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Abstract—Multiple kernel learning (MKL) aims at learning
a combination of different kernels, instead of using a single
fixed kernel, in order to better match the underlying problem.
In this paper, we propose the Empirical Optimal Kernel for
convex combination MKL. The Empirical Optimal Kernel is
based on the theory of kernel polarization, and is the one
with the best generalization ability which can be achieved
from the training data in the convex combination scenario.
Based on the Empirical Optimal Kernel, we propose three
different algorithms: heuristic approach, optimization approach
and alternating optimization approach to find the optimal com-
bination weights. On Multiple Features Digit Recognition data
set, the proposed methods achieve comparative performance as
the compared methods, and have less support vectors and active
kernels. On 5 UCI data sets, the Empirical Optimal Kernel
based optimization approach has higher winning percentage (t-
test with significant level 0.05), less active kernels and support
vectors than the other MKL algorithms.

Index Terms—multiple-kernel-learning, convex-combination,
empirical-optimal-kernel.

I. INTRODUCTION

KERNEL methods have delivered high performance in
a variety of machine learning tasks [1]. The key to

success is the incorporation of the kernel trick which amounts
to an implicit mapping of data into a feature space (usually
higher dimension). The implicit mapping is determined by
specifying a kernel function, which calculates the inner
product between each pair of data points in the feature space.

k(xi,xj) = 〈φ(xi), φ(xj)〉 φ : X → H (1)

where X is the original data space and H is the feature
space. The main advantage of kernel methods is the ability
to use linear algorithms in feature space and the nonlinearity
is implicitly introduced by the kernel function. Despite the
success of kernel methods, choosing the appropriate kernel
function is crucial. In recent years, multiple kernel learning
(MKL) methods have been proposed, aiming at learning an
optimal combination of a set of predefined base kernels in
order to identify a good target kernel for the applications
[2]. Compared with traditional kernel methods using a single
fixed kernel, MKL does exhibit its flexibility of automated
kernel learning, and also reflects the fact that typical learning
problems often involve multiple, heterogeneous data sources.

Manuscript received July 10, 2014; revised July 29, 2014. This work
was supported in part by National Key Technology R&D Program of China
(2012BAH14F00).

Peiyan Wang is with the College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing, 210016,
China, e-mail: (wangpy kerc@163.com).

Peiyan Wang, Dongfeng Cai, Guiping Zhang and Yu Bai are with the
Knowledge Engineering Research Center, Shenyang Aerospace University,
Shenyang 110136, China.

Fang Cai and Tianhao Zhang are with the EECS, University of California,
Berkeley.

In other words, since the base kernels can be built from
different types of data representations, the MKL approach
has the advantages of the possibility to combine and select
the most relevant data representation in an elegant way.

Generally, the vast majority of analyses and algorithms for
MKL focus on learning finite linear combinations of given
base kernels:

kη(xi,xj) =

p∑
m=1

ηmkm(xi,xj) (2)

where η denotes the kernel weights. Different versions of
this approach differ in the way ones put restrictions on
the kernel weights. For example, one can use arbitrary
weights (η ∈ Rp, linear combination) [3], non negative
kernel weights (η ∈ Rp+, conic combination) [4][5], or
weights on a simplex (η ∈ Rp+ and

∑p
m=1 ηm = 1, convex

combination) [6]. The convex has advantage over the linear
sum in terms of interpretability. We can extract the relative
importance of the combined kernels by looking at their
weights. Convex combination is widely used in many fields,
such as information extraction [7] and bioinformatics [8].

In this paper, we only focus on the convex multiple
kernel learning. Based on the theory of kernel polarization
[9], we propose the Empirical Optimal Kernel for convex
combination MKL. The Empirical Optimal Kernel is the one
with the best generalization ability which can be achieved
from the training data in the convex combination scenario.
In order to apply the Empirical Optimal Kernel in MKL,
we propose three different algorithms: heuristic approach,
optimization approach and alternating optimization approach.
The experimental results demonstrate the effectiveness of the
Empirical Optimal Kernel.

The rest of this paper is organized as follows: Section 2
describes the kernel polarization and the Empirical Optimal
Kernel in detail. Section 3 proposes the MKL algorithms to
utilize the Empirical Optimal Kernel. Experimental results
are presented in Section 4, and the last section gives some
concluding remarks.

II. THE PROPOSED METHOD

In this section, we firstly describe the kernel polarization
in detail, including the advantage and the limitation. Sec-
ondly, we propose the Empirical Optimal Kernel for convex
combination MKL based on kernel polarization.

A. Kernel Polarization

Kernel polarization was proposed by Baram [9]. It is a
universal kernel optimality criterion, which is independent
of the classifier to be used. Given l pairs of training samples
denoted as D = {(x1, y1), (x2, y2), ..., (xl, yl)} , where
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xi ∈ X ⊂ Rn (The input space) and yi ∈ {−1,+1}. The
definition of kernel polarization is:

P (K) =
1

l2

l∑
i=1

l∑
j=1

yiyjk(xi,xj) (3)

Clearly, P (K) will increase if points in the training set
with the same label come closer and points with different
labels are more separated, in the sense that the kernel is a
proximity measure [9]. Kernel polarization possesses several
convenient theoretical properties. First, it is efficient in that
its computational complexity is O(n2) in terms of the size
of training set. With a simple formula, it can be an objective
function of an optimization problem [10]. Furthermore, there
exists a separation of the data with a low bound on the
generalization error, if the polarization is complete, in the
sense that P (K) attains its absolute maximum value. One
limitation of the kernel polarization is that the kernel should
be a proximity measure [9]. This will be the case if, for
instance, the kernel is a continuous monotone function of the
Euclidean distance between its two arguments. Furthermore,
the maximization problem will be well posed if the feature
space is confined. Most common kernel functions possess
the properties above, such as Gaussian kernel, Exponential
kernel [11] and Bessel Kernel [12].

B. Empirical Optimal Kernel

According to the theory of the polarization, the best kernel
for a particular application is the one with the maximum
kernel polarization value. Given training samples, based on
(Eq. 3), the maximum kernel polarization is:

max{P (K)} = max{ 1
l2

l∑
i=1

l∑
j=1

yiyjk(xi,xj)}

= max
1

l2
{
∑
yi=yj

k(xi,xj)−
∑
yi 6=yj

k(xi,xj)}

∝ max{
∑
yi=yj

k(xi,xj)−
∑
yi 6=yj

k(xi,xj)}

= max{
∑
yi=yj

k(xi,xj)}+max{−
∑
yi 6=yj

k(xi,xj)}

= max{
∑
yi=yj

k(xi,xj)} −min{
∑
yi 6=yj

k(xi,xj)}

=
∑
yi=yj

max{k(xi,xj)} −
∑
yi 6=yj

min{k(xi,xj)} (4)

Equation (4) shows that the best kernel is the one that gives
its maximum value to point pairs from same classes, and
gives its minimum value to point pairs from different classes.
The kernel matrix of the best kernel is:

[K]i,j =

{
max{k(xi,xj)} yi = yj
min{k(xi,xj)} yi 6= yj

(5)

Taken Gaussian kernel for instance, in theory, the maximum
value is ”1” and minimum value is nearly ”0”. The kernel
matrix of the best Gaussian kernel is:

[K]i,j =

{
1 yi = yj
0 yi 6= yj

(6)

It is the same as the ideal kernel proposed in [13]. In practice,
it is hard to achieve the best condition for single kernel, since
the maximum or minimum kernel value for two data points
could not be determined exactly. However, in the convex
combination MKL scenario, the maximum or minimum value
of combined kernel is fixed, due to the determination of the
base kernel.

For convex combination MKL (Eq. 2), kη can be seen as
the weighted average of base kernels km. Given the finite set
of base kernels, for any two data points:

kmin(xi,xj) ≤ kη(xi,xj) ≤ kmax(xi,xj) (7)

where kmin and kmax denote the minimum value and the
maximum value of {k1(xi,xj), k2(xi,xj), ...km(xi,xj)} re-
spectively.

Summarizing the above, we give the optimal kernel for
convex combination MKL:

kopti(xi,xj) =

{
kmax(xi,xj) yi = yj
kmin(xi,xj) yi 6= yj

(8)

We name it ”Empirical Optimal Kernel”, because the defini-
tion of the optimal kernel is based on the base kernels and
the training data.

C. Generalization Ability of Empirical Optimal Kernel

In this section, we evaluate the generalization ability of
Empirical Optimal Kernel by Kernel Target Alignment (KTA,
Eq. 9) [14]. There exists a separation of the data with a
low bound on the generalization error, provided that the
expected value of KTA is high. Fig. 1 illustrates the 10
cross-validation error rate and 1-KTA value using Gaussian
kernel (σ = 1) for different features on Multiple Features
Digit Recognition data set. It also illustrates the 10 cross-
validation error rate and 1-KTA value using 21 different
Gaussian kernels (σ = 1, 20, 30, ..., 200) for the same feature
representation on Breast Cancer Wisconsin data set.

A(K, yyT ) =
〈K, yyT 〉F√

〈K,K〉F ·
√
〈yyT , yyT 〉F

(9)

From Fig. 1, we can see that 1-KTA varies similarly to
CV error rate, and the two curve have the same tendency.
KTA is correlative well with error rate and can reflect the
generalization ability. It also can be seen that the Empirical
Optimal Kernel (opti) has the lowest 1-KTA value, is much
lower than the best case of each data set ( ”FAC” for
Multiple Features Digit Recognition, σ = 1 for Breast
Cancer Wisconsin ). In conclusion, the Empirical Optimal
Kernel would have good generalization ability and better than
each base kernel.

III. MKL ALGORITHMS BASED ON EMPIRICAL OPTIMAL
KERNEL

We propose the MKL algorithms to utilize the Empirical
Optimal Kernel in this section. According to the properties
of kernel function, the Empirical Optimal Kernel is a valid
kernel function which can be directly used for training
classifier. However, due to the absence of the labels for
test data, the Empirical Optimal Kernel for prediction is
not available. Thus, there should be a strategy to utilize it
indirectly.
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Fig. 1. 1-KTA and CV error rates on Multiple Features Digit Recognition
and Breast Cancer Wisconsin data set

For MKL, a recent approach is to use a two-stage pro-
cedure [5],[15], in which the first stage finds the optimal
weights to combine the kernels, and the second stage trains
a standard classifier using the combined kernel. In a more
general point of view, such MKL should be considered
as a model selection problem: the kernel weights are the
hyperparameters of the classifier and are tuned based on the
model selection criteria [16],[17]. One significant property
of the two-stage approach is that, in the first stage, it makes
use of the information from the entire training data and can
be computed efficiently. In the two-stage strategy, we apply
the Empirical Optimal Kernel to find the optimal weights in
the first stage. To achieve this, we propose three different
algorithms: heuristic approach, optimization approach and
alternating optimization approach.

A. Heuristic Approach

The Empirical Optimal Kernel is based on the base ker-
nels. Thus, we give higher weight to the base kernel which is
more contributed to the Empirical Optimal Kernel. We apply
kernel alignment to measure how well a base kernel matches
with the Empirical Optimal Kernel:

ηm =
A(Km,Kopti)
p∑

h=1

A(Kh,Kopti)

(10)

A(Km,Kopti) =
〈Km,Kopti〉F√

〈Km,Km〉F
√
〈Kopti,Kopti〉F

(11)

where Km and Kopti denote the kernel matrix for base
kernel and the empirical optimal kernel respectively. This
approach is similar with the method proposed in [18].

B. Optimization Approach

Optimization approach is similar with [19] and solves a
QP problem in (Eq. 12)

min
p∑

m=1

p∑
h=1

ηmηh〈Km,Kh〉F − 2
p∑

m=1
ηm〈Km,Kopti〉F

w.r.t.η ∈p+
s.t.

p∑
m=1

ηm = 1

(12)
Optimization approach (Eq. 12) not only considers the align-
ment between one base kernel and the Empirical Optimal
Kernel but also the similarity with other base kernels. It will

give higher weight to kernels that contribute more to the
Empirical Optimal Kernel and diverge more from other base
kernels.

C. Alternating Optimization Approach

The Empirical Optimal Kernel is associated with each
point pair in the training data, so that it can involve the local
properties of the data, but it is also sensitive to the noisy data.
We set a coefficient to each point of training data to reflect
the importance of the point. The kernel with coefficient is:

k′(x1,x2) = 〈α1 · φ(x1), α2 · φ(x2)〉
= α1α2 〈φ(x1), φ(x2)〉
= α1α2 · k(x1,x2)

(13)

The kernel matrix is:

K′ = A ◦K

[A]ij = αiαj

Substitute K′ for K in (Eq. 12):

min
p∑

m=1

p∑
h=1

ηmηh〈K′
m,K

′
h〉F − 2

p∑
m=1

ηm〈K′
m,K

′
opti〉F

w.r.t.η ∈p+
s.t.

p∑
m=1

ηm = 1

(14)
We obtain α for each data point by solving the QP problem
of SVM:

maximum
l∑
i=1

αi − 1
2

l∑
i=1

l∑
j=1

αiαjyiyjkη(xi,xj)

w.r.t.α ∈ [0, C]l

s.t.
l∑
i=1

αiyi = 0

(15)

It is an alternating optimization procedure, which determines
η by solving (Eq. 14) initially, then substitute it in (Eq. 15)
and get α, solve (Eq. 14) again to obtain new η, repeat this
process until η is stable.

This approach assumes that the support vectors are the
most important points, and set α = 0 for the other points. It
can effectively filter the noisy data. However, it still cannot
effectively involve the local properties of the Empirical Op-
timal Kernel. It needs further research on utilizing the local
property of the Empirical Optimal Kernel and on ignoring
the noise.

IV. EXPERIMENTS

In this section, we report experimental performance of
OBMKL (empirical Optimal kernel Based MKL) for classi-
fication on Multiple Features Digit Recognition data set and
5 UCI data sets. All data is scaled to [−1,+1]. Classification
is performed using the SVM from the LIBSVM1 library
and the regularization parameter C is chosen from the set
{0.1, 1, 10, 100, 1000} by 5-fold cross validation on training
data. We use 10-fold cross validation to estimate the error
rates.

1http://www.csie.ntu.edu.tw/˜cjlin/libsvm
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A. Compared Algorithms

We compare proposed method with RBMKL, ABMK-
L(ratio), ABMKL(convex), GMKL and GLMKL. These Al-
gorithms are all for convex multiple kernel learning. We
use the MATLAB implementations of RBMKL, ABMKL,
GMKL and GLMKL proposed in [2] and the SVM classifiers
are trained using LIBSVM.

RBMKL denotes rule-based MKL algorithms, trains an
SVM with the mean of the combined kernels.

ABMKL(ratio) denotes alignment-based MKL algorithms.
To determine the kernel weights, ABMKL(ratio) uses the
heuristic in (Eq. 16) [18], ABMKL(convex) solves the QP
problem in (Eq. 17) [19]. In the second step, all methods
train an SVM with the kernel calculated with these weights.

ηm =
A(Km, yy

T )
P∑
h=1

A(Kh, yyT )

(16)

min
P∑

m=1

P∑
h=1

ηmηh〈Km,Kh〉F − 2
p∑

m=1
ηm
〈
Km, yy

T
〉
F

w.r.t.η ∈p+
s.t.

p∑
m=1

ηm = 1

(17)
GMKL is the generalized MKL algorithm in (Eq. 18) [20].

In the implementation, r is the convex combination of base
kernels and is taken as 1/2(η − 1/p)T (η − 1/p).

maxJ(η) =
N∑
i=1

αi − 1
2

N∑
i=1

N∑
j=1

αiαjyiyjkη(xi,xj) + r(η)

w.r.t.α ∈N+
s.t.

N∑
i=1

αiyi = 0, C ≥ αi ≥ 0∀i
(18)

GLMKL denotes the group Lasso-based MKL algorithms
proposed by [21] and [22]. While set the parameter p = 1,
GLMKL updates the kernel weights using (Eq. 19) and learns
a convex combination of the kernels.

η =
‖wm‖2
P∑
h=1

‖wh‖2

, ‖wm‖22 = η2
N∑
i=1

N∑
j=1

αiαjyiyjkm(xmi , x
m
j )

(19)

B. Multiple Features Digit Recognition Experiments

We conduct experiments on the Multiple Features (MUL-
TIFEAT) Digit Recognition data set from the UCI Machine
Learning Repository, composed of six different feature repre-
sentations for 2,000 handwritten numerals. The properties of
these feature representations are summarized in Table 1. We
use Gaussian kernels with parameter σ = 1 for all feature
sets. The purpose of choosing this data set is to exam the
ability of the proposed method in identifying the appropriate
combination of different feature subsets.

Table 2 gives the results of all algorithms on the MUL-
TIFEAT data set. OBMKL(ratio) denotes heuristic approach
based on Empirical Optimal Kernel, OBMKL(qp) denotes

TABLE I
MULTIPLE FEATURE REPRESENTATIONS IN THE MULTIFEAT DATA SET.

NAME Dimension Data Source

FAC 216 Profile correlations
FOU 76 Fourier coefficients of the shapes
KAR 64 Karhunen-Loève coefficients
MOR 6 Morphological features
PIX 240 Pixel averages in 2× 3 windows
ZER 47 Zernike moments

TABLE II
PERFORMANCES OF MKL ALGORITHMS ON THE MULTIFEAT DATA

SET USING THE GAUSSIAN KERNEL.

CV SV AK

OBMKL (ratio) 0.0679±0.0364 392.1±161.2 6±0

OBMKL(qp) 0.0677±0.0380 301.8±174.8 2±0

OBMKL(aqp) 0.0584±0.0324 418.6±179.8 2±0

ABMKL(ratio) 0.0681±0.0367 375.9±164 6±0

ABMKL(convex) 0.0716±0.0403 243.1±136 1.2±0.4

GMKL 0.0573±0.0282 647.8±410.5 3.4±1.2

GLMKL 0.0582±0.0285 668.5±422 5.8±0.4

RBMKL 0.0661±0.0330 760.2±161.2 6±0

SVM(best) 0.0628±0.0325 889.9±711.9 1±0

optimization approach, and OBMKL(aqp) denotes alternat-
ing optimization approach. SVMs are trained on each feature
representation singly, and the one with the lowest average
validation error is referred as SVM(best). The number of
active kernels (AK) and the number of support vectors (SV)
are also listed in Table 2. GMKL has the lowest average
error rate than others, but is not significantly lower than
OBMKL(aqp) and GLMKL (t-test with significant level
0.05). However, the active kernels number and support vec-
tors number of OBMKL(aqp) are much smaller than GMKL
and GLMKL. It implies that OBMKL(aqp) would spend
less time on the prediction stage, and would have better
generalization ability. ABMKL(convex) has the least active
kernels number alone with the least support vectors number,
but receives the highest average error rate. It may be due to
over-fitting. In addition, GMKL, GLMKL and OBMKL(aqp)
outperform SVM(best). This shows that MKL is helpful in
identifying the appropriate combination of data sources or
different feature subsets in real-world applications. Above
all, the Empirical Optimal Kernel and the corresponding
algorithms based on it are effective for multiple features
combination classification. With less active kernel number
and support vector number, the proposed methods achieve
comparative performance as the compared methods.

C. UCI Data Sets

Five data sets from UCI repository are applied. Breast
Cancer Wisconsin (699 instances; 9 attributes), Pima Indians
Diabetes (769; 8) are binary problems. Ecoli (336; 7), Glass
(214; 9) and Iris (150; 4) consist of observations from
8, 6 and 3 categories. Multi-class data sets are decom-
posed into series of binary problems in the one-vs-others
scheme. As a result, 19 binary problems are considered
during experiments. We use 21 different Gaussian kernels
(σ = 1, 20, 30, ..., 200) for the same feature representation,
train SVMs with each Gaussian kernel singly, and refer the
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Fig. 2. Performances of MKL algorithms on the UCI data set using the 21 Gaussian kernels. (AR, AC, RB, OR, OQ, OA, G, GM and B denote
ABMKL(ratio), ABMKL(convex), RBMKL, OBMKL(ratio), OBMKL(qp), OBMKL(aqp), GMKL, GLMKL and SVM(best) respectively)

one with the lowest average validation error as SVM(best).
Fig. 2 lists 10-fold cross validation error rates.

Two-tailed t-test with the significant level 0.05 is per-
formed to determine whether there is a significant difference
between the proposed method and other methods. A win-tie-
loss (W,T,L) summarization based on t-test is listed in Table
3. A win or a loss means that one method is better or worse
than another method on a data set. A tie means that both
methods have the same performance. For example, ”6,8,5” in
”OBMKL(ratio)” column and ”ABMKL(ratio)” row means

OBMKL(ratio) is better than ABMKL (ratio) in 6 out of 19
binary classifications, is worse in 5 binary classifications, and
has same performance in 8 binary classifications.

It can be seen clearly that three Empirical Optimal K-
ernel based methods are better than RBMKL in most data
sets. OBMKL(ratio) has the comparable performance with
ABMKL(ratio), but loses in most cases. OBMKL(aqp) and
OBMKL(qp) have comparative performance and outper-
form other MKL algorithms in most cases. Compared with
SVM(best), only OBMKL(qp) achieves a draw. Table 4
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TABLE III
PERFORMANCES OF MKL ALGORITHMS ON THE UCI DATA SET USING

THE GAUSSIAN KERNEL.

OBMKL(ratio) OBMKL(qp) OBMKL(aqp)

OBMKL(ratio) - 14,2,3 13,4,2
OBMKL(qp) 3,2,14 - 5,8,6
OBMKL(aqp) 2,4,13 6,8,5 -
ABMKL(ratio) 6,8,5 13,4,2 13,4,2

ABMKL(convex) 5,4,10 7,9,3 7,8,4
GMKL 2,8,9 8,7,4 7,9,3

GLMKL 3,6,10 7,9,3 7,8,4
RBMKL 10,5,4 15,3,1 14,3,2

SVM(best) 3,3,13 6,7,6 5,5,9

Total 34,40,78 76,49,27 71,49,32

Win% 22.37% 50% 46.71%

TABLE IV
WINNING PERCENTAGES OF MKL ALGORITHMS.

Total Win% SV AK

OBMKL(ratio) 34,40,78 22.37% 189.1±107.7 21±0

OBMKL(qp) 76,49,27 50% 106.9±99.5 2.3±0.4

OBMKL(aqp) 71,49,32 46.71% 140.6±101.2 2.8±0.5

ABMKL(ratio) 28,40,84 18.42% 182.1±113.7 21±0

ABMKL(convex) 53,54,45 34.87% 113.5±107.2 1.7±0.7

GMKL 57,54,41 37.5% 166.7±125.2 19.3±3.4

GLMKL 56,56,40 36.84% 173.4±128.5 21±0

RBMKL 22,25,105 14.47% 252.1±122.3 21±0

SVM(best) 83,41,28 54.61% 181.3±114.5 1±0

summarizes the winning percentage of all MKL algorithms.
SVM(best) has the highest winning percentage, OBMKL(qp)
and OBMKL(aqp) are higher than the others. Table 4 also
lists the average active kernels number (AK) and the average
support vectors number(SV). It is shown that OBMKL(qp)
has the least support vectors, its active kernels number is
significantly lower than the others expected ABMKL(convex)
and SVM(best). OBMKL(qp) has higher winning percentage,
less active kernels number and support vectors number than
the other MKL algorithms.

V. CONCLUSION

In this paper, we propose the Empirical Optimal Kernel
for convex combination MKL. It is the kernel with the best
generalization ability which can be achieved from existing
training data in the convex combination scenario. Then,
we propose three different algorithms: heuristic approach,
optimization approach and alternating optimization approach,
which utilize the Empirical Optimal Kernel in MKL. In ex-
periment, we applied the Multiple Features Digit Recognition
data set and five UCI data sets to demonstrate the effective-
ness of the Empirical Optimal Kernel and the corresponding
algorithms. On Multiple Features Digit Recognition data set,
the proposed methods achieve comparative performance as
the compared methods, and have less support vectors and
active kernels. On UCI data sets, the Empirical Optimal
Kernel based optimization approach has higher winning
percentage, less active kernels and support vectors than the
other MKL algorithms.

The Empirical Optimal Kernel is built on each point pair in
the training set. Then, it can involve the local property of the

data set, but it is also sensitive to the noisy data. The methods
proposed in this paper still cannot effectively involve the
local property of the Empirical Optimal Kernel. It needs
further research on developing localized algorithm [23] to
handle this property. In the future, we will also investigate the
extent to which the proposed method would provide us the
trade-off between the accuracy and computational efficiency.
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