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Equivalence Relations Between Absolute Riezs

And The Product of Two Absolute Riezs
Summability Methods

Amjed Zraiqat

Abstract— The paper deals with the problem of inclusion
and equivalence of absolute Riesz method with that of the
product of two absolute Riesz summability methods. Necessary
and Sufficient conditions concerning (Inclusion and
Equivalence) of these two methods have been established.
Examples to show that each of these inclusions may hold in
only one way without the other have been given. An example to
show that the equivalence may hold in some non trivial case
have been given , and an example to show that even if each
Riesz method is regular, the inclusion is not hold (in either
way) have been constructed.

Index Terms — absolutely regular, absolute Riesz method,
equivalence, sequence - to - sequence transformation,
summable.

[. INTRODUCTION
Each sequence { I'y } for which

Ry=rp+r+..... +1, # 0 for cach n defines (N.I)

, where.

n_ 1<
tr(])zR—ZI’kSk
n k=0

The product ( N. pP)( N.q ) which was first considered by
the author ([1] 1980) is given by

1 n n
N _P_z S gy z P ()

Let (A) be a sequence — to - sequence transformation given
by
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n
th = > Cnk Sk 3)
k=0

If t,—>sann—o,{S,} is said to be summable A to
sum s, and if in addition {t},} is of bounded variation, then

{ Sn } is said to be absolutely summable (A) or summbale

|A]l. (A) is said to be regular, if it sums every convergent
series to its ordinary sum. It follows from Toeplitz's

Theorem (Hordy [8], Theorem 2) that ( N. P) is regular if,
and only if,

|P,|—>was n—w,and Y| p [=O (P, |) )

k=0
If whenever {Sn } has a bounded variation if follows that

{ty} has a bounded variation, and if the limits are
preserved, we shall say that (A) is absolutely regular.
We shall write throughout (A) C (B) to mean that any series

summable by (A) to sum s is necessarily summable (B) to
the same sum. (A) and (B) are equivalent if (A) D (B) and

(B) D (A). In this case we write A~ B. We shall write
throughout for any

AU, =U,-U,,;; (n=0)

sequence,

II. INCLUSION AND EQUIVALENCE RELATIONS

On inclusion and equivalence relations of different
summability methods much work has been done already

e.g. (2], [3], [4], [5]. [6], [7] and [8]).

[II. OBJECT OF THE PAPER
In [2] the author obtained necessary and sufficient
which ~ (N,r)C(N, p)(N,q)and
conversely, consequently for which
(N,r) ~ (N, p)(N,q). The object of this paper is to

conditions  for

and

obtain results involving absolute methods |(N,r) | and

| (N, p)(N,Qq)| analogous to those by the author [2;

Theorems (3.1), (3.2) and (3.3)] , and to show that the
inclusion may hold in only one way without the other , and
that the equivalence is valid in some non — trivial case ,
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finally, to show that even if (N ,r),(N,p) and

(N, a) are regular, the inclusion need not hold in either
way. These results will be concluded in sections (6) and (7).

IV. REQUIRED RESULT

This section is devoted to result that is necessary for our
purposes.

Theorem (5.1) (Mears [9] the sequence — to - sequence
transformation given in (3) is absolutely regular if and only
if
o, —>0asn—owo foreach k(5

D> chx =1 asn —»oo, (6)
k=0

and

Dok, =Dy [FO M), (k) (D)
n=0 [v=k v=k

V. MAINRESULTS

In this section we prove our main results:
Theorem (6.1): Let |P,| — ©,|Q,;|— ©, and let I, #

0; (n=0),then | N, r |c [(N, p) (N ,q)| if, and only

if
‘7/n,k—1 ~7Vn+l,k-1 ‘20(1), (®)
n=k-1
where
R
Ynn = nqnpn’ ©
I::‘n Qn M
and
1
Ink-1 =~ Pk—1+(Qk_Rk )Z ; Nz k
I:.n k u= k
(10)

Further, if ' 1 is decreasing in n, then (8) is equivalent
to

Yk —VN+1k-1 =O().  VN=k=o0. (11)
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t{" P9 be

Proof:Let and respectively

the(N",ryand(N, p) (N, q) transforms of {Sn } Using

the inversion formula in (1) to obtain Sn in terms of tr(]r)

and substitute this in (2) to gettr(]p’q) in terms of tr(]r), we
have
(PO _ Sy (D)
t" =D Yoty (12)
v=0
where
Y =
nn =7n,n (13)
v R q_Vip_m_qu Zn: Pu
nv — P 5
n LIv u=vQy i1 u=v+ Qu
(0<v<n-1), (14)
and
Yn,v =0 otherwise (15)
The special case in which S;=1 (N = 0) gives

t() =1 = t{P-9) (n>o0) and(12)implies that

o
D You=1
v=0

(16)

which implies (6) Using the hypothesis, one may get that

Y,, > 0asn— o for each V, and (5) is satisfied.

Therefore Theorem (5.1) implies the result if, and only if

Z ZYn,v - ZYn+1,v =0(1) (17)
n=0lv=Kk v=Kk
Using (15), we see that (17) is equivalent to
Z Zan zYnHv O(l) (18)
n=k-1|v=k
or to:
o (k-1
ik 1+ 212 Y ZYn+1 J=oMm, (19
n=k|v=0
Write
1
Agy=m Z& (20)
P N iy
it follows from (14) that
Yov=RvAny —Ry Apyi;0svsn—-1 (2D
this implies that
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k-1
zYn,v =R, An,o -R, An,l + RlAn,l -

RiAns +-F+ R Ag ko =R Ank
v=0
=To Ano +1 At Ao — R An
_ 1 Pr—1
+(0o + )—+ (0o +0p Feee +
{qo(Qo] (QO q, (qo a Ak 1)(Qk 1)
Pu| R % Py
+(0o + 0y +..oF —_— —
Go + Oy— 1)quQu} P h 20,
1 Re-19k - Pu
P
Pn{ -1 +(Qyy — h UZ%(QU}
1 Ry dk Py
B+ -
Pn{ -1 +(Qx o L%Qu}
=7nk-1 ;nxk (22)
Using (9), (10) and (13) we see that
Yok =7kk =1 =¥k k1o which implies that
Yk-1k-1 -7k =0 if and only if

Zk-1k_1+ 7k ks bounded, which is if, and only if
Ykk = 7k Is bounded. Using this, the result follows
from (19) and (22).

Finally, if ¢, . 4 s decreasing in n, then

Yokl =7nslk_1 20 and the equivalence of (8) and

(11) holds. This completes the proof.
Remark (6.1) We remark that 3, , =O (1) : is necessary

(but not sufficient) condition for (8) to be satisfied.
Theorem (6.2) Let |R, |» o ,{p,}and { q,} be

nonzero sequences, then | (N, p)(N,q)|C|N,r| if,

and only if
> By |=0() (23)
n=k-1
where
Bn,n _ In I:)n Qn 24)
Rn PnQn

B R Af- Qi APn—l haQu RhQu (25)
TR % Rk R

Q<I’k Q( Ik 1
Bk =R —=*-R_*AX)A—, 0<k<n-2 (26)
K e R G Ry

and

Bn,k =0 otherwise 27)
Further, if ;> 0, {I,,} decreasing, { P} and {Q,}
(N, p)(N,q)|<| N,r| if, and

are increasing, then

only if By, =0 (1).

Proof: Let {t,(]r)} and {tgp’q)} be respectively
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the (N, r) and (N,P)(N,q) transforms of { S, }. Write
(2) in the form

1< 1 &
PP —— 3 p,— S = Z p, A,say, (28)
n v=0 Qv R=0 n v=0
we have
P t(p,Q)_p t(p a)
A, =—"7 : (29)
Pn
and
An Qn —An Qn
Sn — n n n n (30)
dn
Using (29) and (30) , it follows from (1) that
n
" => Fy tiP? 31)
v=0
where
I P
n,n:Bn,n: nQn . (32)
Rn dn £n
1= Poi {rn—l Qn _ Qn _ Qn-i M }
n,n—
Un-1Pn-1 Gn Pn  Pn1ln
P
Fov :—VAE&Ar—VJ,OSVSn—Z (34)
Ry Py Qv
33)
and
Fn,v =0 otherwise (35)

(5) follows from the hypothesis and (34). The special case
in which
. i r q) 1.
S, =1; (n=0)gives t" =t{PY =1 ;(n>0)
and (31) implies that

n
D> Fav=1,
v=0

k 1
P 41 Pt e+ Feat s —Fex 141 SR, A[? V]\ > Ia|

v=0 v qv

Q,

Write G, = , we have

v Qv

k-1
Z(Pv Gv _Pv Gv+l)= Py Go +p; Gl tot Py Gk—l _Pk—l Gk
v=0

Pk ' Qk AKX rk
Ok Pe Gk

Qcr Qc 1

=Ry —kk _Pk—lik A

le

(38)
K P k

Substitute this in (37) , we see that the left hand side of (7)

reduces to

Z| Bn,k—l |

n=k-1
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where By, |, as given by (24)-(27) .Hence , the result

follows from Mears Theorem (5.1)

Next, assume that | (N, p)(N,q) |C| N, r | then (23) is
satisfied which implies that By, , = 0(1). Finally, let By, ,
=0(1), and write Bn,n—l in the form

Rn P, 0 _Pn—l

Bn n-1— Bn n ( )+
- ’ Rn+1 pn+1 qn+1 I:)n
R._ Poalna 1,0,
Lot Gy
Rn pn qn r-n—l qn

and observe that

Iy I<IR, - Qk p Qept L

n=k-+1 pk k Rk+2
R, Py Ry k
=] o B [ B [+
k+2 k "Vk+2 k 7 Yk+2
|M” |
kk >
I:)k rkc]nJrl Rk+2
it follows from the assumptions that if B an =0 (1) then

0
By n_jand Z| Brk-1 | are bounded. This implies that

n=k+1
(23) is  satisfied, and|(ﬁ, p)(N,q)|g|N,r|. This
completes the proof.
The following Remake follows from Theorem (6.2)
Remark (6.2) We remark that the condition that

B,,=0 () is necessary (but not sufficient) for (23) to
be satisfied.

An immediate corollary of Theorems (6.1) and (6.2) is
the following corollary:
Corollary(6.1):Let | P, | > ©,|Q,

| o, Ry [ o0 and

let P, #0,0,#0 and I, #0 (all n> 0) then
if, and only if (8) and (23) are

satisfied.

VI. EXAMPLES

In this section we will give four examples. In the first
example, we will show that (8) is satisfied but (23) is not
valid. In the second example we will show that (23) is
satisfied but (8) is not hold. The third example will be given
to show that both (8) and (23) are satisfied and thus the
equivalence may hold. Finally, in the fourth example we

will show that even if(N,r),(N,p) and(N,q) are

regular, (8) and (23) need not be satisfied.
Example (7.1): Let

4, =n';(n>0), K, =L, =n!n(n>T)and(N, p)be (C,l), (39)
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then ‘(N, I’)‘ c but not conversely.
Proof: The result that | (C,1)(N,q)|z|N,r| follows

form (32), (39) together with Theorem (6.2) Next, we will
show that (8) is satisfied, and Theorem (6.1) yields that

|(N, I’)| c . Using (39) we have
P,=LP,=n+LR,=(n+1!;(n>0)and Q,~n! (40)
Using (39) and (40), one <can ecasily seen

that| Yk=1k=1 — Yk k-1 | is bounded. Using (39) and (40), it
follows from (10) that
Ynk=1~7Vn+1k-1=

1 K+DIKL & 1
(n+1)(n+2){k+(Qk ktk ZQ}

k!
(k+1).k.) 1 ' 1 N>k
k!k Qny N+2
Observe that Oy +Qy_; = (K+ 1K —1)! givens
(kK+1)'k!
(Qx — Tk —)=Q_2.
this implies that the right hand side of (41) reduces to:

1 Qn
(n+1)(n+z>{ Q“ZQU} (N +2) Q.

Observe that Qp,p > (N+1)Q_5; (K < N) , we see that

—(Qk - (41)

(42)

(43)

k > Qk72
(n+DH(n+2) (n+2)Q,,

so that the quantity in (43) is greater than zero, and implies
that  Yp 1 —Yniik-1>0; K <N This implies that the
left hand side of (8) reduces to.

| Motk =kt 1Mk — 1M g g (44)
N—o

Using (9), (10), (39) and (40) one can easily seen that the
first two terms of (44) are bounded, and

1 N+1 1
| N1kt = E(Pk—l +Qys uéau)|
N+2 N+2

Therefore, the Quantity in (44) is bounded, and (8) is
satisfied. This completes the proof.

Example (7.2): let

d,=2",p,=3"andr,=2n+1;(n>0), (45
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then |(N,P)(N,q)|<|(N,r)| but the converse is not
true.
Proof Using (45), we have.

(3 n+l 1)

Q,=2"-1,P,= andR,=(n+1)?;(n>0)  (46)

Using (45) and (46), we see that Vnn given in (9) is not
bounded. Using Remark (6.1) we see that (8) is not
satisfied, and Theorem (6.1) implies
that N",r |¢ (N,P)(N,q) |- Next, we will show that
(23) is satisfied, and Theorem (6.2) yields the result. Using
(45) and (46), it is clear thatB Bnno are

bounded, and for o < k < n-2, the left hand side of (23) is
equivalent to:

and

@ -pEk+D
2k

| B i 1] By [+ (K +1)°

(3“—1)(2“”—1)[2k+1_2k+3 ro(l),

1
2.3 2k 2k ”(k+2)2

which is clearly bounded, and (23) holds. This completes
the proof.
Example (7.3) Let

rhn=nin,p, =2",q,=3"  ;(n20), (@)
Then |(N, )| ~ [(N, p)(N, @)
Proof Using (47), we have
et (C) 48
R,=(n+D!,P, =2 —IMMQn:——E———xnzm( )
Using (47) and (48), it can be easily shown that
5
| Br—1.k—1 153 5 | By k1 | SE’ (49)
and that
z 3K 1) k1K
S By <l i=C DK
n=k+1 2 3
_(2k—1)(3k+1—1)Ak!7k 1
2.2k 3K (k+2)!
1 3 3 1 1
< + + + =<,
k+2 2(k+2) 2k+2) 2 2
(50)

thus (23) follows from (49) and (50), and Theorem (6.2)
implies that | (N, P)(N,q) |C| N,r|. Next, we will

show that (8) is satisfied, and the result follows from
theorem (6.1) together with corollary (6.1).

Using (47) and (48), we see that the first term of the left
hand side of (8) is bounded. When n > k, we have

P Rk |, <= 2
nket = Vneik—t == Pecy +(Q — ) D
PnPnJrl rk u:kQu
p Qxq
_ n+l (Qk _ k k )
Qn+1 I:)n+1 I
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D

Using (47) and (48), we have

R
Q - k 9k >0

I

k>3 (52)

and
pn+1 pn pn+1
I:)n I:>n+1 Qn Qn+1 I:)n+1

Using (52) and (53), it follows from (51) that {]/n k—l}

(53)

is decreasing in n, so by Theorem (6.1), (8) is satisfied if,
and only if (11) is satisfied. Using (47) and (48), it can be
easily seen that (11) is satisfied. This completes the proof.

Example (7.4) Let

p_z“ n odd r_{l
: 1 neven| " 4"

and g, =3";(n>0),

n odd
n even (54)

Then it is clearly that each of(N,p),(N,r) and

(N, Q) is regular but neither (8) nor (23) is satisfied.
Proof Using (51), we have

b 2™ _1 n odd
" n+1 n even |

n+1 n odd
Rn — 4n+1 _1 (55)
n even
3
n+l _
and Q, =>——%(n>0),

Using (54) and (55), it follows from (9) that when n is odd
then,

(N+1).3".2"

Q" —1)(3n+12_1).1

which by Remark (6.1) implies that (8) is not satisfied. Also,
it follows from (24) that when n is even, then

3n+1 _1
4".(n+1)( )
n,n = (4n+1 _1
3
which by Remark (6.2) implies that (23) is not satisfied.
This completes the Proof.

Von= #0(1)

B

20 (1)

).1.3"
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