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Abstract—This paper aims at assessing the setpoint tracking 

performance of proportional-integral-derivative (PID) 
controllers for nonlinear single-input-single-output (SISO) 
process loops. A comparison is made between the actual system 
output and an artificial process output response derived from 
nonlinear system identification and a user defined closed loop 
transient specification. Nonlinear system identification is 
achieved by fitting routine operating closed loop data to 
nonlinear autoregressive with exogenous input (NARX) models 
to describe a closed loop process model and the servo model. 
 Once the nonlinear models are established they are 
linearized to corresponding autoregressive with exogenous 
input (ARX) models where they are incorporated into a 
controller performance strategy. The framework will allow for 
control practitioners to assess the current controller setpoint 
tracking performance for general nonlinear systems from a 
transient specification point of view. Simulation studies are 
given to validate the efficacy of the performance assessment 
procedure and demonstrate that it is an effective tool when 
setpoint tracking is of general interest. 
 

Index Terms — Performance assessment, PID control, 
nonlinear process, setpoint tracking 

I. INTRODUCTION 

ONTROLLER performance assessment (CPA) is 
concerned with the design of analytical tools that are 

used to evaluate the performance of process control loops. 
The primary objective of CPA is to ensure that control 
systems operate at their full potential, and also indicate 
when a controller design is unsatisfactory. Many industrial 
control loops suffer from performance problems, possibly 
due to improper controller tuning, inadequate control 
structures, final control element deficiencies, oscillations 
and unmeasured disturbances. Modern process industry 
requires control loops to operate within acceptable limits in 
order to ensure safety and reduce product wastage. CPA for 
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linear systems is a well established field with notable works 
conducted by [1]-[6]. Several software packages are 
commercially available such as ABB® OptimizeIT Loop 
Performance Manager, Honeywell® Loop Scout and Metso 
Automation® Loop Browser [7]. These usually contain 
several different metrics to indicate the quality of the 
controller performance and to aid in diagnosis of controller 
problems. Probably the most popular benchmark is the 
Harris index [2] which compares the current process output 
to the output that would have occurred if some theoretical 
optimal controller has been applied to the process. This 
metric can be the most indicative measure of the health of a 
loop which is generally not readily apparent from casual 
observation of a process loop trend. Most commercial 
packages employ the Harris index [2], whose work 
methodically showed how CPA can be achieved by utilizing 
linear time series modeling and minimum variance control 
(MVC). The method is powerful in that CPA is realized by 
merely fitting the closed loop process output with additive 
disturbance data to a linear time series model [3]. Only the 
process loop dead time must be known in order to compute 
the performance index. The achievable theoretical minimum 
variance which is derived from the time series model is then 
compared to the actual closed loop output variance. The 
method is practical and easy to implement but is only 
applicable for the linear case [8], [9]. 

 Thus far the majority of research conducted in the field of 
CPA utilizes linear time models in determining suitable 
indices for CPA [8]. In practice however, industrial control 
loops invariably include nonlinearities from the control 
valve, sensor behavior, or inherent qualities in the process 
itself. Within this context, these nonlinearities must be taken 
into account at the design stage in order to improve 
controller ruggedness and also to ensure accurate 
performance benchmarking measures. 

It is well known that most process loops are nonlinear to 
some extent and can be modeled sufficiently well using 
linear time series models [3]. However, some systems 
exhibiting higher degrees of nonlinearity may be more 
difficult to model due to the existence of intrinsic 
complexities and a non-Gaussian output [10]. In such cases, 
the closed loop process dynamics and disturbance models 
cannot be well characterized by either its impulse response 
or its equivalent time series model. It has been shown by [9] 
that traditional linear performance indices incorrectly yield 
biased performance benchmark measures in the presence of 
valve nonlinearity. 
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A survey of literature reveals that researchers investigating 
nonlinear systems fall into one of two groups [8]. The first 
group focused on the diagnosis of a common specific 
nonlinearity, namely valve stiction [9]; the second group 
tried to establish the minimum variance performance lower 
bound [8]. However, many outstanding issues still remain 
open for further research on nonlinear systems. The focus of 
this work is the development of a CPA tool for performance 
evaluation of PID controllers for setpoint tracking of 
nonlinear processes. To the authors knowledge this has not 
been previously considered in the literature. 

The work of [11] proposed the use of lower bounds using 
integral of the absolute error (IAE) based on internal model 
control principles for setpoint tracking CPA. However, the 
processes considered are linear time invariant and complete 
knowledge of the open loop process model must be known. 
Open loop models are often difficult to obtain under normal 
operating plant conditions thus from a practical perspective 
the method may be at a disadvantage. In [12], controller 
setpoint tracking performance evaluation was proposed 
based on dimensionless settling time and dimensionless 
IAE. A simple first order plus dead time transfer function 
was used to develop the performance benchmark. The 
performance evaluation is limited to three performance 
classes namely: High Performance, Excessively Sluggish 
and Poorly Tuned and may be inflexible when different 
performance targets are expected from individual 
controllers. In this work we recommend a user defined 
settling time as a performance benchmark. An outline of the 
paper is now given. Section 2 provides a description of the 
nonlinear system considered in the study. Section 3 outlines 
the methodology for the proposed performance benchmark. 
Section 4 shows how the method can be applied within a 
pragmatic context by use of routine operating data in a 
simulation example. Section 5 concludes the study and 
provides recommendations for furthering the work. 

II. SYSTEM DESCRIPTION 

A. Nonlinear feedback control loop 

Fig. 1 is the nonlinear SISO control system considered in 
this study. The controlled process may be a general 
nonlinear system which can be adequately represented by a 
discrete time model (1):  

 
 ( ) ( 1),..., ( ), ( 1),..., ( ) ( )y uy t f y t y t n u t u t n d t           (1) 

 
From Fig. 1, y(t) is the process output, u(t) is the 

controller output, ny and nu indicate the number of output 
and input delay respectively. The system inputs are a unit 
step input represented by r(t) and disturbance given by d(t). 
The effects of sensors noise and stochastic dynamic 
disturbances affecting the closed loop system are lumped 
into the aforementioned disturbance input. The nonlinear 
function f(.) may be represented by a wavelet network or 
neural network. In this paper artificial neural networks are 
used since they are universal approximators and have 
received considerable attention in the field of system 
identification and controller design [13]. 

 
 
Fig. 1.  Nonlinear feedback control loop. 

 
The process model can be written in terms of a 

deterministic NARX model: 
 

( ) ( ( ))NARXy t NARX t         (2) 

 
where, the regression vector is defined as: 
 

( ) [ ( ), ( )]

[ ( 1),... ( ), ( 1),..., ( )]

T

T
y u

t y t u t

y t y t n u t u t n

 

    
  (3) 

 
The controller output u(t) is a function of PID parameters 

and is represented by: 
 

1 ( )
( ) ( ) ( )c d

i

de t
u t k e t e t dt

dt



 

   
 

        (4) 

 

where ck  , i  and d  represents the proportional gain, 

integral time constant and derivative time constant 
respectively. The control loop error is computed as: 

  
( ) ( ) ( )e t r t y t          (5) 

 
A digital velocity form of the PID controller given in (4) 

can be written as: 
 

1 1 1 2( ) (1 ) ( ) (1 ) ( ) (1 2 ) ( )
2

d
c

i

t
u z k z e z z e z z z e z

t




    
         

  

     (6) 
 
where z-1 represents the backshift operator and the 

integral action of (6) is computed using trapezoidal 
approximation. 

 

B. Linearization of nonlinear system 

The concept of linearization of a nonlinear model around 
an operating point is well established and often used in 
control designs [14]. However a linearized model is only 
valid in the local neighborhood of the operating point and 
may provide poor approximations at other operating 
regions. Nevertheless it provides a means of analyzing the 
nonlinear system within a linear framework for which there 
exists a large knowledge base. In addition, computational 
complexities are thus avoided when using the linear 
approach. Given the nonlinear feedback control loop shown 
in Fig. 1, the approximate closed loop model within the 
desired operating region is represented as: 

 
( ) A( ) ( ) ( ) ( )ARX ky t z B z u t n E t          (7) 

 

PID NL 
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where, 
 1

1( ) 1 ... a

a

n
uy nA z a z a z            (8) 

11 1
1 2( ) z ... b

b

n
uy nB z b z b b z            (9) 

 
The modeling error is given by E(t) ,with na and nb 

representing the order of the output and inputs terms, 
respectively. nk denotes the system sample delay in which 
the input affects the output. The best approximate linear 
model within a range of input values is computed by solving 
the cost function (10) in the mean square sense: 

 

2

( ), ( )
1

1
min min ( )

i i

n

NARX ARXA z B z
i

J y y
n 

   
 
      (10) 

 
Similarly the servo model may be computed using the 

process output response and the desired reference trajectory 
as the modeling input vector. Using the ARX model 
obtained from (7), an artificial process output can be derived 
based on different PID control designs.  The derivation of 
the simulated process output and controller benchmarking is 
shown in the following section. 

III. CONTROLLER PERFORMANCE ASSESSMENT FOR 

NONLINEAR SYSTEMS 

A. Derivation of the artificial process output 

It has been shown by [15] that an achievable PI control 
performance assessment for linear systems can be conducted 
based on routine operating data. In their approach a closed 
loop servo model of the process loop under investigation is 
identified from closed loop experimental data. Generation of 
the excited closed loop process output is obtained by 
acceptable setpoint step changes made while the feedback 
loop is closed. This is a compelling approach from a 
practical perspective since the feedback loop is not broken. 
An obvious advantage of this approach is when dealing with 
open loop unstable processes and during normal operating 
plant conditions when manual mode of the control loop is 
not permitted. Furthermore, in most process plants there is 
minimal opportunity for the control practitioner to perform 
such tests for open loop model identification. A review of 
the methodology is thus provided for linear time invariant 
systems. Considering a disturbance transfer function 
(D=d(t)/at) process driven by white noise at,  the expression 
for the process output y(t) is given by: 

 

_

( )
1 t

p OL c

D
y t a

G G

 
  

  
       (11) 

 
Where, Gp_OL and Gc represents the open loop process 

model and the current controller transfer function 
respectively.  Now, if the current controller Gc is replaced 
by a new controller Gc* then the new output y(t)* is given by 
the following equation:  

 

_OL

( )*
1 * t

p c

D
y t a

G G

 
  

  
       (12) 

 

Equations (11) and (12) can now be used to derive the 
following expression: 

 

_OL

_OL

1( )*

( ) 1 *
p c

p c

G Gy t

y t G G

 
  

  
       (13) 

 
From (13), the r.h.s represents a filter [15] which gives an 

artificial closed loop data series (y(t)*)  when the current 
process output data (y(t)) is passed through it. Now from the 
negative feedback control loop the open loop model is 
represented as: 

 

_ L
_ L

_ L(1 )
p C

p O
p C c

G
G

G G



       (14) 

 
Where Gp_CL is the closed loop servo model. Substitution 

of (14) into (13) yields the expression: 
 

_ L
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1
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 (15) 
 

Based on the expression given by (15), the artificial 
process output (y(t)*) can be used in a CPA framework. It 
should be noted that the disturbance transfer function (D) is 
not required. Only routine operating closed loop data, such 
as the process output (y(t)), controller output (u(t)) and 
reference trajectory (r(t)) is needed. Once a suitable 
nonlinear model has been identified, the controller 
parameters can be directly estimated from the linearized 
model. Determination of the new controller parameters is 
provided in the subsequent section. 

B. PID controller tuning based on ARX model 

PID controllers are commonly used in industry since they 
have shown to be versatile and robust in many industrial 
process control applications. The reasons may be due to its 
simple mathematical structure which can be easily 
understood. Even under difficult process conditions it may 
perform sufficiently well when compared to more elaborate 
designs such as model based controllers. In a survey of 
status conducted by Desborough and Miller [16] of 
industrial controllers, it was reported that in a typical 
chemical plant 98% of the controllers were of the PID 
family. This situation is unlikely to change in the 
foreseeable future because advanced control implementation 
requires well-tuned PID controllers in the lower level [17].  
Although there have been advances made in the assessment 
of control loop performance using MVC as a benchmark 
[3], the metric may be regarded as overly optimistic since a 
large number of industrial controller belong to the PID 
family [15]. Furthermore MVC does not account for the 
large control efforts required to produce minimal variance 
of the controlled variable which in practice may cause 
damage to the final control element within a shorter period 
of time. Therefore there is considerable incentive to develop 
more realistic CPA tools for restricted structure controllers 
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of the PID type.  
It has been shown by Acara et. al [18] that PID 

parameters can be directly estimated from the ARX model 
given in (7). The following direct relationships between the 
PID parameters and the ARX model [18] with na = nb = 2 
are given as:   

 
1 2

1 2

( )

( )
des

n
c

s

T a a
k

T b b

 
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
       (16) 

1 2

1 2

( )

1 ( )
n

i

T a a

a a
  


 
       (17) 

2

1 2( 2 )
n

d

T a

a a
 


        (18) 

 
Where, Tsdes is the desired closed loop settling time and Tn 

is the sampling rate. The main advantage of using the ARX 
based tuning rules is that the PID parameters can be 
generated quickly. This is not the case as with other 
restricted structure CPA methods which require an 
optimization function to be solved for determination of PID 
tuning parameters [19]. Furthermore, a single user defined 
parameter (Tsdes) can be used to characterize the desired 
closed loop response for each individual process control 
loop.   

 

C. Proposed methodology  

In many practical cases the desired performance 
characteristics of control systems are specified in terms of 
time domain qualities. These qualities are given in terms of 
transient response to a unit step input namely; rise time (Tr), 
peak time (Tp), maximum overshoot (POS) and settling time 
(Ts). If we choose to specify a certain value for the settling 
time then this would invariably alter the transient response 
of the control system. The settling time relates to the largest 
time constant of the control system and is the time required 
for the response curve to reach and stay within a range 
(usually 2% or 5%) of the final value. By specifying a 
desired closed loop settling one can incorporate this into a 
performance benchmark which is tailored to the specific 
requirements of the setpoint tracking capabilities of the 
controller. Fig. 2 illustrates the procedure used for 
estimating current controller performance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Proposed methodology for nonlinear setpoint tracking performance 
assessment. u(t) – controller output, y(t)- process output, r(t) - setpoint 

 
Using logged closed loop data from a setpoint step 

change experiment, nonlinear models are obtained for the 
closed loop process and a servo model. The models are then 
linearized around the desired operation point. PID 
parameters are computed directly from the closed loop ARX 
model and used in conjunction with the servo model to 
estimate the artificial closed loop response of the system to 
the excitation provided by the initial step change.  

Comparative analysis based on transient response 
characteristics of the actual process output versus the 
simulated process output can be conducted and a conclusion 
concerning the current controller performance based on user 
defined settling time can be made. 

IV. ILLUSTRATIVE EXAMPLE 

A. Preliminaries for the simulation 

 
In this section a simulation example is provided to 

demonstrate the methodology outlined in this paper. The 
simulation was conducted in MATLAB (R2010a) 
SIMULINK® with 400 samples collected at a sampling rate 
of 1 second.  A reference trajectory r(t) is injected into the 
system with a unit step change occurring at t=100.  The 
desired settling time for the closed loop process is Tsdes = 40 
seconds.  

 

B. Case study  

Consider a nonlinear dynamic system which can be 
represented by a second order Volterra series as [8]:  

 
2

3 4 5 3 3 4

2 2
4 5 3 5

0.2 0.3 0.8 0.8

0.7 0.5 0.5

t t t t t t t

t t t t

y u u u u u u

u u u u D

     

   

    

   
     (19) 

 
 
Where the disturbance transfer function (D) is given as: 
 

1 21 1.6 0.8
ta

D
z z 

 
       (20) 

 

The white noise sequence (at) has zero mean and a 
variance of 10-5. A proportional-integral (PI) controller with 
parameters 0.2ck  and 0.67i   is used to control the 

simulated process. 
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C. Simulation results for the case study  

Fig 3. shows the closed loop response to a unit step input. 
It is evident that the response has large overshoots and 
undershoots which inevitably leads to a longer settling time. 
Using the methodology outlined in the previous section, the 
response of the nonlinear closed loop process model and 
servo model are identified and presented in Fig. 4 and Fig. 5 
respectively. A NARX (2,2,1) is fitted to both models 
giving a 88.66% and 74.95% fit to the closed loop model 
and servo model respectively. The corresponding nonlinear 
models are linearized within the operating region [0 1] using 
the MATLAB linapp function which gives the following 
ARX models: 

 
1 2

1 2

( ) 1 0.8334 0.3255

( ) 0.1334 0.8185

uy

uy

A z z z

B z z z

 

 

  

  
       (21) 

 
1 2

1 2

( ) 1 1.322 0.7552

( ) 0.009225 0.4652

ry

ry

A z z z

B z z z

 

 

  

  
       (22) 

 
Using the tuning rules (16) and (17), the PI controller 

parameters are calculated as:  
 

0.0741ck          (23) 

1.032i          (24) 

 
The artificial closed loop response which is obtained from 

(15) is illustrated in Fig. 6. Comparisons between the 
transient specifications of the fictitious process output 
(y_estimated) and the actual process output (y_actual) are 
listed in Table 1. In addition, the transient response 
conditions for the process output (y_new) with the new PI 
parameters are included. Fig 7. shows original process 
output versus new process output based on the controller 
parameter recommendations of the CPA methodology. 

D. Discussion of results 

From the transient response specifications given in Table 
1 it is evident that artificial process output derived from the 
proposed methodology results in faster settling time. This 
implies that the existing PI controller has potential for 
improvement based on the desired settling time (Tsdes). 
Applying the new controller parameters derived from the 
proposed methodology results in significantly smaller 
percentage overshoot. The tradeoff for this improvement in 
percentage overshoot is the longer rise time and time to 
peak. Marginal errors are observed between the theoretical 
estimated process output and the new process output which 

can be attributed to modeling errors. An improved IAE is 
observed with the new PI parameters given by the proposed 
methodology. 

V. CONCLUSION 

Although the method has the benefit of yielding PID 
parameters that lead to desired closed loop transient 
specifications, care must be taken when selecting a suitable 
value for the desired settling time as the tuning algorithm is 
sensitive to this factor. In addition, selection of short settling 
times in which the process is not capable of will result in 
large proportional gains, which may lead to instability when 
applied. Sampling rate must be chosen such that it makes it 
compatible to a wide range of process time constants where 
process dynamics are adequately captured. As with most 
methods that rely on process models, the CPA methodology 
will not function well when there are considerable modeling 
errors. Furthermore an excitation in the form of a step 
change is necessary to capture the servo nonlinear model 
dynamics. Although the proposed method yields 
encouraging results, the presented example is based on 
simulation. Additional work is required to test the 
methodology on real nonlinear process control loops. 
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TABLE I 
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new PI parameters. 
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