
 

Abstract— This paper presents results of placing a one metal 
cell closed to a mobile phone. The one metal cell is the Yee’s 
cell that has a metal characteristic, with high conductivity and 
low permittivity. In general, the mobile phone was modeled by 
a dipole antenna. The one metal cell’s characteristic can be 
model as one Yee’s cell [1-3]. This simulation uses Finite 
Difference Time Domain (FDTD) and its domain is divided into 
two parts: the physical domain and the artificial domain. First, 
the physical domain consists of a dipole antenna located at 1 
cm from a human head model and a one metal cell varied 
distance (Δl) from the dipole. In addition, the dipole antenna 
operated at 900 MHz and 1800 MHz was used in the 
simulation. Second, the artificial domain is a Perfectly 
Matched Layer (PML). The PML acts as an electromagnetic 
field absorbing layer and was backed by a Perfect Electric 
Conductor (PEC). The Specific Absorption Rate (SAR) was 
computed and averaged on a tissue mass of one gram and ten 
grams, SAR 1-g and SAR 10-g, respectively. Also, the average 
power (Pavg) absorbed in various human tissues is computed 
with a distance between the dipole antenna and the one metal 
cell as a varying parameter (Δl). There are three reference 
SAR values: the standard SAR 1-g (FCC, Federal 
Communications Commission), the simulation in an open area 
and the simulation with the metal wall. Results from the 
simulation show that the computed SAR 1-g and SAR 10-g 
values are not exceed the limitation values established by 
various standard institutes (1.6 Watt/kg), however, for Δl = 0-5 
cm, both of the SAR and the average power absorb are higher 
than the simulation with the metal wall and the simulation in 
an open area. 
 

Index Terms— Finite Difference Time Domain (FDTD), 
Perfectly Matched Layer (PML), One Metal Cell 

I. INTRODUCTION 

n recent years mobile phones or smart phones have gained 
popularity because of its versatility: internet capabilities, 

navigation and cameras. Engineering research on the subject 
of wireless phones and radio frequency (RF) energy has 
been conducted worldwide for many years. The Federal 
Communications Commission (FCC) established RF 
exposure safety guidelines for wireless phones [1]. Before a 
wireless phone model is available for sale to the public, it 
must be tested by the manufacturer and certified by the FCC 
that it does not exceed limits established by the FCC. One of 
these limits is expressed as a Specific Absorption Rate 
(SAR). 
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In 1996, the FCC adopted updated guidelines for 
evaluating human exposure to radio frequency fields from 
fixed transmitting antennas such as those used for a mobile 
phone. Also, the new guidelines for a mobile phone are 
identical to those recommended by the National Council 
on Radiation Protection and Measurements (NCRP). 
Furthermore, these guidelines are also similar to the 1992 
guidelines recommended by the American National     
Standards  Institute/Institute of Electrical and Electronics 
Engineers (ANSI/IEEE). In general, IEEE standard required 
that the SAR 1-g of handheld wireless phones not exceed 
1.6 watts/kg, averaged over 1-g mass of tissues [2]. 
Although the SAR 1-g is determined at the highest power 
level, the actual SAR 1-g value while operating depends on 
factors such as the proximity of the antenna to the human 
head while in use. 

 
The finite-difference time-domain (FDTD) formulation 

was introduced by Yee in 1966 [3]. Some work has been 
done in the past to show the capability of FDTD to calculate 
radiation patterns of mobile telephones [4-5], but extensive 
work on simulation of a mobile phone operating near a 
metal wall has never been presented. With the introduction 
of Perfectly Matched Layer (PML) by Berenger in 1996 [6], 
many FDTD schemes with PML has been implemented to 
correctly model today’s cellular phones. Moreover, the 
classical FDTD was modified by using an unsplitting field 
formulation which can combine the simulated physical 
domain and an artificial absorbing layer as a single 
computational domain [7]. 

 
This paper presents the simulation of electromagnetic 

interaction in the human head model using the FDTD with a 
modified PML. The simulated physical domain contains a 
dipole antenna, a high-resolution human head model and a 
metal wall. In the simulation, a dipole antenna acts as a 
mobile phone operated at 900 MHz and 1.8 GHz. In 
addition, the time-stepping system resulting from the 
discretization of the Maxwell’s equations is solved by 
imposing the excitation field as a function of time at the 
proper cell with initial and boundary conditions. A high-
resolution human head model’s parameters: Permittivity (), 
Conductivity (σ) and Permeability (µ) were averaged to 
guarantee the continuity of the tangential E field component 
[8]. In each simulation, the distance between the metal wall 
and an antenna is a varied parameter. As the distance gets 
longer, both the required memory size and CPU’s time 
increase dramatically. Due to these problems, the simulated 
physical domain was truncated using a truncation method 
presented in [9-12].  
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II. THE REFERENCE SAR VALUES 

There are three reference SAR values: the standard SAR 
1-g = 1.6 Watt/kg (FCC, Federal Communications 
Commission), the simulation in an open area (the plastic 
case) and the simulation with the metal wall (the metallic 
case) 
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Fig. 1. The simulation in an open area. 
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Fig. 2. The simulation with the metal wall. 
 

III. THE SIMULATION MODEL 

This paper sets the one metal cell next to the dipole and 
varied distance (Δl) between the dipole and one metal cell. 
For Δl = 0-6 cm, this paper computes the SAR 1-g, the SAR 
10-g and the average power absorbed in human head. 
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Fig. 3. The simulation with the one metal cell. 
 
 
 

IV. THE SIMULATION RESULT 

Table I. The simulation result at 900 MHz 
 

One Metal Cell next to Dipole 

Distance(d) SAR 1 g SAR 10 g Power 

(cm) (Watt/kg) (Watt/kg) (Watt) 

0 1.50837 1.42997 0.26252 

1 1.44871 1.31357 0.21796 

2 1.44335 1.30665 0.21494 

3 1.44225 1.30457 0.21300 

4 1.44164 1.30322 0.21133 

5 1.44122 1.30238 0.21003 

6 1.44094 1.30195 0.20919 

7 1.44077 1.30190 0.20881 

8 1.44064 1.30209 0.20884 

9 1.44052 1.30245 0.20921 

10 1.44038 1.30287 0.20983 

 
* SAR 1-g (Standard) = 1.6 Watt/kg 
** SAR 1-g (Open Area) = 1.44307 Watt/kg 
*** SAR 10-g (Open Area) = 1.30634 Watt/kg 
**** Power Absorbed (Open Area) = 0.21486 Watt 
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Fig. 4. Top view of Et  

in the simulated physical domain at 900 MHz 
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Fig. 5. Spatial-Average SAR 1-g at 900 MHz. 
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Fig. 6. Spatial-Average SAR 10-g at 900 MHz. 
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Fig. 7. The average power absorbed in human head  
at 900 MHz. 

 
Table II. The simulation result at 1800 MHz 

 
One Metal Cell next to Dipole 

Distance(d) SAR 1 g SAR 10 g Power 

(cm) (Watt/kg) (Watt/kg) (Watt) 

0 1.34737 1.31281 0.15998 

1 1.29133 1.17379 0.11768 

2 1.28487 1.17086 0.11781 

3 1.28145 1.17151 0.11956 

4 1.27873 1.17156 0.12156 

5 1.27796 1.17088 0.12291 

6 1.27975 1.17032 0.12294 

7 1.28293 1.17018 0.12179 

8 1.28562 1.17058 0.12026 

9 1.28658 1.17112 0.11915 

10 1.28569 1.17155 0.11887 

 
* SAR 1-g (Standard) = 1.6 Watt/kg 
** SAR 1-g (Open Area) = 1.28455 Watt/kg 
*** SAR 10-g (Open Area) = 1.17044 Watt/kg 
**** Power Absorbed (Open Area) = 0.11773 Watt 
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Fig. 8. Top view of Et in the simulated physical domain  

at 1800 MHz 
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Fig. 9. Spatial-Average SAR 1-g at 1800 MHz. 
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Fig. 10. Spatial-Average SAR 10-g at 1800 MHz. 
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Fig. 11. The average power absorbed in human head  
at 1800 MHz. 

 

V. CONCLUSION 

The FDTD have been applied to the simulation model 
and operated frequencies are 900 MHz and 1800 MHz. 
Results show that SAR 1-g and SAR 10-g do not exceed the 
ANSI/IEEE standard. Surprisingly, both SARs and the 
average power absorbed in human head are higher than the 
simulation with the metal wall. 
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