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Abstract—Higher order Markov chains, by its very definition,
is the most flexible model for finitely dependent sequences
of random variables. In practical settings, estimation of the
dependency order is needed to identify other model parameters.
Based on the penalized log-likelihood function and within nested
hypotheses testing framework, several estimation alternatives
have been proposed. The AIC, Akaike’s entropy-based infor-
mation criterion, constitutes the best known tool for model
identification and has had a fundamental impact in statisti-
cal model selection. In spite of the AIC’s relevance, several
authors have pointed out its inconsistency that may lead to
overestimation of the true order. To overcome this inconsistency,
the Bayesian information criterion, BIC, was proposed by
introducing in the penalty term the sample size and it is a
consistent estimator for large samples. A more general approach
is exhibited by the EDC, efficient determination criterion, that
encompass both AIC and BIC estimates. Under proper setting,
the EDC, besides being a strongly consistent estimate, is an
optimal estimator. These approaches are briefly presented and
compared by numerical simulation. The presented results may
support decisions related to estimator’s choice.

Index Terms—AIC, BIC, EDC, Markov chain order.

I. INTRODUCTION

THE Akaike’s (1974) entropy-based information crite-
rion, AIC, was designed to be an approximately un-

biased estimate of the Kullback-Leibler divergence between
the fitted model relative to the true model. The fact that when
mean log-likelihood ratio is used to estimate the divergence
quantity, the bias introduced by the maximum likelihood
estimate of the parameters needs to be corrected. For the
AIC procedure the correction (penalty) term is taken to be the
number of independent parameters of the model. In spite of
the AIC’s relevance, there was no rigorous analysis about its
behaviour and showed a tendency of overestimating the true
order. In fact, Katz (1981) formally derived the asymptotic
distribution of AIC estimator and proved its inconsistency
for the Markov Chain case, no matter how large the sample
size is taken. To overcome this inconsistency, the Bayesian
information criterion, BIC, was proposed by Schwarz (1978).
The BIC procedure introduces in the penalty term the sample
size and it is a consistent estimate. The EDC, efficient
determination criterion, was introduced in Zhao et al. (2001)
and encompass both the AIC and the BIC criteria

EDC(k) = −2 log L̂(k) + γ(k)cn

where γ(·) is a positive and strictly increasing function,
cn ≥ 0 and L̂(k) is the maximum likelihood estimate. More
specifically, let X = {Xn}n≥1 be multiple Markov chain
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C.C.Y. Dorea, C.R. Gonçalves and P.A.A. Resende are with the Depart-
ment of Mathematics, Universidade de Brasilia, Brasilia, DF, 70910-900
Brazil; e-mail: changdorea@unb.br; catiarg@unb.br; pa@pauloangelo.com

of unknown order r. Assume that X takes value on a finite
state space E = {1, · · · ,m} and that the transition matrix P
has probabilities given by

p(ar+1|ar
1) = P (Xn+1 = ar+1|Xn

n−r+1 = ar
1)

where ar
1 = ak

1ar
k+1 = (a1, · · · , ar) ∈ Er and Xn

1 =
(X1, · · · , Xn). In practical setting, given the observation Xn

1

from a chain k we have the maximum likelihood estimate

L̂(k) =
∏
ak+1

p̂N(ak+1
1 )(ak+1|ak

1)

where p̂(ak+1|ak
1) = N(ak+1

1 )/N(ak
1)

N(ak
1) =

n−k+1∑
j=1

1(Xj = a1, · · · , Xj+k−1 = ak),

that is, N(ak
1) is the number of occurrences of ak

1 in Xn
1

and the sums are taken over positive terms N(ak+1
1 ) > 0,

or else, we convention 0/0 = 0 · ∞ = 00 = 0. By assuming
γ(k) = mk(m− 1) we can derive

AIC(k) = −2 log L̂(k) + 2mk(m− 1)

and

BIC(k) = −2 log L̂(k) + mk(m− 1) log n.

The corresponding estimators are

r̂AIC = arg min
0≤k≤K

AIC(k)

and
r̂BIC = arg min

0≤k≤K

BIC(k).

The rates of convergence from Dorea and Zhao (2006)
and the results from Dorea (2008) and Resende et al. (2014)
show that, under regularity conditions, the optimal choice is
given by

EDCopt(k) = −2 log L̂(k) + 2mk+1 log log n

with
r̂EDC = arg min

k≥0

EDCopt(k).

With more than one alternative to estimate r it is natural to
seek comparison among them. Katz (1981) presented some
modest numerical simulation, supported by computational
resources available at the time, to compare r̂AIC and r̂BIC. We
analyse the comparative performance of r̂AIC, r̂BIC and r̂opt.
Altogether 63 cases were studied by ranging m = 2, · · · , 10
and r = 0, · · · , 6. For each case 1,000 models were generated
and for each model, 349 samples. Since both r̂BIC and r̂opt

possess the same asymptotic behavior, the sample size n also
played an important role in our analysis. The sample sizes
were taken from n = 10 up to n = 108. Our findings show
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that, in general, r̂opt outperforms r̂BIC. For small samples, all
considered estimators have a tendency to underestimate the
true order of the chain. Contrary to what Katz implicitly
suggested in his numerical simulations, the probability of
overestimation for r̂AIC can be negligible in the case of
complex models. These results may support the choice of
which estimator to use in real situations. In the next section
we gather some simulation results from the forthcoming
paper Resende et al. (2014).

II. SIMULATION RESULTS

We considered 63 cases of Markov chains, varying m =
2, · · · , 10 and r = 0, · · · , 6. For each case we randomly
generated 1,000 transition matrices and for each matrix,
one large sample of length 100,000,000 and 349 “sub-
samples” by considering the fragmentation from 0 to a
properly chosen sample sizes. Using this technique it is
possible to reuse the partial sums N(ak

1) and achieve a
considerable computational gain. From the theoretical point
of view, this is a reasonable approximation. The cases were
chosen according to the available computational resources.
The sizes of “sub-samples” where chosen empirically to
properly compare the estimators. Although such numbers do
not appears large, the most complex considered case, m = 10
and r = 6, has 9, 000, 000 = 106 × (6− 1) parameters, and
the estimators couldn’t fit the true order, even for samples of
length 100,000,000.

EDC vs BIC. For small complexity γm(r) = mr(m− 1)
(number of free parameters), the sample sizes n can be small
too. Tables 1 and 2 provide simulation results for the cases
m = 4, r = 1 and m = 10, r = 1, respectively. The column
n is the sample size, “<”, “=” and “>” represent respectively
the rates of underestimation, fitness and overestimation for
each n.

Table 1
Distribution of hits for m = 4 and r = 1

n EDC BIC
< = > < = >

10 98.7% 1.3% 0% 99.1% 0.9% 0%
25 90.2% 9.8% 0% 91.4% 8.6% 0%
68 50.6% 49.4% 0% 60.3% 39.7% 0%

775 0% 100.0% 0% 0.1% 99.9% 0%
900 0% 100.0% 0% 0% 100.0% 0%

Table 2
Distribution of hits for m = 10 and r = 1

n EDC BIC
< = > < = >

218 99.8% 0.2% 0% 100.0% 0% 0%
425 40.9% 59.1% 0% 100.0% 0% 0%
450 28.9% 71.1% 0% 99.9% 0.1% 0%
600 3.1% 96.9% 0% 91.1% 8.9% 0%
775 0.1% 99.9% 0% 48.2% 51.8% 0%
950 0% 100.0% 0% 15.4% 84.6% 0%

1812 0% 100.0% 0% 0% 100.0% 0%

Table 3
Distribution of hits for m = 4 and r = 3

n EDC BIC
< = > < = >

1562 99.9% 0.1% 0% 100.0% 0% 0%
2375 98.8% 1.2% 0% 99.9% 0.1% 0%
23125 50.2% 49.8% 0% 65.1% 34,9% 0%

9375000 0% 100.0% 0% 0.6% 99.4% 0%
23750000 0% 100.0% 0% 0% 100.0% 0%

Table 4
Distribution of hits for m = 5 and r = 4

n EDC BIC
< = > < = >

6500 100.0% 0.0% 0% 100.00% 0.00% 0%
32500 99.8% 0.2% 0% 100.0% 0% 0%
68750 93.6% 6.4% 0% 99.7% 0.3% 0%
600000 49.8% 50.2% 0% 66.4% 33.6% 0%
1437500 33.5% 66.5% 0% 49.9% 50.1% 0%

16875000 7.0% 93.0% 0% 13.8% 86.2% 0%
100000000 0% 100.0% 0% 3.4% 96.6% 0%

In all cases, EDC exhibits a better performance than BIC.
In the smaller complexity case (m = 4, r = 1) the fitness
rates are similar. However, for more complex cases, EDC
needed nearly half steps n, as compared to BIC, to achieve
50% of fitness. This difference becomes bigger as larger
complexities are considered. This happens because complex
models require larger sample sizes that will result in larger
differences between the penalty terms. Table 1 shows that
the fitness of EDC and BIC are quite similar. In fact, for
the very simple and atypical cases, such as m = 2, r ≤ 2
or m = 3, r = 1, our simulations show that BIC performs
better than EDC. It occurs because, for not too large sample
size the penalty term for BIC is smaller than that for EDC.

AIC’s Performance. Despite the inconsistency of AIC and
the existence of strong consistent alternatives, this estimator
have been widely used. Thus, we performed some numerical
simulation with the aim to analyse AIC’s behavior and to
access its overestimation probabilities.

Table 5
Distribution of hits for EDC, BIC and AIC (in %)

r m n EDC BIC AIC
< = < = < = >

1 3

10 80.3 19.7 73.9 26.1 63.1 36.9 0
22 72.2 27.8 67.4 32.6 39.8 59.9 0.3
168 15.0 85.0 15.8 84.2 3.3 93.5 3.2

1375 0.6 99.4 0.8 99.2 0.1 96.2 3.7
3125 0 100.0 0.1 99.9 0 96.2 3.8
5000 0 100.0 0 100.0 0 97.1 2.9

1 4

10 98.7 1.3 99.1 0.9 96.1 3.9 0
131 18.4 81.6 27.5 72.5 1.6 98.4 0
212 7.3 92.7 12.2 87.8 0.2 99.7 0.1
975 0 100.0 0 100.0 0 99.9 0.1

2 3

17 100.0 0 100.0 0 99.9 0.1 0
137 96.5 3.5 97.3 2.7 58.6 41.3 0.1

175000 1.7 98.3 3.5 96.5 0.1 99.8 0.1
4750000 0 100.0 0 100.0 0 99.9 0.1

2 5

137 100.0 0 100.0 0 99.7 0.3 0
400 99.9 0.1 100.0 0 67.0 33.0 0
650 99.0 1.0 100.0 0 50.1 49.9 0
750 97.0 3.0 99.9 0.1 47.0 53.0 0

3125 49.9 50.1 68.1 31.9 20.9 79.1 0
6000 35.8 64.2 49.0 51.0 13.7 86.3 0

106250 5.4 94.6 10.6 89.4 0.5 99.5 0
187500 4.1 95.9 6.4 93.6 0 100.0 0
837500 0 100.0 1.5 98.5 0 100.0 0

2000000 0 100.0 0 100.0 0 100.0 0

3 10

17500 100.0 0 100.0 0 99.4 0.6 0
81250 99.4 0.6 100.0 0 61.3 38.7 0
131250 91.5 8.5 100.0 0 49.2 50.8 0
637500 49.9 50.2 77.1 22.9 20.6 79.4 0

1812500 30.6 69.4 49.7 50.3 12.3 87.7 0
11250000 10.3 89.7 19.5 80.5 0.6 99.4 0
13750000 7.9 92.1 18.2 81.8 0 100.0 0
100000000 0 100.0 6.4 93.6 0 99.2 0.8

4 4

2000 100.0 0 100.0 0 99.8 0.2 0
9000 99.9 0.1 100.0 0 81.9 18.1 0
15625 98.4 1.6 99.9 0.1 68.7 31.3 0
37500 88.6 11.4 96.9 3.1 49.7 50.3 0
225000 49.3 50.7 64.9 35.1 20.9 79.1 0
475000 36.6 63.4 49.4 50.6 13.3 86.7 0

16250000 2.8 97.2 7.6 92.4 0 100.0 0
1000000000 0.1 99.9 0.4 99.6 0 100.0 0

The underestimation (>) columns for EDC or BIC were
excluded, no cases were found. From Table 5 we can identify
few characteristics for AIC’s hit rates : underestimation for
tiny samples; a better performance for small samples; and
at stable optimal rate for very large n. The sample sizes
for this behavior depends heavily on the complexities of the

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014



considered cases. More specifically : (i) for small complexity
models (γm(r) ≤ 10) AIC tends to overestimate r with small
probability and performs better than EDC if the sample size
is small (n < 200); and for large sample size (n > 1, 000),
EDC performs better than AIC; (ii) for medium or large
complexity models (γm(r) > 20) overestimation occurs with
negligible probability and AIC performs better than EDC up
to medium sized sample. For instance, γm(r) = 100 and
n < 5, 000; γm(r) = 800 and n < 500, 000.

III. CONCLUDING REMARKS

The results show that “small” penalty terms should imply
to a tendency of overestimate the true order, likewise “large”
penalty terms implies underestimation. Thus, in general,
r̂AIC ≤ r̂BIC ≤ r̂EDC.

(i) Both r̂BIC and r̂EDC never overestimate the true order.

(ii) r̂BIC has a higher tendency to underestimate the order.

(iii) r̂EDC outperforms r̂BIC; it is the most efficient consistent
estimator.

(iv) For small complexity models (γm(r) < 10) and small
sample size (n ≤ 200), r̂AIC performs better than r̂EDC, but
may overestimate the true order.

(v) For medium or large complexity models (γm(r) > 20),
overestimation by r̂AIC is negligible and efficiency of r̂AIC and
r̂EDC are comparable.

(vi) More detailed simulation comparisons as well as
theoretical motivations for the estimators behavior vs small
and large samples can be found in Resende et al. (2014).
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