

Mining Frequent Patterns in
Software Risk Mitigation Factors:

Frequent Pattern-Tree Algorithm Tracing

 Muhammad Asif, Member, IAENG, Jamil Ahmed

Abstract—Frequent-Pattern Tree (FP-Tree) algorithm plays a
vital role in mining associations, patterns and other data
mining related jobs. Currently a software risk mitigation
intelligent decision network engine using rule based technique
has been designed against software risk factors. A novel idea of
finding the associations between different software risk
mitigation factors using FP-Tree algorithm has been proposed
in this research work. Huge volumes of software risk factors
and software risk mitigation factors exist in software
development industry. That’s why data mining researchers
have been attracted towards it to find something to explore.
Software risk mitigation frequent patterns will be helpful for
the project managers and software developers to make
decisions against the software risk factors.

Index Terms—Data Mining, Association Rules Mining,
Frequent-Pattern Tree, Data Mining in Software Engineering,
Artificial Intelligence and Data Mining.

I. INTRODUCTION
OFTWARE development industry has been progressing
by leaps and bounds. Due to this change software risks

are also growing rapidly. Software risk management needs
software risk mitigation factors to overcome these risks.
This critical problem can be solved by using Artificial
Intelligence and Data Mining techniques. Researchers are
now focusing on the integration of data mining techniques to
populate the knowledge into artificial intelligent systems
such as Expert Systems, Knowledge Based Systems and
Rule Based Systems etc.

Association Rule mining is one of the promising
technique of data mining. Association rule mining was
proposed by Agrawal in [2]. Apriori algorithm is one of the
upmost significant techniques of association rule mining and
it has been adapted in medical billing by Abdullah in [3].
But Apriori algorithm has some disadvantages in large
databases [1]. There are two major drawbacks of apriori
algorithm. Large number of candidate generation sets and
scanning of database again and again have made this
algorithm inefficient for pattern matching in large databases
[1]. But frequent pattern tree algorithm has the capacity to
overcome these disadvantages of apriori algorithm.

Manuscript received July 02, 2014.
Mr. Muhammad Asif is the corresponding author who is a PhD

Scholar of Abasyn University, Islamabad, Pakistan. (Phone:
+923235133123; fax: +92518438325; e-mail: masifkhan_2055
@yahoo.com, MuhammadAsif@biit.edu.pk)

Dr. Jamil Ahmed is the Vice Chancellor of Abasyn University,
Islamabad, Pakistan. (email: jamil.ahmad@abasyn.edu.pk, jamil@ieee.org).

Frequent–Pattern Tree algorithm, generally known as FP-
Tree was first introduced by Han in [1]. This research has
focused on the FP-Tree structure to be adopted for finding
frequent patterns in software risk mitigation factors.
Intelligent software risk mitigation network using rule based
technique has been designed by Asif in [5]. Rule Based
System has also been proposed by Abdullah in [6] and Asif
in [5]. Project managers find it as a decision support system
by Asif in [4].

II. TRACING OF FP-TREE ALGORITHM
The new proposed work has been embedded in the engine

designed by Asif [5] and shown in Fig.1 as dotted rectangle.

Fig.1. An Intelligent Decision Network Engine

S

No
Yes

Prioritized Risk Factors and stored in
Working Memory (WM)

Create Relationship of Risks Factors
with Risk Mitigation

Enter the Relationships in the form of
Rules into Knowledge Base

Start

Rule exists?

Input Risk Factors

Select rule(s) in the form of Risk Factors
with Mitigation from Knowledge Base

(KB)

Apply Rules with frequent patterns

Generate Risk Mitigation Decision Network

Exit

Mining (Data Mining) Frequent
Patterns in the Knowledge Base

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

A modified Rule Based System engine takes input in
terms of software risk factors as shown in Fig.1. Knowledge
Base (KB) has been searched for existing rules as a
relationship of software risk factors and software risk
mitigation. If search is successful then it will apply
applicable rules and intelligent risk mitigation decision
network is generated. If rules are not there then it will focus
on the following six steps. 1) Assign priority to the risk
factors. 2) Create new associations or relationships of risk
mitigations and its factors using probability. 3) Rules have
been created and stored in Rule Base or Knowledge Base. 4)
Frequent-Pattern Tree algorithm has been embedded for the
mining of frequent patterns in KB. 5) Apply rules with
frequent patterns. 6) Finally hierarchy of nodes has been
created to form an intelligent software risk mitigation
network.

For the tracing and illustration of FP-Tree algorithm,
Software risk factors and software risk mitigation factors
have been taken from Asif [5] and assigned abbreviation
accordingly.

Software risk factors such as Lack of resources (LOR),
Inappropriate technology (IT), Improper budget (IB),
Inappropriate design (ID), Unrealistic deadlines (UD),
Personnel hiring (PH), Lack of motivation (LOM), Cultural
diversity (CDR), Implementation (IMP), Government
factors (GF), Lack of experience of project manager
(LOEPM), Improper scope definition (ISD), Improper
planning (IP), Understanding problem of developers
(UPOD), Understanding problems of customers (UPOC),
Higher management decisions (HMD), Improper feasibility
report (IF), Market demand obsolete (MDO), Improper
marketing techniques (IMT), Size of the project (SOTP).

Software risk mitigation factors such as Clear Idea of the
requirements (M1), Proper Feasibility Report making (M2),
Requirements Specification (M3), IT Consultants (M4),
Proper Communication Channel (M5), Retaining and
preservation of Good Employees (M6), Bonuses (M7),
Attractive packages (M8), Developers Faithfulness (M9),
Proper Team Structure (M10), Proper backup plan (M11),
Define Goals and Objectives (M12), Ensure
Communications and Milestones (M13), Leadership (M14),
Past Experience (M15), Proper use of methodologies and
Software process models (M16), Work Unit Culture (M17),
On the job and off the job training (M18), Respect and
Honour of Employees (M19), Employee Attitude (M20),
Employee Skill (M21), Employee Awareness (M22),
Continuous Review (M23), Project Scheduling (M24),
Prototyping (M25), User Involvement (M26), Use Statistical
Methods (M27), Choice of technology after thorough
research of available tools and technologies (M28), Human
Resource Role (M29), Proper Testing Techniques (M30),
Proper Sales Marketing Team (M31), Identification of
Success Criteria (M32), Policy Setting and Enforcement
(M33), Scrub able requirements (M34), Top Management
Commitment (M35), Facilitated Application Specification
Technique (M36), Centralization (M37), Intuitive and
Creative (M38), Positive behaviour and problem solving
skills (M39), Security Checklist and Authentication Process
(M40), Set Key Performance Indicator (M41), Stress testing
(M42), Regular Updates (M43), Assess Past
Communications (M44), Contingency Plan (M45), Trouble

Shooting (M46), Reusability (M47), Project Tracking and
Control (M48), Impact Assessment (M49), Consistent
Commitment (M50).

The problem statement is the discovery of entire frequent
patterns or item sets in the database of Table I. using FP-
growth algorithm. Minimum support should be taken as
20%. It can be different but we are taking 20%.
Relationships in the form of rules of software risk factors
and software risk mitigation items in Table I. have been
taken from Asif [5].

TABLE I. MAIN DATABASE

Following are the six steps of FP-tree algorithm for the

generation the frequent patterns using Table I.

1. Calculate minimum support
As per given data minimum support is 20%, therefore it

has been calculated using the formula given below.
Formula: 20(Minimum Support)/100*20(Items) = 04
Now select those items that have the number of

occurrences greater than or equals to four (04). According to
the algorithm if minimum support returns the value in a
decimal number than ceiling value should be considered.
For example, 3.4 => 04, 3.6 => 04, 4.5 => 05etc.

2. Find frequency of occurrence
Frequencies of occurrence of each risk mitigation items

from Table I. have been given below in parenthesis. For
example, the frequency of occurrence of item ‘M1’ is ‘5’
from Row 1 to Row 20 in Table I.
M1(5), M2(4), M3(4), M4(3), M5(3), M6(4), M7(2),
M8(2), M9(2), M10(5), M11(2), M12(4), M13(2), M14(3),
M15(1), M16(2), M17(4), M18(2), M19(1), M20(2),
M21(3), M22(3), M23(3), M24(1), M25(2), M26(2),
M27(2), M28(4), M29(2), M30(1), M31(2), M32(2),

Software
Risk

Factors

Items
(Risk Mitigation)

LOR {M6, M29, M47}
IT {M28,M46}
IB {M4,M28,M2,M3}
ID {M25,M26,M27,M21,M22}

UD {M23,M24,M43,M2,M16, M44,M25, M45}

PH {M6,M20,M21,M22,M17,M29,M10}
LOM {M18,M6,M7,M8, M19,M39}
CDR {M17,M14,M10, M42}
IMP {M1,M16,M2,M3, M9,M35,M41}
GF {M33,M39,M40}

LOEPM {M14,M15,M4,M10,M11,M23,M5, M38}

ISD {M12,M13,M1,M14,M23,M32}
IP {M10,M11,M3,M1,M12}

UPOD {M6,M7,M8,M9,M10,M37}
UPOC {M5,M17,M31,M20,M21,M22}
HMD {M4,M17,M5,M35,M36}

IF {M1,M2,M3,M34, M28,M12}
MDO {M32,M33,M49, M43}
IMT {M31,M18,M50,M26,M27}

SOTP {M30,M1,M12,M13,M28,M48,M49}

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

M33(2), M34(1), M35(2), M36(1), M37(1), M38(1),
M39(2), M40(1), M41(1), M42(1), M43(2), M44(1),
M45(1), M46(1), M47(1), M48(1), M49(2), M50(1).

3. Prioritize the items
Items that have minimum support occurrence of 04 have

been given below in curly brackets. Priority has been given
to the selected items after applying the minimum support.
Drop the items that have the frequency that does not meet
the count of minimum support. For example, M4: 3, M5: 3,
M16: 2, M47: 1 etc.
{M1:5, M10:5, M2:4, M3:4, M6:4, M12:4, M17:4,
M28:4}

4. Order the items according to the priority
A new column has been added in Table I. named as

‘Ordered Items’. In Table II, Ordered Items column is listed
according to priority. Items have been ordered after
assigning the priority to the items as given below such as
M1 then M10, M2, M3, M6, M12, M17 and M28.
{M1, M10, M2, M3, M6, M12, M17, M28}

TABLE II. ORDERED ITEMS

Software
Risk
Factors

Items
(Risk Mitigation)

Ordered Items

LOR {M6, M29, M47} {M6}

IT {M28,M46} {M28}

IB {M4,M28,M2,M3} {M2,M3,M28}

ID {M25,M26,M27,M21,M22} ‐

UD
{M23,M24,M43,M2, M16,

M44,M25, M45}
{M2}

PH
{M6,M20,M21,M22,

M17,M29,M10}
{M10,M6,M17}

LOM
{M18,M6,M7,M8,

M19,M39}
{M6}

CDR {M17,M14,M10, M42} {M10,M17}

IMP
{M1,M16,M2,M3,

M9,M35,M41}
{M1,M2,M3}

GF {M33,M39,M40} ‐

LOEPM
{M14,M15,M4,M10,
M11,M23,M5, M38}

{M10}

ISD
{M12,M13,M1,M14,

M23,M32}
{M1,M12}

IP {M10,M11,M3,M1, M12}
{M1,M10,M3,

M12}

UPOD {M6,M7,M8,M9,M10,M37} {M10,M6}

UPOC
{M5,M17,M31,M20,

M21,M22}
{M17}

HMD {M4,M17,M5,M35, M36} {M17}

IF
{M1,M2,M3,M34,

M28,M12}
{M1,M2,M3,
M12,M28}

MDO {M32,M33,M49, M43} ‐

IMT {M31,M18,M50,M26,M27} ‐

SOTP
{M30,M1,M12,M13,

M28,M48,M49}
{M1,M12,M28}

5. Draw the fp-tree
Now we have the ordered items Table II after the

execution of above four steps of algorithm. We are in a
position to see the construction of a tree row by row. See the
row by row execution of Table II in terms of ordered items.
All the fp-trees have NULL node as Root node at the start.
All other nodes are connected through this node. Every node
has the number of occurrences written in front of them. For
example, M1:5, M12:2 etc. There is no concept of jumps
over the nodes of the tree. You have to travel through node
by node and overwrite the count of frequency when you use
the nodes again and again. The complete software risk
mitigation FP-Tree has been constructed in Fig.2. In
association rules consequent of rule is item set such as
Antecedent => Consequent. Antecedent is the condition part
of the rule and Consequent is the action part of the rule.

Row 1: M6:1

LOR {M6}

Row 2: M28:1
IT {M28}

Row 3: M2:1, M3:1, M28:1
IB {M2,M3,M28}

Row 4: Empty
ID ‐

Row 5: M2:2
UD {M2}

Row 6: M10:1, M6:1, M17:1
PH {M10,M6,M17}

Row 7: M6:2
LOM {M6}

Row 8: M10:2, M17:1
CDR {M10,M17}

Row 9: M1:1, M2:1, M3:1
IMP {M1,M2,M3}

Row 10: Empty
GF ‐

Row 11: M10:3
LOEPM {M10}

Row 12: M1:2, M12:1
ISD {M1,M12}

Row 13: M1:3, M10:1, M3:1, M12:1
IP {M1,M10,M3, M12}

Row 14: M10:4, M6:2
UPOD {M10,M6}

Row 15: M17:1
UPOC {M17}

Row 16: M17:2
HMD {M17}

Row 17: M1:4, M2:2, M3:3, M12:1, M28:1
IF {M1,M2,M3, M12,M28}

Row 18: Empty
MDO ‐

Row 19: Empty
IMT ‐

Row 20: M1:5, M12:2, M28:1
SOTP {M1,M12,M28}

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

Fig. 2: Software Risk Mitigation FP-Tree
6. Validation
Validation should take place at the last step of the

algorithm. For the accomplishment of this task, count the
number of occurrences of each node in the FP-tree and then
match the result with subsection 3 of section II. If both the
frequencies are equal in numbers then the tree is correct
otherwise it is incorrect. There are three steps of Fp-Tree. A)
Construct a conditional Pattern Base. B) Construct
conditional FP-Tree. C) Recursively mine conditional Fp-
Tree and generate Frequent Pattern.

A) Conditional Pattern Base:
a. For M28: {(M1M2M3M12:1), (M1M12:1), (M2M3:1)}
b. For M17: {(M10M6:1), (M10:1)}
c. For M12: {(M1M2M3:2), (M1M10M3:1), (M1:1)}
d. For M6: {(M10:2)}
e. For M3: {(M1M2:2), (M1M10:1), (M2:1)}
f. For M2: {(M1:2)}
g. For M10: Empty
h. For M1: Empty

B) Conditional Fp-Tree:
a. For M28: Empty
b. For M17: Empty
c. For M12: {(M1:4)}
d. For M6: Empty
e. For M3: Empty
f. For M2: Empty
g. For M10: Empty
h. For M1: Empty

C) Frequent Pattern:
a. For M28: Empty
b. For M17: Empty
c. For M12: {(M1M12:4)}
d. For M6: Empty
e. For M3: Empty
f. For M2: Empty
g. For M10: Empty
h. For M1: Empty

III. RESULTS
(M1M12) is the resultant frequent pattern generated after

using Fp-Tree algorithm on the given dataset. M1 is the
“Clear Idea of the requirements” and M12 is “Define Goals
and Objectives”. We have also figure out the other two
dependencies using this algorithm. These dependencies are
given below.

i) Software risk mitigation dependency
Following are the software risk mitigations dependencies

against software risk factors. These dependencies of ordered
items of risk mitigations and risk factors have been taken
from Table II of section II.

a)

b)

c)

d)

Root

M2:2 M6:2

M28:1

M10:4M1:5 M28:1

M12:1

M3:2 M28:1

M6:2 M17:2

M17:1

M10:1 M3:1

M28:1

M12:1

M3:1

M2:2

M12:2 M17:1

M1

IMP

ISD

IF

SOTP

IP

M2

IB

UD

IF

IMP

M3

IB

IMP

IF

IP

M6

LOR

PH

LOM

UPOD

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

e)

f)

g)

h)

ii) Software risk factors dependency
Following are the software risk factors dependencies

against software risk mitigations. These dependencies of
risk factors and ordered items of risk mitigations have been
taken from Table II of section II.

a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

k)

l)

m)

n)

o)

p)

M10

PH

CDR

IP

UPOD

LOEPM

M12

ISD

IP

SOTP

IF

M17

PH

CDR

HMD

UPOC

M28

IT

IB

SOTP

IF

LOM
M6

M6

M17

M10

PH

M6

M10
UPOD

LOR

M6

IT M28

M28

M3

M2

IB

IF

M28

M3

M2

M12

M1

M3

M2

M1

IMP

IP

M3

M10

M12

M1

UPOC
M17

HMD
M17

UD
M2

LOEPM
M10

M1

M12
ISD

M1

M12

M28

SOTP

M17

M10

CDR

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

IV. DISCUSSION AND CONCLUSION
FP-Tree algorithm has been widely used for finding

associations or frequent patterns. This research work has
been focused on the adaptation of FP-Tree algorithm of data
mining. The novelty behind this work is the introduction of
data mining technique in the field of software engineering.
During the development of software, software risks are
creating problems for software developers and software
project managers. The software risks are obvious in nature
and the main problem area is the handling or mitigation of
them. Software development industry has been suffering
from it. To overcome this problem we have proposed to use
data mining in this area. Better results have been found in
terms of frequent-patterns of software risk mitigation factors
after the adaptation of FP-Tree in section II. There are many
advantages that allowed us to adapt this technique. Firstly, it
generates a quite smaller tree than the original database.
Secondly, it reduces the cost of heavy and frequent database
scans. Thirdly, there is no concept of candidate generation.
Fourthly, divide-and-conquer method decomposes the large
tasks into smaller sub tasks. Therefore artificial intelligence
and data mining techniques can bring about dramatic results
in software engineering or software development field.
These frequent pattern rules are beneficial for software
project managers and software developers because they are
directly responsible for software project success and failure.

ACKNOWLEDGMENTS

I acknowledge the encouragement and firm support of my
parents (Mr. & Mrs. Sher Afzal) during this research work.
I also acknowledge the support and encouragement of Dr.
Jamil Ahmed Vice Chancellor Abasyn University, Pakistan.

REFERENCES

[1] Han, J., Pei, J., and Yin, Y. “Mining Frequent Patterns
without Candidate Generation”, ACM SIGMOD 2000, Dallas,
TX, U. S. A. 148, 149, 155.

[2] R. Agrawal, T. Imielinski, and A. N. Swami. “Mining
association rules between sets of items in large databases”, In
Peter Buneman and Sushil Jajodia, editors, Proceedings of the
1993 ACM SIGMOD Intl. Conference on Management of
Data, pages 207–216, Washington, D.C., 26–28 1993.

[3] Abdullah, U., Ahmed, J., and Ahmed, A. 2008. “Analysis of
effectiveness of apriori algorithm in medical billing data
mining”, Proceedings of 4th IEEE International Conference
on Emerging Technologies, Rawalpindi, Pakistan. pp 327-
331, DOI: 10.1109/ICET.2008.4777523.

[4] Asif, M., Sawar, J. and Abdullah, U. “Design of Decision
Support System in Electronic Medical Record Using
Structured Query Language”, International Conference of
Management and Artificial Intelligence, Bangkok, Thailand,
April 8-9. DOI:10.7763/IPEDR.V63.3 2013.

[5] Asif, M., Ahmed, J. and Hannan, A. “Software Risk Factors:
A Survey and Software Risk Mitigation Intelligent Decision
Network Using Rule Based Technique”, An International
Conference on Artificial Intelligence and Applications, The
International MultiConference of Engineers and Computer
Scientists (IMECS), IAENG, Hong Kong, March 12-14, Vol.
I, pp 25-39, 2014.

[6] Abdullah, U., Sawar, J. and A. Ahmed, “Design of a rule
 based system using Structured Query Language”, in
 Proceedings of 2009 Eighth IEEE International Conference
 on Dependable, Autonomic and Secure Computing
 (DASC09),Chengdu, China. pp 223-228, 2009.

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014

