum kernel. The results reveal reduction in efficiencies of the 
beta kernels as their dimension increases. 
 
Index Terms-Density estimation, product kernel, efficiency, 
Asymptotic mean integrated square error.  

 
                      I. INTRODUCTION  
Density estimation is simply the construction of an estimate 

f̂ of an underlying density function f  for a random variable 

X  drawn from an observed data set. To estimate unknown 
density estimation, we use either the parametric or the 
nonparametric methods. The parametric methods such as the 
maximum likelihood method require the imposition of a 
functional form on an unknown density. This leads to the 
problem of the estimation of the parameters.  
 Sometimes, when the density estimation is unknown and no 
additional information about the distribution is given, then the 
nonparametric density estimation, like the histogram or the 
kernel estimator is applied. This approach allows the data to 
speak for itself. Instead of the imposition of restrictive 
parametric assumptions about the underlying distribution, the 
nonparametric methods allow one to directly approximate the 
d- dimensional density that describes how variables interact 
[13]. The nonparametric methods are flexible and 
computationally intensive. The trauma associated with the 
tedious computations in the nonparametric approach has been 
considerably reduced via the advent of easily fast computing 
power in the twentieth century [6]. In this work, we 
concentrate on one class of nonparametric density estimators, 
namely, the kernel density estimator. The kernel density 
estimator is a more reliable statistical technique that deals with 
some  of  the  problems  associated with  histogram  which are  
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discussed in [2], [10], [20]. In recent time, kernel density 
estimation has found relevance in huge computational 
requirement for large-scale analysis [15], [23], and in the area 
of human motion tracking or pattern recognition [3], [11], 
[18].  
      A common term in kernel density estimation is the 
bandwidth or window width which is analogous to the bin 
width in histogram. The bandwidth determines how much 
smoothing is done. Generally, a narrow bandwidth implies 
that more points are allowed and this lead to a better density 
estimate. This technique, sometimes , called the Parzen 
density estimation, was studied in the seminal paper [16], [17],  
although , the basic  idea was independently discussed in [1], 
[7].         

           For a d - variate random variable dXXX ,,, 21   

drawn from a density f  the generalized kernel estimation is 

given as [5]: 
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where,  Tdxxx ,..., 21x and 

  nixxx T
idiii ,...,2,1,,..., 21 X  In this case  K is 

assumed to be the multivariate (d – dimensional) kernel. This 
kernel is assumed to be a product (multiplicative) symmetric 
probability density function. The scope of the paper is limited 
to the multivariate kernels that are independent, and supported 
on a rectangular region. H  is the bandwidth matrix which is 
symmetric and positive – definite. The scaled and unscaled 

kernels are related by    xx 2
1

2
1  HKHK H  [21]. 

          An equal bandwidth h in all directions as in (1.1) 

corresponds to dIhH 2 , where dI  is the dd   identity 

matrix [6]. This leads to the expression 
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To use the parameterization dIhH 2  effectively, the 

components of the data vector should be commensurate. This 
can be achieved by using appropriate transformation in the 
data set [6], [20], [22]. This transformation involves either 
pre-scaling each axis (that is , normalize to unit variance, for 
instance) or pre- whitening the data (that is, linearly transform 
to have unit covariance matrix). A detailed study of this can be 
found in [8]. The transformation guarantees the use of the 
form involving single bandwidth as in (1.2). 
 Many of the studies in density estimation have been 
centred on the univariate kernel density estimators [20]. 
However, this paper focuses on the multivariate settings with 
emphasis on the efficiency of some classical product 
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(multivariate) kernels. The concept of efficiency is used in 
kernel density estimation to analyse the effect of second-order 
multivariate kernels so that an appropriate kernel can be 
chosen. 
 The basic motivation for considering (1.2) is that it 
enables one to obtain closed form expressions for the optimal 
bandwidth and the asymptotic mean integrated squared error 
(AMISE). Thus we derive the the generalized expression for 
the efficiency of second-order multivariate symmetric kernel. 

Throughout this paper,   is the shorthand for dR
 . The global 

accuracy used in measuring (1.2) is the mean integrated square 
error (MISE). The expression for the MISE is  

        xxx dffEhMISE
2ˆ                     (1.3)                 

Thus, from [21], the expression (1.3) can be written as a sum 

of integrated square bias and integrated variance of  ˆ
hf x . 

That is, 
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The concept of efficiency for univariate kernels was 
popularized by [20], and this was followed by the work [21] 
who gave an insight into the efficiency of the second-order 
multivariate kernels. [21] approach was based on taking the 
ratio of the spherically symmetric kernel relative to the 
product kernel. Hence, we develop a method that is different 
from the approach adopted by [21], even though our  method 
is motivated by the work [20] and  [21]. 
        The remainder of this paper is as follows. In section 2, we 
cover the necessary background materials on the asymptotic 
mean integrated square error (AMISE). In section 3, the 
generalized expression for the efficiency of second – order 
multivariate kernels is derived. In section 4, we compare the 
efficiencies of multivariate kernels for the cases 

.5,4,3,2,1 andd     

                II. THE AMISE FOR THE MULTIVARIATE 
KERNEL DENSITY ESTIMATOR 

   The asymptotic mean integrated square error (AMISE) is 
one of the most important parts in bandwidth selection. By 
using symmetric kernel function,  the AMISE and the optimal 
bandwidth for the multivariate kernel density estimator are 
derived. The kernel determines the slope of the estimator, 
while the amount of smoothing is determine by the bandwidth 

h. In particular )(ˆ xHf as define in (1.2) is a density function 

provided   0wK  and   1)( ww dK ,  

where, w = )(1 yx H [11] 

In the case ,1d  the most often used choice is a density 

function, which6is symmetric about zero, and such that 














d
T

d

IdK

OdK

2)(

)(

wwww

www
      ,               (1.5) 

[19]. 
The usual criterion for the optimal bandwidth is the 
asymptotic version of the MISE in (1.3) [5], [9], [12], [14], 
[20]. To find the AMISE, one needs to find the bias and 

variance of  ˆ
hf x .   ˆ

HE f x  can be evaluated by using 

Taylor series expansion on  
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to second order [21].  

Now imposing the conditions (1.5) and   1)( ww dk  on 

(1.6), results in 
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Hence the bias term becomes  
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the asymptotic integrated square bias (AISB) becomes 
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The variance term is [21]. That is, 
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 and hence the 

asymptotic integrated variance (AIV) becomes: 
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Combing (1.7) and (1.8) yield  
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and since ,2
dIhH  it results to 
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Minimization of (1.9) with respect to h  leads to the formula 
for the optimal bandwidth in the following form 
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Putting (2.0) into (1.9), the minimum AMISE is obtained as; 
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Equation (2.0) is a closed form solution for the bandwidth 
vector which minimizes the expression for the AMISE in 

(2.1). Moreover , the optimal bandwidth is of order  ݊ି
భ

೏శర	 

and the optimal AMISE is of order ݊ି
ర

೏శర .   
 

III. EFFICIENCY FOR THE SECOND ORDER 
MULTIVARIATE KERNELS 

 
In this section, the AMISE expression so derived is used to 
develop the generalized expression for the efficiency of 
second order multivariate kernels. 
One way of obtaining the multivariate forms of any unvariate 
kernel is by using the product kernel method which is given by 
[21] as; 
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Where,  xK  is the univariate symmetric kernel. 

The efficiency of the univariate symmetric kernel defined by 
[20] is 
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Epanechnikov kernel constant. 
           By drawing inspiration from equation (3.1), the general 
expression for the efficiency of multivariate kernels based on 
the product kernel approach is now defined as   
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is d - dimensional product form of the Epanechnikov kernel 
constant. 
Theorem1. If equation (3.3) holds, then the efficiency for the 
second – order d -dimensional kernel is  
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Proof: 
      The univariate Epanechnikov kernel as defined in [20] is  
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Putting the values of    p
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Hence, 
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From the equation (3.5) which is the generalized expression 
for the second order multivariate kernel, the efficiencies of 
some d-dimensional )5,4,3,2,1( dfor  kernel derived 

from some univariate kernels (i.e the uniform, biweight, 
triweight, and Gaussian); using mathematica 6.0 platform, are 
obtained; and their graphs, using excel,  are shown in Fig.1 
. 
 

 
 Fig.1.Efficiency of some multivariate (i.e.d = 1, 2, 3. 4, 5 ) 
kernels. 
 

       Examining Fig.1 for higher dimensional kernels, that is, 
for example, d = 2, it is observed that relative to the 
Epanechnikov kernel, there is a 14% loss in efficiency for the 
uniform kernel, the Gaussian lost about 10% in efficiency; the 
biweight and the triweght shed about 1% and 3% respectively 
in efficiency. For d = 3, 4, 5, the uniform kernel lost about 
20%, 25%, 31%, respectively in efficiency; the biweight and 
the triweight lost approximately 2%, 2%, 3% and 4%, 5%, 6% 
respectively in efficiency. There is a loss of about 14%, 18%, 
and 22% when d = 3, 4, and 5 respectively in the case of the 
Gaussian kernel. Furthermore, a comparison of the dimensions 
of the four beta kernels (the Gaussian, the uniform, the 
biweight, and the triweight), shows that the biweight and the 
triweight kernels give relatively better efficiencies than the  
uniform and the Gaussian kernels. This is visible in Fig.1, 
where there is a slight drop in the efficiencies of both the 
biweight and the triweight kernels as their dimension increases 
with the biweight having an edge over the triweight kernel. 
From the same Fig.1, it is observed that there is a sharp fall in 
the efficiencies of both the uniform and the Gaussian kernels 
as their dimension increases with the uniform kernel becoming 
appreciably worse. This clearly shows that in contrast to the 
biweight and the triweight kernels, the uniform kernel and the 
Gaussian kernel are highly inefficient with the efficiency loss 
increasing as the dimension increases. Although, we observed 
that for the various kernels considered, their efficiencies 
decrease as the dimension increases; the calculations suggest 
that the biweight kernel and the triweight kernel are good 
choices of density estimators.   
In all, the implication of this is that, for example, in the case of 

d = 2 for the Gaussian kernel, the minimum  fAMISE  

obtained using the Epanechnikov kernel with a sample size of  

n = 90 is approximately equal to the minimum  fAMISE  

obtained using the Gaussian kernel n = 100. 
 
        
                          IV. CONCLUSION 
In this paper, a new computational approach has been 
developed for the efficiency of multivariate product kernels. 
The Epanechnikov kernel was used as a theoretical 
underpinning for deriving the efficiency formula. The new 
efficiency formula was experimented with four of the beta 
kernels, viz.: the Gaussian, the uniform, the biweight, and the 
triweight kernels. Findings revealed that the biweight and the 
triweight kernels have relatively high efficiency values. By 
this, we infer that they are better density estimators than the 
Gaussian and the uniform kernels form of the multivariate 
product kernels. Nevertheless, it is premature to conclude that 
the biweight and the triweight kernels are the most suitable 
multivariate product kernels. This is because the spherical 
aspects of the multivariate kernels have not been considered. 
We therefore suggest the development of a theoretical 
framework for the efficiency of multivariate kernels using the 
spherical methods as a grey area for future research. 
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