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Abstract—The set of transreal numbers is a superset of
the real numbers. It totalises real arithmetic by defining
division by zero in terms of three definite, non-finite num-
bers: positive infinity, negative infinity and nullity. Elsewhere,
in this proceedings, we extended continuity and limits from
the real domain to the transreal domain, here we extended
the real derivative to the transreal derivative. This continues
to demonstrate that transreal analysis contains real analysis
and operates at singularities where real analysis fails. Hence
computer programs that rely on computing derivatives – such
as those used in scientific, engineering and financial applications
– are extended to operate at singularities where they currently
fail. This promises to make software, that computes derivatives,
both more competent and more reliable.

We also extended the integration of absolutely convergent
functions from the real domain to the transreal domain.

Index Terms—transreal arithmetic, transreal analysis, trans-
derivative.

I. INTRODUCTION

TRANSREAL [5] and transcomplex arithmetic [2][6] are
developments of Computer Science that are now being

normalised in Mathematics [7]. They define division in terms
of operations on the lexical reciprocal. This lexical definition
contains the usual definition of division, as multiplication
by the multiplicative inverse, but also defines division by
zero. Consequently transreal and transcomplex arithmetic are
supersets of, respectively, real and complex arithmetic. There
is a machine proof [5] and a human proof [6] that tran-
sreal arithmetic is consistent if real arithmetic is. The hand
proof also demonstrates that transreal arithmetic contains
real arithmetic and establishes a similar relationship between
transcomplex arithmetic and complex arithmetic.

Transreal arithmetic uses a subset of the algorithms of
real arithmetic so the general reader will be able to follow
any computation in transreal arithmetic but will have little
chance of deriving a valid, non-finite, computation until the
axioms [5] or algorithms [2] of transreal arithmetic have been
properly learned. The reader is cautioned that the relational
operators of transreal arithmetic, less-than (<), equal-to (=),
greater-than (>), form a total set of independent operations,
unlike their real counterparts. The general reader will not
understand the transreal relations until the material in [3]
has been properly learned. We are aware that this places a
heavy burden on the reader but this is inevitable because
transmathematics operates in a new paradigm. The reader
must understand the paradigm before much progress can be
made on any particular result.
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We have already demonstrated that continuity and limits
in transreal analysis contain all of their real counterparts
and support continuity and limits at the exact, transreal
singularities that arise on division by zero. We now do
the same for the transreal derivative so that it contains the
real derivative and operates at singularities where the real
derivative is undefined. This establishes the foundation for
a great deal of future work in which all of the results of
real, differential calculus are extended to transreal differential
calculus. We expect that in every case transreal analysis will
contain its real counterpart.

We make a start to this further work, by extending the
integral of absolutely convergent, real functions, to the
transintegral of absolutely convergent, transreal functions.
Thus the transintegral contains all of these real integrals and
extends them to operate at singularities. However, this is a
rather restricted set of functions. Since the preparation of this
integral, a much wider extension of the real integral to the
transreal integral has been developed. That material has been
submitted for publication elsewhere.

II. TRANSREAL ANALYSIS

In this section we extend the concepts of derivative and
integral from the domain of real numbers, R, to the domain
of transreal numbers, RT , largely replacing earlier work on
this topic [1]. We draw heavily on the results in [3][4].

A. Transreal Derivative

Definition 1: Let A ⊂ RT and x0 ∈ A. Here A′ denotes
the set of limit points of A.

i) If x0 ∈ R∩A′, we say f is differentiable at x0 on
RT if and only if f is differentiable at x0 in the
usual sense. And in this case, f ′(x0) is called the
derivative of f at x0 on RT and it is denoted as
f ′RT (x0).

ii) If x0 ∈ {−∞,∞} ∩D′ (where D denotes the set
of points in A at which f is differentiable in the
usual sense), we say f is differentiable at x0 on
RT if and only if the following limit exists

lim
x→x0

f ′(x).

And if this limit exists then it is called the deriva-
tive of f at x0 on RT and it is denoted as f ′RT (x0).

iii) If x0 /∈ A′ we define the derivative of f at x0 on
RT as f ′RT (x0) := Φ.

Observe that is not possible to define the derivative at
x0 /∈ A′ by way of a limit because, as is known, if we try
to apply the limit definition at x0 /∈ A′, any L ∈ RT could
be the limit lim

x→x0

f(x). In fact, since x0 /∈ A′, there is a

neighbourhood U of x0 such that A∩U = ∅, hence for any
neighbourhood V of L, f(x) ∈ V for all x ∈ A∩U . Because,
vacuously, there is no x ∈ A∩U such that f(x) /∈ V . Rather
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than accept the indeterminacy of the derivative at x0 /∈ A′,
we choose to define f ′RT (x0) = Φ. This will presently lead
us to the position where the exponential is identically its own
derivative with e′(x) = e(x) so that the usual properties of
this important function hold when extended to RT .

Observation 2: Note that differentiability on RT does not
imply continuity. For example let f : RT → RT , where

f(x) =

{
ex , if x 6=∞
1 , if x =∞ .

Clearly f is not continuous at ∞ but lim
x→∞

f ′(x) = ∞,

whence f is differentiable at ∞ on RT . For the definition of
ex in RT see [1].

Example 3: Let f(x) = ex. It follows from Definition 1
that f ′RT (x) = ex for all x ∈ RT . Particularly, f ′RT (−∞) =
0, f ′RT (∞) =∞ and f ′RT (Φ) = Φ.

Definition 4: Let A ⊂ RT , f : A × A → RT , x0 ∈ A′

and L ∈ RT . We say that

lim
x→x0
y→x0

f(x, y) = L

if and only if, given an arbitrary neighbourhood V of L there
is a neighbourhood U of x0 such that f(x, y) ∈ V whenever
x 6= y and x, y ∈ A ∩ U \ {x0}.

Note that lim
x→x0
y→x0

f(x, y) 6= lim
(x,y)→(x0,x0)

f(x, y), where

lim
(x,y)→(x0,x0)

f(x, y) denotes the limit, in the usual sense, of a

function of two variables. In other words, these are different
limiting processes.

Proposition 5: Let a ∈ R and f : (a,∞]→ RT such that
f is differentiable in (a,∞). It follows that f is differentiable

at ∞ if and only if there exists lim
x→∞
y→∞

f(x)− f(y)

x− y
. And in

this case,

f ′RT (∞) = lim
x→∞
y→∞

f(x)− f(y)

x− y
.

Proof: Let a ∈ R and f : (a,∞] → RT such that f
is differentiable in (a,∞). Observe that f is continuous in
(a,∞).

First let us suppose that f ′RT (∞) = L ∈ RT , that is
lim
z→∞

f ′RT (z) = L. Let V be an arbitrary neighbourhood of
L. Then there is M > a such that f ′RT (z) ∈ V for all
z ∈ (M,∞). Let x, y ∈ (M,∞) such that x 6= y. Say
x < y. Since f is continuous in [x, y] and differentiable in
(x, y), by the Mean Value Theorem, there is z ∈ (x, y) such

that
f(x)− f(y)

x− y
= f ′RT (z). Since z ∈ (x, y) ⊂ (M,∞) we

have
f(x)− f(y)

x− y
= f ′RT (z) ∈ V.

Thus lim
x→∞
y→∞

f(x)− f(y)

x− y
= L.

Now suppose that lim
x→∞
y→∞

f(x)− f(y)

x− y
= L. Note that L 6=

Φ for f ′RT (z) ∈ R for all z ∈ (a,∞). If L ∈ R, let there be
an arbitrary ε ∈ R+. Then there is M ≥ a such that −ε

2
<

f(x)− f(y)

x− y
− L < ε

2
whenever x, y ∈ (M,∞) and x 6= y.

For each x ∈ (M,∞), taking the limit in the inequality with

y tending to x, we obtain −ε < −ε
2
≤ lim

y→x

f(y)− f(x)

y − x
−

L ≤ ε

2
< ε, whence −ε < f ′RT (x) − L < ε, therefore

lim
x→∞

f ′RT (x) = L. If L = ∞, let there be an arbitrary N ∈

R+. Then there is M ≥ a such that 2N <
f(x)− f(y)

x− y
whenever x, y ∈ (M,∞) and x 6= y. For each x ∈ (M,∞),
taking the limit in the inequality with y tending to x, we

obtain N < 2N ≤ lim
y→x

f(y)− f(x)

y − x
, whence N < f ′(x),

therefore lim
x→∞

f ′RT (x) = ∞. If L = −∞ the result follows
similarly.

Proposition 6: Let a ∈ R and f : [−∞, a) → RT such
that f is differentiable in (−∞, a) in the usual sense. It
follows that f is differentiable at −∞ if and only if there

exists lim
x→−∞
y→−∞

f(x)− f(y)

x− y
. And in this case,

f ′RT (−∞) = lim
x→−∞
y→−∞

f(x)− f(y)

x− y
.

Proof: The proof is similar to the proof of Proposition
5.

Proposition 7: Let A ⊂ R, f : A → R and x0 ∈
A ∩ A′. If f is continuous at x0 and there exists the limit

lim
x→x0
y→x0

f(x)− f(y)

x− y
then f is differentiable at x0 and

f ′RT (x0) = lim
x→x0
y→x0

f(x)− f(y)

x− y
.

Proof: Let f be continuous at x0 such that there exists a

limit lim
x→x0
y→x0

f(x)− f(y)

x− y
, say lim

x→x0
y→x0

f(x)− f(y)

x− y
= a. Since

f is continuous at x0, lim
y→x0

f(y) = f(x0). Let there be an

arbitrary ε ∈ R+. Then there is a δ ∈ R+ such that for each
x ∈ A ∩ (x0 − δ, x0 + δ) \ {x0}, it follows that

−ε
2
<
f(x)− f(y)

x− y
− a < ε

2
for all

y ∈ A ∩ (x0 − δ, x0 + δ) \ {x0}.

Taking the limit in the above inequality with y tending to

x0, we obtain −ε
2
≤ f(x)− f(x0)

x− x0
− a ≤ ε

2
. Thus

−ε < −ε
2
≤ f(x)− f(x0)

x− x0
− a ≤ ε

2
< ε

for all x ∈ A ∩ (x0 − δ, x0 + δ) \ {x0}, whence f ′RT (x0) =

lim
x→x0

f(x)− f(x0)

x− x0
= a.

Observation 8: Notice that in Proposition 7, the hypothe-
sis of the continuity of f is, in fact, needed. For instance let
f : R→ R, where

f(x) =

{
x , if x 6= 0
1 , if x = 0

.

Clearly f is not differentiable at 0, but lim
x→0
y→0

f(x)− f(y)

x− y
=

1.
Proposition 9: Let I ⊂ R be an open interval and f : I →

R. If f is continuously differentiable in I (which means f
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is differentiable in I and f ′RT is continuous in I), then there

exists lim
x→0
y→0

f(x)− f(y)

x− y
and

lim
x→x0
y→x0

f(x)− f(y)

x− y
= f ′RT (x0)

for all x0 ∈ I .
Proof: Let f : I → R be a continuously differentiable

function and let x0 ∈ I . Let us denote as a the derivative of f
at x0, that is, f ′RT (x0) = a. Let there be an arbitrary ε ∈ R+.
Since f ′RT is continuous at x0, there is a δ ∈ R+ such that
f ′RT (z) ∈ (a− ε, a+ ε) whenever z ∈ I ∩ (x0 − δ, x0 + δ).
Now let x, y ∈ I ∩ (x0 − δ, x0 + δ) \ {x0} such that x 6= y.
Say x < y. Since f is continuous in [x, y] and differentiable
in (x, y), by the Mean Value Theorem, there is z ∈ (x, y)

such that
f(x)− f(y)

x− y
= f ′RT (z). Since z ∈ (x, y) ⊂ I ∩

(x0 − δ, x0 + δ), we have

f(x)− f(y)

x− y
= f ′RT (z) ∈ (a− ε, a+ ε).

Thus lim
x→x0
y→x0

f(x)− f(y)

x− y
= a.

Observation 10: Notice that in Proposition 9, the hy-
pothesis of the continuity of f ′RT is, in fact, needed. Let
f : R→ R, where

f(x) =

 x2 sin

(
1

x

)
, if x 6= 0

0 , if x = 0
.

Note that f ′RT (0) = 0 but lim
x→x0
y→x0

f(x)− f(y)

x− y
does not exist.

Indeed given an arbitrary δ ∈ R+, let us take a positive,

even integer, n, that is sufficiently large that
1

nπ
∈ (−δ, δ).

Denoting x =
1

nπ
, y =

1

nπ + π
2

and z =
1

(n+ 1)π + π
2

, we

have x, y, z ∈ (−δ, δ) and
f(x)− f(y)

x− y
= − 4n

2nπ + π
and

f(x)− f(z)

x− z
=

4n

6nπ + 9π
.

If we make some changes to the definition of

lim
x→x0
y→x0

f(x)− f(y)

x− y
then, under suitable conditions, we can

withdraw the hypothesis of the continuity of f ′RT in Propo-
sition 9. This is explained in the following proposition.

Proposition 11: Let A ⊂ R, f : A → R and x0 ∈ A ∩
A′−∩A′+. If f is differentiable at x0 then, given an arbitrary
neighbourhood V of f ′RT (x0), there is a neighbourhood U

of x0 such that
f(x)− f(y)

x− y
∈ V , whenever x, y ∈ A ∩ U

and x < x0 < y.
Proof: Let A ⊂ R, f : A→ R and x0 ∈ A ∩A′− ∩A′+

such that f is differentiable at x0. Let us denote as a the
derivative of f at x0, that is f ′RT (x0) = a.

Let V = (a − ε, a + ε) for some ε ∈ R+. Then

there is a δ ∈ R+ such that
∣∣∣∣f(x)− f(x0)

x− x0
− a
∣∣∣∣ < ε

3

whenever x ∈ A ∩ (x0 − δ, x0) and
∣∣∣∣f(y)− f(x0)

y − x0
− a
∣∣∣∣ <

ε

3
whenever y ∈ A ∩ (x0, x0 + δ). Now let x, y ∈

A ∩ (x0 − δ, x0 + δ) such that x < x0 < y. Observe

that
f(x)− f(y)

x− y
− a =

y − x0

y − x

(
f(y)− f(x0)

y − x0
− a
)
−

y − x0

y − x

(
f(x)− f(x0)

x− x0
− a
)

+

(
f(x)− f(x0)

x− x0
− a
)

and

that
∣∣∣∣y − x0

y − x

∣∣∣∣ < 1. Hence∣∣∣∣f(x)− f(y)

x− y
− a
∣∣∣∣ ≤ ∣∣∣∣y − x0

y − x

∣∣∣∣ ∣∣∣∣f(y)− f(x0)

y − x0
− a
∣∣∣∣ +∣∣∣∣y − x0

y − x

∣∣∣∣ ∣∣∣∣f(x)− f(x0)

x− x0
− a
∣∣∣∣+∣∣∣∣f(x)− f(x0)

x− x0
− a
∣∣∣∣ < ε

3
+
ε

3
+
ε

3
= ε. Thus

f(x)− f(y)

x− y
∈

V .

B. Transreal Integral

Definition 12: Let a, b ∈ RT . We define:
a) (a, b) := {x ∈ RT ; a < x < b}, (a, b] := (a, b) ∪ {b},

[a, b) := {a}∪ (a, b) and [a, b] := {a}∪ (a, b)∪{b}. We say
that A, with A ⊂ RT , is an interval if and only if A is one
of these four types of sets.

Notice that (a,Φ) = ∅ = (Φ, a), (a,Φ] = {Φ} =
[Φ, a), [a,Φ) = {a} = (Φ, a] and [a,Φ] = {Φ, a} = [Φ, a]
for all a ∈ RT .

b) If I ∈ {(a, b), (a, b], [a, b), [a, b]}, we define the length
of I as

|I| :=

 0 , if I = ∅
k − k , if I = {k} for some k ∈ RT
b− a , otherwise

.

c) Let A ⊂ RT . We say that XA is the characteristic
function of A if and only if

XA(x) =

{
1 , if x ∈ A
0 , if x /∈ A .

d) Let [a, b] be an interval. A set P is said to be a partition
of [a, b] if and only if there are n ∈ N, x0, . . . , xn ∈ [a, b]
such that P = (x0, . . . , xn) where x0 = a, xn = b and,
furthermore, if n = 2, x0 ≤ x1 and if n > 2, x0 < x1 <
· · · < xn−1 < xn.

e) We say that ϕ : [a, b] → RT is a step function if and
only if there is a partition P = (x0, . . . , xn) of [a, b] and
c1, . . . , cn ∈ RT such that

ϕ =

n∑
j=1

cjXIj ,

where Ij = (xj−1, xj ] for all j ∈ {1, . . . , n}.
We denote as S([a, b]) the set of step functions on [a, b]

and note that the description of a step function is not unique.

Definition 13: Let a, b ∈ RT and ϕ =
n∑
j=1

cjXIj be a step

function on [a, b]. We define the integral in RT of ϕ on [a, b]
as ∫ b

a
RT

ϕ(x) dx :=
n∑
j=1

j; cj 6=0

cj |Ij | .

Notice that the integral of a step function is independent
of the particular step function used.

If x, y ∈ RT , we write x 6< y, if and only if x < y does
not hold and we write x 6> y, if and only if x > y does
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not hold. Notice that 6< is not equivalent to ≥. For example
Φ 6< 0 but Φ ≥ 0 does not hold. See [3].

Definition 14: Let there be a non-empty set A ⊂ RT . We
say that u ∈ RT is the supremum of A and we write u =
supA if and only if one of the following conditions occurs:

i) A = {Φ} and u = Φ or
ii) u 6= Φ and u 6< x for all x ∈ A and if w ∈ RT , such

that w 6< x for all x ∈ A, then w 6< u.
And we say that v ∈ RT is the infimum of A and we write
v = inf A if and only if one of the following conditions
occurs:

iii) A = {Φ} and v = Φ or
iv) v 6= Φ and x 6< v for all x ∈ A and if w ∈ RT , such

that x 6< w for all x ∈ A, then v 6< w.
Definition 15: Let a, b ∈ RT and let there be a function

f : [a, b]→ RT . We say that f is integrable in RT on [a, b]
if and only if

inf


∫ b

a
RT

ϕ(x) dx; ϕ ∈ S([a, b]) and ϕ 6< f

 =

sup


∫ b

a
RT

σ(x) dx; σ ∈ S([a, b]) and f 6< σ

 .

And in this case the integral of f in RT on [a, b] is defined
as ∫ b

a
RT

f(x) dx :=

inf


∫ b

a
RT

ϕ(x) dx; ϕ ∈ S([a, b]) and ϕ 6< f

 .

Notice that if ϕ is a step function on [a, b] then definitions
13 and 15 give the same result.

Proposition 16: a) Let a, b ∈ R and let there be a bounded
function f : [a, b] → R. It follows that f is Riemann
integrable in R if and only if f is integrable in RT . And

in this case,
∫ b

a

f(x) dx =

∫ b

a
RT

f(x) dx.

b) Let a ∈ R and let f : [a,∞] → R be a function
that is Riemann integrable on every closed subinterval of

[a,∞). The improper Riemann integral
∫ ∞
a

|f |(x) dx exists

if and only if f is integrable in RT . And in this case,∫ ∞
a

f(x) dx =

∫ ∞
a

RT

f(x) dx.

c) Let b ∈ R and let f : [−∞, b] → R be a function
that is Riemann integrable on every closed subinterval of

(−∞, b]. The improper Riemann integral
∫ b

−∞
|f |(x) dx

exists if and only if f is integrable in RT . And in this case,∫ b

−∞
f(x) dx =

∫ b

−∞
RT

f(x) dx.

d) Let f : [−∞,∞] → R be a function that is Riemann
integrable on every closed subinterval of (−∞,∞). The

improper Riemann integral
∫ ∞
−∞
|f |(x) dx exists if and only

if f is integrable in RT . And in this case,
∫ ∞
−∞

f(x) dx =∫ ∞
−∞

RT

f(x) dx.

e) Let a, b ∈ R and let f : [a, b]→ RT be a function such
that f((a, b]) ⊂ R, f(a) = ∞ and f is Riemann integrable
on any subinterval in (a, b]. The improper Riemann integral∫ b

a

|f |(x) dx exists if and only if f is integrable in RT . And

in this case
∫ b

a

f(x) dx =

∫ b

a
RT

f(x) dx.

f) Let a, b ∈ R and let f : [a, b]→ RT be a function such
that f([a, b)) ⊂ R, f(b) = ∞ and f is Riemann integrable
on any subinterval in [a, b). The improper Riemann integral∫ b

a

|f |(x) dx exists if and only if f is integrable in RT . And

in this case
∫ b

a

f(x) dx =

∫ b

a
RT

f(x) dx.

Proof: a) It is sufficient to observe that, since [a, b] ⊂ R

and f : [a, b] → R, the integral
∫ b

a
RT

f(x) dx is precisely

the Darboux integral, which is known to be equivalent to the
Riemann integral.

b), c), d), e) and f) It is sufficient to note that if
[a, b] ⊂ [−∞,∞] and f : [a, b] → [−∞,∞] is a non-
negative function that is Lebesgue integrable then the integral∫ b

a
RT

f(x) dx is equal the Lebesgue integral of f on (a, b).

See [9], Section 2.1 and use the Theorems 37, 38, 45 and
46 in [8].

Example 17: Let f : RT → RT and let there be an
aribtrary a ∈ RT . It follows that:

a) If a ∈ R and f(a) ∈ R then
∫ a

a
RT

f(x) dx = 0.

Because
∫ a

a
RT

f(x) dx = f(a) |[a, a]| = f(a)× 0 = 0;

b) If a ∈ {−∞,∞,Φ} then
∫ a

a
RT

f(x) dx = Φ. Because∫ a

a
RT

f(x) dx = f(a)|[a, a]| = f(a)× Φ = Φ;

c)
∫ Φ

a
RT

f(x) dx =

∫ a

Φ
RT

f(x) dx = Φ. In order to

see this, let ϕ ∈ S([a,Φ]). Whence
∫ Φ

a
RT

ϕ(x) dx =

ϕ(a)|[a, a]| + ϕ(Φ)|[Φ,Φ]| = ϕ(a)|[a, a]| + ϕ(Φ)Φ =

ϕ(a)|[a, a]|+ Φ = Φ. Thus
∫ Φ

a
RT

f(x) dx = Φ.

The reader will appreciate that it would be possible to
define the integral in RT in a more general way, for example
by defining it in a manner analogous to the Lebesgue integral.
However, in this paper, we had the more modest aim of
giving the first, detailed definition of the integral in RT ,
replacing the earlier proposal in [1]. We choose a definition
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that extends the concept of the integral to RT in a simple way.
We then found that it is totally coincident with the Riemann
integral when the domain and codomain of a function are
subsets of the real numbers: Dm(f) ⊂ R and CDm(f) ⊂ R.

III. DISCUSSION

The transintegral, as introduced above, is the first mathe-
matical structure that has been defined for which the trans
version is less general than the usual one. (We now know
that there is a more general definition of the transintegral
that contains the real integral. A paper on that subject has
been submitted for publication elsewhere but we press on,
here, with a notational device that admits all of the results
of real analysis to transreal analysis. We mention it because
this notational approach may be of more widespread use.)

One possibility for defining the transintegral, so that it
contains the usual integral, is that we should define the
transintegral asymptotically toward the infinities, as usual,
and then observe that the the infinities are singleton points
which make no additional contribution to the transintegral.
The resulting transintegral differing from the usual one only
in that it is defined over functions of transnumbers.

While a difference in integrals remains, we may handle the
difference notationally. Consider the symbols for the usual
integral:

∫ b
a
f(x) dx. We introduce a notation to indicate

whether a limit of integration, say a, is exact, x = a, or
asymptotic, x→ a, for transreal a, x. We specify the reading
of an isolated symbol, a, so that a is a shorthand for x = a
when a ∈ R ∪ {Φ} and a is a shorthand for x → a when
a ∈ {−∞,∞}. When the shorthand does not apply we write
the limit explicitly. For example the fragment

∫∞
0

indicates
the integral from exactly zero, asymptotically toward infinity,
as usual, and the new fragment

∫ x=∞
x→0

indicates the integral
asymptotically from zero, exactly to infinity. This notation
preserves the whole of the usual notation for integrals,
preserves all of the results of real integration and introduces
new, non-finite results.

We believe it is important to examine many possible
definitions of the transintegral and their uses before coming
to a judgement on what the standard definition should be.
This is entirely normal in a new area of mathematics, as re-
capitulated in the various revisions of the transmathematical
structures developed to date.

The transreal derivative is and, in future, the transreal inte-
gral will be, supersets of their real counterparts. They differ
from their real counterparts only in being more powerful:
they give solutions at singularities where real analysis fails.
Hence software that implements transreal analysis is more
competent than software that implements real analysis.

However, both kinds of analysis and software are partial.
There are occasions when both a real limit and a transreal
limit fail to exist, say where the function oscillates, unbound-
edly, toward both positive and negative infinity. In these
cases a solution can be had mathematically by operating
on solution sets. Where the limit, derivative, integral, or
whatever does not exist the solution is the empty set. In
general it is impractical for a computer to operate on arbitrary
sets but it may be feasible simply to return a flag to say that
the limit, etc. does not exist.

It is already known that the methods just developed are
sufficient to extend Newtonian Physics to a Trans-Newtonian
Physics that operates at singularities. We hope the present
series of paper will build confidence in transmathematics to
the point where such results are accepted for publication.

IV. CONCLUSION

In this paper and its companion [1], we extend real analysis
to transreal analysis which allows division by zero. We do
this by adding the usual topology of measure theory and
integration theory to the transreal numbers and then use this
topology to extend continuity, limits, derivatives and integrals
so that they hold over functions of transreal numbers. This
gives us a transmathematics which operates at mathematical
singularities.
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