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Abstract— The increasing demand for renewable energy 

from sources such as wind and solar has attracted the 

researchers to study the behavior and attributes of these energy 

resources in more depth. One of the important aspects of 

renewable energy resources is their 

uncertainty/unpredictability. To have a balance between the 

power demand and generation, it is important to know how 

much power could be generated in the grid at any time to avoid 

shortage/loss in the grid. The power generated by solar arrays 

mainly depends on the availability of the solar radiation (beside 

other factors). Since the solar radiation is unpredictable and 

depends on the weather condition, prediction of the output 

power for the solar arrays is desirable. In this work, a 

comprehensive analysis of the time series data as well as 

prediction of the output power using different regression 

techniques is performed. The data is collected from the NCRC 

solar array installed in Ann Arbor, MI. A novel approach that 

model by combines time series data and linear regression is 

developed and is found to produce the best result with the lowest 

error. The proposed linear regression model uses the observed 

values of the output as one of the predictors, along with other 

selected features (e.g., temperature) to predict the output. 

 
Index Terms— Data Mining, Regression Modeling, Solar 

Energy, Time Series Analysis 

I. INTRODUCTION 

In the past few decades, developed nations worldwide have 

widely adopted large-scale photovoltaic systems for power 

generation. The advantages of employing photovoltaic plants 

for generating electricity include no production of pollutants 

during operation, absence of noise pollution, long lifetime 

and low maintenance. Besides, solar energy is abundant, free, 

clean and inexhaustible [1].   

These energy resources become more important when they 

are connected to the power grid and contribute to the power 

generated by the grid. The regular power generation plants 

such as natural gas and coal-fired power plants can manage 

their power generation with relative ease, usually by simply 

turning on/off individual units. However, the power 

 

  
Manuscript received February 27, 2014; revised June 3, 2014. This work 

was supported by IOE department at the University of Michigan, Ann Arbor 

MI. 

Haidar Almohri was a graduate student at the University of Michigan, 

Ann Arbor MI. He is now a PhD candidate at Wayne State University, 

Detroit MI (Phone: 413-426-1183, email:almohri@umich.edu). Chonxiao 

Du is a graduate student at the University of Michigan, Ann Arbor MI 

(email:cxdusa@umich.edu). Zupan Hu is a PhD candidate at the University 

of Michigan, Ann Arbor MI (email:zupanhu@umich.edu). Jingxing Wang is 

a graduate student at the University of Michigan, Ann Arbor MI 

(jeffwjx@umich.edu). 

 

                                                           
 

generated by renewable energy resources such as solar and 

wind depends on the amount of solar insulation/wind 

available at the time. Since these are uncertain factors, the 

power output of these resources also experiences uncertainty. 

Furthermore, ability to estimate the amount of power that can 

be generated by these resources is important for the investors 

who plan on building and adding such resources to the grid. 

The solar energy production is mainly influenced by the 

solar insulation, which is the amount of solar radiation energy 

received at a particular surface on the earth. However, other 

factors such as weather temperature, array temperature, and 

humidity may affect the power output.  

In this work, we have used the data provided by the DTE 

Company for the solar array installed in Plymouth Rd, Ann  

Arbor, MI, next to the University of Michigan north 

campus. DTE provided the data to the University of Michigan 

Energy Institute. The data includes: ambient insolation, 

ambient temperature, fixed solar insolation, fixed array 

temperature, wind speed, and the generated output power. 

The data is collected every 15 minutes, and is available from 

January 11th, 2013 up to date (we used the data until 

December 2013).  

II. DATA PRE-PROCESSING 

As described above, the data became available from DTE 

using devices installed in the location of the array that 

measure different factors (e.g., temperature, wind speed, 

etc.). Unfortunately, data was missing in between for some 

period, which was as long as a month and a half. Therefore, 

an efficient imputation method is required to complete the 

dataset.  

A. Matrix Completion by Singular Value Thresholding 

Candes and Recht (2009) proved that a low-rank, nxn 

matrix with m observed entries could be fully recovered with 

high probability, by solving a convex optimization problem 

if the following inequality holds true: 

  

m ≥ Cn1.2rlogn   

where C is a constant and r is the rank of the to-be-recovered 

matrix [2]. The algorithm states that for a matrix M, if the set 

of observed entries is denoted as Ω {(i,j)  Ω if Mij is 

observed}, then M is recovered by solving the convex 

optimization problem: 

 

minimize        || X ||* 

subject to       Xij = Mij(i,j)  Ω   

 

where X is the recovered matrix, and  || X ||*  is the nuclear 
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norm of the matrix M (sum of its singular values).  

Since our dataset consisted of a large number of entries, 

and they are not correlated, it is a valid assumption to say that 

the dataset is a low-rank matrix. We applied the above 

algorithm using Matlab and a convex optimization solver 

package called cvx (from http://cvxr.com/cvx), to complete 

the dataset by imputing the missing values. 

 

III. FEATURE SELECTION 

One of the most important steps in any machine learning 

application is proper feature selection, as the complexity of 

the model as well as the accuracy of the prediction depends 

on this step. There are five features available in our data: (1) 

ambient insolation, (2) ambient temperature, (3) fixed solar 

insolation, (4) fixed array temperature, and (5) wind speed.  

A. Feature Selection using Backward Stepwise Selection 

This algorithm starts with a full model and performs an F-

test in each iteration to eliminate the predictor with the 

smallest F value, and stops when removing a predictor 

produces an F-Statistic greater than F1,N-k-1(α), for a predefined 

confidence interval (α). The F-test follows the equation : 

 

𝐹 =  
𝑅𝑆𝑆𝑘−1− 𝑅𝑆𝑆𝑘

𝑅𝑆𝑆𝑘
𝑁−𝑘−1

   

 

where k is the kth predictor and N is the sample size. 

        TABLE I 

RESULT OF F TEST FOR BACKWARD SUBSET SELECTION 

 
Iteration  Predictors Minimum F  Fmin>F95%? 

1 [1, 2, 3, 4] 0.734 No 

2 [1,2, 3] 3.842 Yes 

 

Using this algorithm, with α = 95%, we obtained the results 

shown in Table 1. As is indicated in Table 1, 4 out of 5 

predictors should be selected: (1) ambient insolation, (2) 

ambient temperature, (3) fixed solar insolation, and (4) fixed 

array temperature. 

B. Feature Selection using LASSO (Least Absolute 

Shrinkage and Selection Operator) 

Introduced by Robert Tibshirani (1996), LASSO 

minimizes the residual sum of squares subject to the sum of 

the absolute value of the coefficients being less than a 

constant [3]. Because this algorithm produces some 

coefficients that are exactly zero, it is one of the most popular 

methods used for subset selection. By choosing the 

appropriate λ (the regularizer parameter), the same set of 

features was proved to be sufficient for this project.  

IV. MODELING 

After data pre-processing and feature selection, different 

algorithms are implemented and the results are analyzed. In 

all the following algorithms, 75% of the data is used for 

training, 10% for validation, and 15% for testing. 

A. Combining Linear Least Square Regression and AR(2) 

(LLAR) 

Because of the fact that the output variable is influenced by 

different factors (i.e., insolation and temperature), a pure time 

series analysis technique would fail to take these factors into 

consideration.  

To take these factors into consideration and simultaneously 

take advantage of the time series analysis, we combined the 

linear least square regression and AR(2) time series model. In 

this case, the output 𝑦 is a function of four predictors  

 

𝑥1, 𝑥2, 𝑥3, 𝑥4 as well as 𝑦𝑡−1, 𝑦𝑡−2: 

 

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑦𝑡−1, 𝑦𝑡−2) 
 

Using this function, a model is fit to the data using linear 

least square regression: 

 

yt = β0 + β1yt−1 + β2yt−2 + βX
TXt + at 

 

where β0, β1, β2, βX are constant parameters and Xt is the 

design matrix that holds the features in time t. Figure 1 shows 

the result obtained after running the above algorithm. 

 

 
Fig 1- Result of combining linear least square regression and 

AR (2) 

B. Kernel Ridge Regression (KRR) 

A kernel ridge regression model is used to capture the 

nonlinearity of the data. The goal in using a kernel function 

is to map the data to higher dimension and use the training 

data to build a model and predict the output Ŷt using the 

current features Xt as shown in the following equation:  

 

Ŷt = y(K + λI)−1k̃(Xt) 

 

where y is the row vector of the training data Y1, Y2, ..., 

Yn, and 

K = [k(Xi, Xj)]
i,j=1

n
∈ Rn×n, k̃(Xt) = (

k(Xt, X1)
⋮

k(Xt, Xn)
) ∈ Rn 

 

A second order polynomial kernel is used as k(u,v)=(uTv+1)2 

with λ=10. The result of this model is shown in figure 2. 
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C. Radial Basis Neural Network (RBNN) 

Radial Basis Function (RBF) network is an artificial neural 

network that uses radial basis functions as activation 

functions:  

𝑟(𝑖) =  𝑒(
||𝑥(𝑖)−𝑥||

2

𝜎
)
 

This means that for each query point 𝑥, only the 

neighborhood points affect the result. In other words, the 

closer the point i.e. time lag, the more influence the point has 

on the result.  

The output of the network is a linear combination of radial 

basis functions of the inputs and neuron parameters. Radial 

basis function networks have many uses, including function 

approximation, time series prediction, classification, and 

system control [4]. This algorithm is implemented and 

applied to our data and the result is shown in figure 3. There 

are two layers in the network. The first layer is composed of 

radial basis neurons. The second layer is composed of linear 

neurons with biases. The key is to find adequate number of 

neurons and proper parameters for the radial basis neurons to 

guarantee that there is neither overfitting nor underfitting 

prediction. Using cross validation, 40 neurons in total (10 

radial basis ones and 40 linear ones), with σ = 200 is found to 

produce the best result. 

 

 
Fig 2- Result of applying kernel ridge regression 

 

 
Fig 3- Result of applying Radial Basis NN 

V. RESULTS AND DISCUSSION 

Table 2 summarizes the results obtained using the models 

introduced in previous section.  

These results are obtained using 75% of the data for 

training, 10% for validation, and 15% for test purposes. As 

we can see in table 2, the “Combining Linear Least Square 

Regression and AR(2)” produced the least Mean Squared 

Error (MSE), followed by Kernel Ridge Regression, and 

Radial Base Neural Network. Analyzing the result, it is 

noticed that the MSE for the test data is larger than that of 

training (considering the size of each set). This can be 

because the models fail to produce a good result when 

introduced to new input. This deficiency can be improved by 

training the model with more data (preferably for a whole 

year) to reduce the variation of the result.  

       TABLE II 

SUMMARY OF THE RESULT 

 MSE 

Training 

MSE 

Validation 

MSE 

Testing 

LLAR 390.8853 44.1479 249.7804 

KRR 356.7699 63.4635 338.9973 

RBNN 493.4915 65.7957 476.5542 

 

Another source of uncertainty is the corrupted data in our 

dataset. As mentioned in section 2, the data at some period 

was missing and the missing values were estimated. Although 

this data imputation is proved to be reliable, having a 

complete dataset can certainly improve the models and 

produce better results. 

VI. CONCLUSION AND FUTURE WORK 

In this project, a comprehensive data analysis and 

forecasting of the output power generated by solar array 

installed in Plymouth Rd, Ann Arbor, MI is performed. 

Because the data was corrupted at some periods, a Singular 

Value Thresholding algorithm is used to impute the missing 

data. Next, the subset selection is performed using backward 

and forward selection as well as Least Absolute Shrinkage 

and Selection Operator (LASSO) to find the predictors that 

best contribute in predicting the output. Finally, three 

different models are fit to the data and the result is analyzed. 

The implemented algorithms take the four inputs (ambient 

insulation, fixed array insulation, ambient temperature, and 

fixed array temperature), and predict the generated output. 

This model can be used for few hours to few days forecasting 

of the solar output since the required input data is usually 

available for these time periods. 
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