
 

 

 
 

Abstract— The paper deals with the problem of inclusion 
and equivalence of absolute Riesz method with that of the 
product of two absolute Riesz summability methods. Necessary 
and Sufficient conditions concerning (Inclusion and 
Equivalence) of these two methods have been established. 
Examples to show that each of these inclusions may hold in 
only one way without the other have been given. An example to 
show that the equivalence may hold in some non trivial case 
have been given , and an example to show that even if each 
Riesz method is regular, the inclusion is not hold (in either 
way) have been constructed. 
 

Index Terms — absolutely regular, absolute Riesz method, 
equivalence, sequence – to - sequence transformation, 
summable. 
 

I. INTRODUCTION 

Each sequence { nr } for which 

0........10  nn rrrR  for each n defines ).( rN  
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The product ( pN . ) ( qN . ) which was first considered by 

the author ([1] 1980) is given by  
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Let (A) be a sequence – to - sequence transformation given 
by  
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If }{, nn Snanst   is said to be summable A to 

sum s, and if in addition { nt } is of bounded variation, then 

{ nS } is said to be absolutely summable (A) or summbale 

|A|. (A) is said to be regular, if it sums every convergent 
series to its ordinary sum. It follows from Toeplitz's 

Theorem (Hordy [8], Theorem 2) that ( pN . ) is regular if, 

and only if, 
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If whenever { nS } has a bounded variation if follows that 

{ nt } has a bounded variation, and if the limits are 

preserved, we shall say that (A) is absolutely regular. 
We shall write throughout (A) (B) to mean that any series 
summable by (A) to sum s is necessarily summable (B) to 
the same sum. (A) and (B) are equivalent if (A)   (B) and 
(B)   (A). In this case we write A~ B. We shall write 
throughout for any sequence,      

)0(;1   nUUU nnn   

 

II. INCLUSION AND EQUIVALENCE RELATIONS 

On inclusion and equivalence relations of different 
summability methods much work has been done already 
e.g. ([2], [3], [4], [5], [6], [7] and [8]). 

 

III. OBJECT OF THE PAPER 

In [2] the author obtained necessary and sufficient 

conditions for which ),(),(),( qNpNCrN and 

conversely, and consequently for which 

),( rN ~ ),(),( qNpN . The object of this paper is to 

obtain results involving absolute methods | ),( rN | and 

| ),(),( qNpN | analogous to those by the author [2; 

Theorems (3.1), (3.2) and (3.3)] , and to show that the 
inclusion may hold in only one way without the other , and 
that the equivalence is valid in some non – trivial case , 
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finally, to show that even if ),(),,( pNrN  and 

),( qN  are regular, the inclusion need not hold in either 
way. These results will be concluded in sections (6) and (7). 

 

IV. REQUIRED RESULT 

 
This section is devoted to result that is necessary for our 

purposes. 
Theorem (5.1) (Mears [9] the sequence – to - sequence 

transformation given in (3) is absolutely regular if and only 
if  
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V. MAIN RESULTS 

 
 
In this section we prove our main results: 

Theorem (6.1): Let | nP |  ,| nQ |  , and let nr  ≠ 

0; (n ≥ 0), then ),(),(|,| qNpNrN   if, and only 

if  
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Further, if  1, kn  is decreasing in n, then (8) is equivalent 

to 

.).1(1,1, okNOkNkk    (11) 

Proof:Let )(r
nt  and ),( qp

nt  be respectively 

the ),( rN and ),(),( qNpN  transforms of { nS  } Using 

the inversion formula in (1) to obtain nS in terms of )(r
nt  

and substitute this in (2) to get ),( qp
nt   in terms of )(r

nt , we 

have  
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and 
 

oY vn ,   otherwise                       (15) 

The special case in which nS =1 )( on   gives  

)(r
nt  =1 = )(),( ont qp

n   and (12) implies that 
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which implies (6) Using the hypothesis, one may get that 

 nasY vn 0,
  for each v , and (5) is satisfied. 

Therefore Theorem (5.1) implies the result if, and only if  
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Using (15), we see that (17) is equivalent to  
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it follows from (14) that  
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this implies that  
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Using (9), (10) and (13) we see that                            

1,,, 1  kkkkkkY  , which implies that 

)1(1,1,1 Okkkk     if ,and only  if 

kkkk ,1,1   is bounded, which is if, and only if 

kk , kk ,  is bounded. Using this, the result follows 

from (19) and (22). 
Finally, if }{ 1, kn  is decreasing in n , then 

oknkn   1,11,   and the equivalence of (8) and 

(11) holds. This completes the proof. 

Remark (6.1) We remark that )1(, Onn  : is necessary 

(but not sufficient) condition for (8) to be satisfied. 
Theorem (6.2) Let  }}{,|| nnn qandpR    be 

nonzero sequences, then |,||),(),(| rNCqNpN   if, 

and only if  
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 0, knB  otherwise                  (27) 

 
Further, if nr > 0, { nr } decreasing, { nP } and { nQ } 

are increasing, then  |,||),(),(| rNqNpN   if, and 

only if nnB ,  = O (1).  

Proof: Let }{ )(r
nt  and }{ ),( qp

nt  be respectively 

the ),( rN  and ),(),( qNPN  transforms of { nS }. Write 
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we have  
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Using (29) and (30) , it follows from (1) that  
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Substitute this in (37) , we see that the left hand side of (7) 
reduces to  
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where knB , , as given by (24)-(27) .Hence , the result 

follows from Mears Theorem (5.1) 

Next, assume that |,||),(),(| rNCqNpN then (23) is 

satisfied which implies that nnB ,  = 0(1). Finally, let nnB ,   

= 0(1), and write 1, nnB in the form 

 

1,1
1

1111

1

111
,1,

)1(

)(















nn
nn

nn

nn

nn

n

n

n

n

n

n

n

n

n

n
nnnn

B
qr

qr

qp

qp

R

R

P

P

q

q

p

p

R

R
BB

 

and observe that  

 

|,|||

||||||||||

1
||||

,
21

11

,
2

1
,

22

2
1

1
1,

kk
knkk

kkkk

kk
kk

kk
kk

kk

kk

k

k

kk

k

k

k
k

k

kk
k

kn
kn

B
RqrP

RqrP

B
RP

RP
B

RP

Rp

R

R

Rq

r

p

Q
P

q

rQ
RB























 

it follows from the assumptions that if )1(, OB nn   then 

1, nnB and 1,
1






 kn
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B    are bounded. This implies that 

(23) is satisfied, and rNqNpN ,),)(,(  . This 

completes the proof.  
 
The following Remake follows from Theorem (6.2) 
Remark (6.2) We remark that the condition that 

)1(, OB nn   is necessary (but not sufficient) for (23) to 

be satisfied. 
 

An immediate corollary of Theorems (6.1) and (6.2) is 
the following corollary:  
Corollary(6.1):Let  ||,||,|| nnn RQP  and 

let 0,0  nn qp  and nr ≠0 (all n ≥ 0) then 

rN , ~ ),)(,( qNpN if, and only if (8) and (23) are 

satisfied. 

VI.  EXAMPLES 

 
In this section we will give four examples. In the first 

example, we will show that (8) is satisfied but (23) is not 
valid. In the second example we will show that (23) is 
satisfied but (8) is not hold. The third example will be given 
to show that both (8) and (23) are satisfied and thus the 
equivalence may hold. Finally, in the fourth example we 

will show that even if ),(),,( pNrN  and ),( qN  are 

regular, (8) and (23) need not be satisfied. 
Example (7.1): Let 
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then qNCrN ,()1,(),(   but not conversely. 

Proof: The result that |,||),()1,(| rNqNC   follows 

form (32), (39) together with Theorem (6.2) Next, we will 
show that (8) is satisfied, and Theorem (6.1) yields that  

qNpNrN ,)(,(),(  . Using (39) we have 
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this implies that the right hand side of (41) reduces to: 
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Observe that )(;)1( 21 nkQnQ kn    , we see that  
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so that the quantity in (43) is greater than zero, and implies 

that   nkoYY knkn   ;1,11,  This implies that the 

left hand side of (8) reduces to. 
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Using (9), (10), (39) and (40) one can easily seen that the 
first two terms of (44) are bounded, and  
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Therefore, the Quantity in (44) is bounded, and (8) is 
satisfied. This completes the proof.  

 
Example (7.2): let  
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then |),(||),(),(| rNqNPN   but the converse is not 

true.  
Proof Using (45), we have. 
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Using (45) and (46), we see that nn,  given in (9) is not 

bounded. Using Remark (6.1) we see that (8) is not 
satisfied, and Theorem (6.1) implies 
that |),(),(|,| qNPNCrN  . Next, we will show that 

(23) is satisfied, and Theorem (6.2) yields the result. Using 

(45) and (46), it is clear that nnB ,   and  1, nnB  are 

bounded, and for o ≤ k ≤ n-2, the left hand side of (23) is 
equivalent to: 

),1(
)2(

1

2

32

2

12

3.2

)12()13(

2

)12()12(
)1(|||||

21

1

1
2

1,1,1

o
k

kk

k
kBB

kkk

kk

k

k

kkkk






 

















 
 
which is clearly bounded, and (23) holds. This completes 
the proof. 
Example (7.3) Let  
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thus (23) follows from (49) and (50), and Theorem (6.2) 

implies that |,||),(),(| rNCqNPN . Next, we will 

show that (8) is satisfied, and the result follows from 
theorem (6.1) together with corollary (6.1).  
Using (47) and (48), we see that the first term of the left 
hand side of (8) is bounded. When n ≥ k, we have  
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Using (47) and (48), we have  
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Using (52) and (53), it follows from (51) that }{ 1, kn  

is decreasing in n, so by Theorem (6.1), (8) is satisfied if, 
and only if (11) is satisfied. Using (47) and (48), it can be 
easily seen that (11) is satisfied. This completes the proof. 

 
Example (7.4) Let  
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Then it is clearly that each of ),(),,( rNpN  and 

),( qN  is regular but neither (8) nor (23) is satisfied.  

Proof Using (51), we have 
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Using (54) and (55), it follows from (9) that when n  is odd 
then,  
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which by Remark (6.1) implies that (8) is not satisfied. Also, 
it follows from (24) that when n is even, then 
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which by Remark (6.2) implies that (23) is not satisfied. 
This completes the Proof.  
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