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Abstract—A generalized (G
′
/G)-expansion method is used

to search for the exact traveling wave solutions of the coupled
KdV-mKdV equation. As a result, some new Jacobi elliptic
function solutions are obtained. It is shown that the method is
straightforward, concise, effective, and can be used for many
other nonlinear evolution equations in mathematical physics.

Index Terms—generalized (G
′
/G)-expansion method; the
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I. INTRODUCTION

Seeking the traveling wave solutions of nonlinear evolution
equations(NLEEs) has been an interesting and hot topic in
mathematics physics for a long time. Many effective methods
to construct traveling wave solutions of NLEEs have been
established [1-11]. However, no method can be used for
finding all solutions for all types of NLEEs. Recently, the
(G

′
/G)-expansion method [12] has become popular in the

research community, and the initial idea has been refined by
many studies [13-17]. It is shown that the (G

′
/G)-expansion

method is very effective, and many nonlinear equations have
been successfully solved.

In this paper, some exact solutions of the coupled KdV-
mKdV equation which are expressed by the Jacobi ellip-
tic function are obtained by using the (G

′
/G)-expansion

method.

A. Description of the generalized (G
′
/G)-expansion method

Assume that the nonlinear partial differential equation

F (u, ux, ut, uxx, uxt, utt, · · ·) = 0, (1)

where F is a polynomial in its arguments. The main steps
of the generalized (G

′
/G)-expansion method are descripted

as follows.
Step 1. Seeking traveling wave solutions of (1) by taking
u(x, t) = u(ξ), ξ = x − ct, and transforming (1) to the
ordinary differential equation(ODE)

F (u, u′,−cu′, c2u′′,−cu′′, u′′, · · ·) = 0. (2)

Step 2.Looking for its solution (u(ξ)) in the polynomial form

u(ξ) = a0 +
m∑
i=1

ai

(
f ′

f

)i
, (3)
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where a0, ai(i = 1, 2, · · · ,m) are constants which will be
determined later, f = f(ξ) is the solution of the auxiliary
LODE

f
′2

= Pf4 +Qf2 +R, (4)

where P,Q and R are constants.
Step 3. Determining the parameter m by balancing the
highest order nonlinear term and the highest order partial
derivative of u in (2).
Step 4. Substituting (3) and (4) into (2), and setting all
the coefficients of all terms with the same powers of
(f

′
/f)k(k = 1, 2, · · ·) to zero. Then a system of nonlinear

algebraic equations (NAEs) with respect to the parameters
c, a0, ai(i = 1, 2, · · · ,m) is obtained. By solving the NAEs
if available, those parameters can be determined explicitly.
Step 5. Assuming that the constants c, a0, ai(i = 1, 2, · · · ,m)
can be obtained by solving the algebraic equations in Step
4, and substituting these constants and the known general
solutions into (3). Then the explicit solutions of (1) can be
obtained immediately.

B. Applications of method

In this section, we apply the (G
′
/G)-expansion method

to seek the exact solutions of the coupled KdV-mKdV
equation [18,19] as follows:

ut + αuux + βu2ux + uxxx = 0, (5)

where α and β are two constant parameters. Let u(x, t) =
u(ξ), ξ = x− ct in (5). Then

−cu
′
+ αuu

′
+ βu2u

′
+ u

′′′
= 0, (6)

where c is a constant which will be determined later. By
integrating both sides of (6) with respect to ξ ,

−cu+
α

2
u2 +

β

3
u3 + u

′′
= 0. (7)

Then m = 1 by balancing u3 and u
′′

in (7). According to
(3) and (4) we have

u(ξ) = a0 + a1

(
f

′

f

)
, (8)

u
′′
(ξ) = 2a1

(
f

′

f

)(f ′

f

)2

−Q

 . (9)

With the aid of Maple, substituting (8) and (9) into (7),
the left-hand side of (7) becomes a polynomial in (f

′
/f)

and ξ. Setting their coefficients to zero yields a system
of algebraic equations in a0, a1, c, β. Solving these over-
determined algebraic equations, we get the following result:
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a0 =
12Q

α
, a1 =

12
√
Q

α
, c = 4Q, β = − α2

24Q
. (10)

With the aid of the appendix [20] and from the formal
solution (10), we get the following set of exact solutions of
(5).
Case 1. Choosing P = m2, Q = −(1 + m2), R = 1, and
f(ξ) = sn(ξ) , we obtain the Jacobi elliptic function solution
of (5)

u1 = − 12
α

(
(1 +m2)−

√
−1−m2cs(ξ)dn(ξ)

)
,

ξ = x+ 4(1 +m2)t.
(11)

Case 2. Choosing P = m2, Q = −(1 + m2), R = 1, and
f(ξ) = cd(ξ) , we obtain the Jacobi elliptic function solution
of (5)

u2 = 12
α

(
(1−m2)

√
−1−m2sd(ξ)nc(ξ)

)
− 12
α (1 +m2),

ξ = x+ 4(1 +m2)t.
(12)

Case 3. Choosing P = −m2, Q = 2m2 − 1, R = 1 −m2,
and f(ξ) = cn(ξ) , we obtain the Jacobi elliptic function
solution of (5)

u3 = 12
α

(
(2m2 − 1)−

√
2m2 − 1dc(ξ)sn(ξ)

)
,

ξ = x− 4(2m2 − 1)t.
(13)

Case 4. Choosing P = −1, Q = 2 − m2, R = m2 − 1,
and f(ξ) = dn(ξ) , we obtain the Jacobi elliptic function
solution of (5)

u4 = 12
α

(
(2−m2)−m2

√
2−m2cd(ξ)sn(ξ)

)
,

ξ = x− 4(2−m2)t.
(14)

Case 5. Choosing P = 1, Q = −(1 + m2), R = m2, and
f(ξ) = ns(ξ) , we obtain the Jacobi elliptic function solution
of (5)

u5 = − 12
α

(
(1 +m2) +

√
−1−m2cs(ξ)dn(ξ)

)
,

ξ = x+ 4(1 +m2)t.
(15)

Case 6. Choosing P = 1, Q = −(1 + m2), R = m2, and
f(ξ) = dc(ξ) , we obtain the Jacobi elliptic function solution
of (5)

u6 = 12
α

(
(1−m2)

√
−1−m2sc(ξ)nd(ξ)

)
− 12
α (1 +m2),

ξ = x+ 4(1 +m2)t.
(16)

Case 7. Choosing P = 1 −m2, Q = 2m2 − 1, R = −m2,
and f(ξ) = nc(ξ) , we obtain the Jacobi elliptic function
solution of (5)

u7 = 12
α

(
(2m2 − 1) +

√
2m2 − 1dc(ξ)sn(ξ)

)
,

ξ = x− 4(2m2 − 1)t.
(17)

Case 8. Choosing P = m2 − 1, Q = 2 − m2, R = −1,
and f(ξ) = nd(ξ) , we obtain the Jacobi elliptic function
solution of (5)

u8 = 12
α

(
(2−m2) +m2

√
2−m2cd(ξ)sn(ξ)

)
,

ξ = x− 4(2−m2)t.
(18)

Case 9. Choosing P = 1 −m2, Q = 2 −m2, R = 1, and
f(ξ) = sc(ξ) , we obtain the Jacobi elliptic function solution
of (5)

u9 = 12
α

(
(2−m2) +

√
2−m2dc(ξ)ns(ξ)

)
,

ξ = x− 4(2−m2)t.
(19)

Case 10. Choosing P = −m2(1−m2), Q = 2m2−1, R = 1,
and f(ξ) = sd(ξ) , we obtain the Jacobi elliptic function
solution of (5)

u10 = 12
α

(
(2m2 − 1) +

√
2m2 − 1cd(ξ)ns(ξ)

)
,

ξ = x− 4(2m2 − 1)t.
(20)

Case 11. Choosing P = 1, Q = 2 −m2, R = 1 −m2, and
f(ξ) = cs(ξ) , we obtain the Jacobi elliptic function solution
of (5)

u11 = 12
α

(
(2−m2) +

√
2−m2ds(ξ)nc(ξ)

)
,

ξ = x− 4(2−m2)t.
(21)

Case 12. Choosing P = 1, Q = 2m2−1, R = −m2(1−m2),
and f(ξ) = ds(ξ) , we obtain the Jacobi elliptic function
solution of (5)

u12 = 12
α

(
(2m2 − 1)−

√
2m2 − 1cs(ξ)nd(ξ)

)
,

ξ = x− 4(2m2 − 1)t.
(22)

Case 13. Choosing P = 1/4, Q = (1 − 2m2)/2, R = 1/4,
and f(ξ) = ns(ξ) ± cs(ξ) , we obtain the Jacobi elliptic
function solution of (5)

u13 = 12
α

((
1
2 −m

2
)
−
√

1
2 −m2ds(ξ)

)
,

ξ = x− 2(1− 2m2)t.
(23)

Case 14. Choosing P = (1−m2)/4, Q = (1+m2)/2, R =
(1−m2)/4, and f(ξ) = nc(ξ)±sc(ξ) , we obtain the Jacobi
elliptic function solution of (5)

u14 = 12
α

(
1
2

(
1 +m2

)
+
√

1
2 (1 +m2)dc(ξ)

)
,

ξ = x− 2(1 +m2)t.
(24)

Case 15. Choosing P = 1/4, Q = (m2 − 2)/2, R = m2/4,
and f(ξ) = ns(ξ) ± ds(ξ) , we obtain the Jacobi elliptic
function solution of (5)

u15 = 12
α

((
1
2m

2 − 1
)
−
√

1
2m

2 − 1cs(ξ)
)
,

ξ = x− 2(m2 − 2)t.
(25)

Case 16. Choosing P = m2/4, Q = (m2−2)/2, R = m2/4,
and f(ξ) = sn(ξ) ± icn(ξ) , we obtain the Jacobi elliptic
function solution of (5)

u16 = 12
α

(√
1
2m

2 − 1dn(ξ)(cn(ξ)−isn(ξ))sn(ξ)+icn(ξ)

)
+ 12
α

(
1
2m

2 − 1
)
,

ξ = x− 2(m2 − 2)t.

(26)
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Case 17. Choosing P = m2/4, Q = (m2−2)/2, R = m2/4,
and f(ξ) =

√
m2 − 1sd(ξ) ± cd(ξ), we obtain the Jacobi

elliptic function solution of (5)

u17 = 12
α

(
1
2m

2 − 1
)
+ 12

α

√
1
2m

2 − 1

.

(√
m2−1cn(ξ)+(m2−1)sn(ξ)

dn(ξ)(
√
m2−1sn(ξ)+cn(ξ))

)
,

ξ = x− 2(m2 − 2)t.

(27)

Case 18. Choosing P = 1/4, Q = (1 − 2m2)/2, R = 1/4,
and f(ξ) = mcd(ξ)± i

√
1−m2nd(ξ), we obtain the Jacobi

elliptic function solution of (5)

u18 = 12
α

(
1
2 −m

2
)
+ 12

α

√
1
2 −m2

.

(
msn(ξ)(−1+m2+i

√
1−m2mcn(ξ))

dn(ξ)(mcn(ξ)+i
√
1−m2)

)
,

ξ = x− 2(1− 2m2)t.

(28)

Case 19. Choosing P = 1/4, Q = (1 − 2m2)/2, R = 1/4,
and f(ξ) = msn(ξ) ± idn(ξ)nd(ξ), we obtain the Jacobi
elliptic function solution of (5)

u19 = 12
α

(
1
2 −m

2
)
+ 12

α

√
1
2 −m2

.
(
mcn(ξ)(dn(ξ)−imsn(ξ))

msn(ξ)+idn(ξ)

)
,

ξ = x− 2(1− 2m2)t.

(29)

Case 20. Choosing P = 1/4, Q = (1 − 2m2)/2, R = 1/4,
and f(ξ) =

√
m2 − 1sc(ξ) ± idc(ξ), we obtain the Jacobi

elliptic function solution of (5)

u20 = 12
α

(
1
2 −m

2
)
+ 12

α

√
1
2 −m2

.

(√
m2−1dn(ξ)−isn(ξ)(m2−1)
cn(ξ)(

√
m2−1sn(ξ)+idn(ξ))

)
,

ξ = x− 2(1− 2m2)t.

(30)

Case 21. Choosing P = (m2 − 1)/4, Q = (m2 +1)/2, R =
(m2 − 1)/4, and f(ξ) = msd(ξ) ± nd(ξ), we obtain the
Jacobi elliptic function solution of (5)

u21 = 12
α

(
1
2

(
1 +m2

)
+m

√
1
2 (1 +m2)cd(ξ)

)
,

ξ = x− 2(1 +m2)t.
(31)

Case 22. Choosing P = m2/4, Q = (m2 − 2)/2, R = 1/4,
and f(ξ) = sn(ξ)/(1±dn(ξ)), we obtain the Jacobi elliptic
function solution of (5)

u22 = 12
α

(
1
2m

2 − 1 +
√

1
2m

2 − 1cs(ξ)
)
,

ξ = x− 2(m2 − 2)t.
(32)

Case 23. Choosing P = −1/4, Q = (m2 + 1)/2, R =(
1−m2

)2
/4, and f(ξ) = mcn(ξ) ± dn(ξ), we obtain the

Jacobi elliptic function solution of (5)

u23 = 12
α

(
1
2 (m

2 + 1)−m
√

1
2 (m

2 + 1)sn(ξ)
)
,

ξ = x− 2(m2 + 1)t.
(33)

Case 24. Choosing P =
(
1−m2

)2
/4, Q = (m2 +

1)/2, R = 1/4, and f(ξ) = ds(ξ) ± cs(ξ), we obtain the
Jacobi elliptic function solution of (5)

u24 = 12
α

(
1
2 (m

2 + 1)−
√

1
2 (m

2 + 1)ns(ξ)
)
,

ξ = x− 2(m2 + 1)t.
(34)

Case 25. Choosing P = 1/4, Q = (m2 − 2)/2, R = m2/4,
and f(ξ) = dc(ξ) ±

√
1−m2nc(ξ), we obtain the Jacobi

elliptic function solution of (5)

u25 = 12
α

(
1
2m

2 − 1
)
+ 12

α

√
1
2m

2 − 1

.

(
sn(ξ)(1−m2+

√
1−m2dn(ξ))

cn(ξ)(dn(ξ)+
√
1−m2)

)
,

ξ = x− 2(m2 − 2)t.

(35)

Case 26. Choosing R = m2Q2/
(
m2 + 1

)2
P,Q < 0, P >

0, and f(ξ) =
√
−m2Q/(m2 + 1)P sn(

√
−Q/(m2 + 1)ξ)

, we obtain the Jacobi elliptic function solution of (5)

u26 = 12
α Q+ 12

α

√
Q
√
−Q

1+m2 cs
(√

−Q
1+m2 ξ

)
.dn
(√

−Q
1+m2 ξ

)
,

ξ = x− 4Qt.

(36)

Case 27. Choosing R = (1 − m2)Q2/
(
m2 − 2

)2
P,Q >

0, P < 0, and f(ξ) =
√
−Q/(2−m2)P

dn
(√

Q/(2−m2)ξ
)
, we obtain the Jacobi elliptic

function solution of (5)

u27 = 12
α Q−

12
α

√
Q
√
−Q
m2−2m

2cd
(√

−Q
m2−2ξ

)
.sn
(√

−Q
m2−2ξ

)
,

ξ = x− 4Qt.

(37)

Case 28. Choosing R = m2(m2 −
1)Q2/

(
2m2 − 1

)2
P,Q > 0, P < 0, and

f(ξ) =
√
−m2Q/(2m2 − 1)Pcn

(√
Q/(2m2 − 1)ξ

)
,

we obtain the Jacobi elliptic function solution of (5)

u28 = 12
α Q−

12
α

√
Q
√

Q
2m2−1dc

(√
Q

2m2−1ξ
)

.sn
(√

Q
2m2−1ξ

)
,

ξ = x− 4Qt.

(38)

Case 29. Choosing P = 1, Q = 2 − 4m2, R = 1, and
f(ξ) = sn(ξ)dn(ξ)/cn(ξ), we obtain the Jacobi elliptic
function solution of (5)

u29 = 12
α

(√
2−4m2(−2m2sn2(ξ)+m2sn4(ξ)+1)

cn(ξ)sn(ξ)dn(ξ)

)
,

+ 12
α (2− 4m2)

ξ = x− 8(1− 2m2)t.

(39)

Case 30. Choosing P = m4, Q = 2m2 − 4, R = 1, and
f(ξ) = sn(ξ)cn(ξ)/dn(ξ), we obtain the Jacobi elliptic
function solution of (5)

u30 = 12
α

(√
2m2−4(m2sn4(ξ)−2sn2(ξ)+1)

dn(ξ)sn(ξ)cn(ξ)

)
,

+ 12
α (2m2 − 4)

ξ = x− 8(m2 − 2)t.

(40)
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Case 31. Choosing P = 1, Q = 2m2+2, R = 1−2m2+m4,
and f(ξ) = cn(ξ)dn(ξ)/sn(ξ) , we obtain the Jacobi elliptic
function solution of (5)

u31 = 12
α

(
2(m2 + 1) +

√
2(m2+1)(m2sn4(ξ)−1)
dn(ξ)sn(ξ)cn(ξ)

)
,

ξ = x− 8(m2 + 1)t.
(41)

Case 32. Choosing P = A2(m − 1)2/4, Q =
(m2 + 1)/2 + 3m,R = (m − 1)2/4A2, and f(ξ) =
cn(ξ)dn(ξ)/A (1 + sn(ξ)) (1 +msn(ξ)) , we obtain the Ja-
cobi elliptic function solution of (5)

u32 = 12
α

(
m2sn2(ξ)+msn2(ξ)−m−1

dn(ξ)cn(ξ)

)
.
√

1
2m

2 + 1
2 + 3m+ 12

α

(
1
2m

2 + 1
2 + 3m

)
,

ξ = x− 2(m2 + 1 + 6m)t.

(42)

Case 33. Choosing P = A2(m + 1)2/4, Q =
(m2 + 1)/2 − 3m,R = (m + 1)2/4A2, and f(ξ) =
cn(ξ)dn(ξ)/A (1 + sn(ξ)) (1−msn(ξ)) , we obtain the Ja-
cobi elliptic function solution of (5)

u33 = 12
α

(
m2sn2(ξ)−msn2(ξ)+m−1

dn(ξ)cn(ξ)

)
.
√

1
2m

2 + 1
2 − 3m+ 12

α

(
1
2m

2 + 1
2 − 3m

)
,

ξ = x− 2(m2 + 1− 6m)t.

(43)

Case 34. Choosing P = −4/m,Q = 6m −
m2 − 1, R = −2m3 + m4 + m2, and f(ξ) =
mcn(ξ)dn(ξ)/

(
msn2(ξ) + 1

)
, we obtain the Jacobi elliptic

function solution of (5)

u34 = 12
α sn(ξ)

(
msn2(ξ)(m+1)2−m(m+2)−1
dn(ξ)cn(ξ)(msn2(ξ)+1)

)
.
√
6m−m2 − 1 + 12

α

(
6m−m2 − 1

)
,

ξ = x− 4(6m−m2 − 1)t.

(44)

Case 35. Choosing P = 4/m,Q = −6m − m2 − 1, R =
2m3+m4+m2, and f(ξ) = mcn(ξ)dn(ξ)/

(
msn2(ξ)− 1

)
, we obtain the Jacobi elliptic function solution of (5)

u35 = 12
α sn(ξ)

(
msn2(ξ)(m−1)2+m(m−2)+1
dn(ξ)cn(ξ)(msn2(ξ)−1)

)
.
√
−6m−m2 − 1 + 12

α

(
−6m−m2 − 1

)
,

ξ = x+ 4(6m+m2 + 1)t.

(45)

Case 36. Choosing P = −(m2 + 2m + 1)B2, Q =
2m2 + 2, R = (2m − m2 − 1)/B2, and f(ξ) =(
msn2(ξ)− 1

)
/B
(
msn2(ξ) + 1

)
, we obtain the Jacobi

elliptic function solution of (5)

u36 = 12
α

(
4m
√

2(m2+1)sn(ξ)cn(ξ)dn(ξ)

m2sn4(ξ)−1

)
+ 12
α

(
2(m2 + 1)

)
,

ξ = x− 8(m2 + 1)t.

(46)

Case 37. Choosing P = −(m2 − 2m + 1)B2, Q =
2m2 + 2, R = −(2m + m2 + 1)/B2, and f(ξ) =(
msn2(ξ) + 1

)
/B
(
msn2(ξ)− 1

)
, we obtain the Jacobi

elliptic function solution of (5)

u37 = − 12
α

(
4m
√

2(m2+1)sn(ξ)cn(ξ)dn(ξ)

m2sn4(ξ)−1

)
+ 12
α

(
2(m2 + 1)

)
,

ξ = x− 8(m2 + 1)t.

(47)

Remark 1. The validity of all the solutions which are
obtained are verified.
Remark 2. In fact, there are more than three solutions
compared to the latest related works [21] .

II. CONCLUSION

In this paper, some exact solutions of Jacobi elliptic
function form from the coupled KdV-mKdV equation are
derived. When the modulus of the Jacobi elliptic function
m → 0 or 1 , the corresponding solitary wave solutions
and trigonometric function solutions are also obtained. It is
shown that the (G

′
/G)-expansion method provides a very

effective and powerful tool for solving nonlinear equations
in mathematical physics.
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