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Abstract—This paper presents a novel metaheuristic 

algorithm, simulated metamorphosis (SM), inspired by the 

biological concepts of metamorphosis evolution. The algorithm 

is motivated by the need for interactive, multi-objective, and 

fast optimization approaches to solving problems with fuzzy 

conflicting goals and constraints. The algorithm mimics the 

metamorphosis process, going through three phases: 

initialization, growth, and maturation. Initialization involves 

random but guided generation of a candidate solution. After 

initialization, the algorithm successively goes through two 

loops, that is, growth and maturation. Computational tests 

performed on benchmark problems in the literature show that, 

when compared to competing metaheuristic algorithms, SM is 

more efficient and effective, producing better solutions within 

reasonable computation times. 

 
Index Terms—Metamorphosis, evolution, optimization, 

algorithm, metaheuristics 

 

I. INTRODUCTION 

IMULATED Metamorphosis (SM) is a novel evolutionary 

approach to metaheuristic optimization inspired by the 

natural biological process of metamorphosis common in 

many insect species [1] [2]. The metaheuristic approach is 

motivated by several problem situations in the operations 

research and operations management community, such as 

nurse scheduling [3] [4] [5], vehicle routing problems [6], 

and task assignment [7]. In particular, the metaheuristic is 

motivated by hard optimization problems that are associated 

with multiple conflicting objectives, imprecise fuzzy goals 

and constraints, and the need for interactive optimization 

approaches that can incorporate the choices, intuitions and 

expert judgments of the decision maker [4] [8].  

In a fuzzy environment, addressing hard optimization 

problems with conflicting goals requires interactive tools 

that are fast, flexible, and easily adaptable to specific 

problem situations.  Decision makers often desire to use 

judicious approaches that can find a cautious tradeoff 

between the many goals, which is a common scenario in real 

world problems [2]. Addressing ambiguity, imprecision, and 

uncertainties of management goals is highly desirable in 

practice [4] [8]. For instance, in a hospital setting, where 

nurses are often allowed to express their preferences on shift  
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schedules, the decision maker has to incorporate the 

imprecision in preferences and management goals and 

choices. Moreover, it is important to balance workload 

assignment, if shift fairness and equity are to be achieved. 

Preferences of patients or clients have to be considered as 

well. Though imprecise and conflicting, these factors have to 

be considered when constructing work schedules [4] [5]. 

Similar situations are commonplace in hard combinatorial 

problems. 

In view of the above highlighted needs for interactive 

fuzzy multi-objective optimization approaches, the purpose 

of this research is to introduce a novel simulated 

metamorphosis algorithm, a fuzzy metaheuristic algorithm 

that is derived from the biological metamorphosis evolution 

process. Our objectives are as follows: 

1) To present the basic concepts of the metamorphosis 

evolution process; 

2) To derive, from the metamorphosis concepts, an 

interactive fuzzy evolutionary algorithm; and, 

3) To apply the algorithm to typical nurse scheduling 

problems, demonstrating its effectiveness.  

The rest of the paper is structured as follows. The next 

section presents the basic concepts of metamorphosis 

evolution. Section III proposes the simulated metamorphosis 

algorithm. Section IV presents the nurse scheduling 

problem. Section V presents a simulated metamorphosis for 

the nurse scheduling problem. Computational illustrations 

are provided in Section VI. Section VII concludes the paper. 

II. METAMORPHOSIS: BASIC CONCEPTS 

Metamorphosis is an evolutionary process common in 

insects such as butterflies [2]. The process begins with an 

egg that hatches into an instar larva (instar).  Subsequently, 

the first instar transforms into several instar larvae, then into 

a pupa, and finally into the adult insect [1] [2]. The process 

is uniquely characterized with radical evolution and 

hormone controlled growth and maturation. 

 

 

Fig. 1 Metamorphosis evolution 
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A. Metamorphosis Evolution 

When an insect grows and develops, it must periodically 

shed its rigid exoskeleton in a process called molting. The 

insect grows a new loose exoskeleton that provides the 

insect with room for more growth [2]. The insect transforms 

in body structure as it molts from a juvenile to an adult form, 

a process called metamorphosis. 

The concept of metamorphosis refers to the change of 

physical form, structure, or substance; a marked and more or 

less abrupt developmental change in the form or structure of 

an animal (such as a butterfly or a frog) occurring 

subsequent to hatching or birth [1]. A species changes body 

shape and structure at a particular point in its life cycle, such 

as when a tadpole turns into a frog. Sometimes, in locusts for 

example, the juvenile form is quite similar to the adult one. 

In others, they are radically different, and unrecognizable as 

the same species. The different forms may even entail a 

completely new lifestyle or habitat, such as when a ground-

bound, leaf-eating caterpillar turns into a long distance 

flying, nectar-eating butterfly.  

A. Hormonal Control 

Insect molting and development is controlled by several 

hormones [1]. The hormones trigger the insect to shed its 

exoskeleton and, at the same time, grow from smaller 

juvenile forms (e.g., a young caterpillar) to larger adult 

forms (e.g., a winged moth) [2]. The hormone that causes an 

insect to molt is called ecdysone. The hormone, in 

combination with another, called juvenile hormone, also 

determines whether the insect will undergo metamorphosis. 

III. SIMULATED METAMORPHOSIS 

There are three basic phases: initialization, growth, and 

maturation. Each of these phases has specific operators. 

A. Initialization Phase 

In the initialization stage, an initial solution is created as a 

seed for the evolutionary algorithm. In our approach, we use 

a problem specific heuristic that is guided by hard 

constraints of the problem. This ensures generation of a 

feasible initial solution. Alternatively, a decision maker can 

enter a user-generated solution as a seed. The initial 

candidate solution st (t = 1,…,T) consists of constituent 

elements ei (i = 1,…,I) where I is the constituent number of 

elements in the candidate solution. 

Following the creation phase, the algorithm goes into a 

loop for a maximum of T iterations (generations). 

B. Growth Phase 

The growth phase comprises the evaluation, 

transformation, and the regeneration operators. 

1) Evaluation 

The choice of the evaluation function is very crucial to the 

success of evaluation operator and the overall algorithm. 

First, the evaluation function should ensure that it measures 

the relevant quality of the candidate solution. Second, the 

function should capture the actual problem characteristics, 

particularly the imprecise, conflicting and multi-objective 

nature of the goals and constraints. Third, the fitness 

function should be easy to evaluate and compute. 

 

Fig. 2 Simulated metamorphosis algorithm 

 

The evaluation function Ft, at iteration t, should be a 

normalized function obtained from its constituent 

normalized functions denoted by µh (h = 1,…,n), where n is 

the number of constituent objective functions.  

In this approach, we use fuzzy multi-factor evaluation 

method, that is,  

 

( ) ( )t t h h t

h

F s w s  (1) 

 

where, st is the current solution at iteration t; and wh denotes 

the weight of the function µh. The use of the max-min 

operator is avoided so as to prevent possible loss of vital 

information. 

2) Transformation 

The growth mechanism is achieved through selection and 

transformation operators. Selection determines whether a 

constituent element ei of the candidate solution st should be 

retained for the next iteration, or selected for transformation 

operation. The goodness or fitness ηi of element ei (i = 

1,…,I) is compared with probability pt∊[0,1], generated at 

each iteration t. That is, if ηi ≤ pt, then ei is transformed, 

otherwise, it will survive into the next iteration. Deriving 

from the biological metamorphosis, the magnitude of pt 

should decrease over time to guarantee convergence. From 

our preliminary empirical computations, pt should follow a 

decay function of the form, 

 

0

at T

tp p e  (2) 

 

where, p0∊[0,1] is a randomly generated number; T is the 

maximum number of iterations; a is an adjustment factor. 

It follows that the higher the goodness, the higher the 

likelihood of survival in the current solution. Therefore, 

elements with low goodness are subjected to growth. The 

magnitude of pt controls the growth rate, which emulates the 

inhibition or juvenile hormone. 

To avoid loss of performing elements, new elements are 

Evaluation 

Transformation 

Regeneration 

Terminate? 

yes 

no 

Initialize 

Solution 

Metamorphose? 

Maturation 

no 

G
ro

w
th

 
M

at
u
ra

ti
o
n

 
In

it
ia

li
ze

 

yes 

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014



 

compared with the rejected ones, keeping the better ones. A 

pre-determined number of rejected elements are kept in the 

reject list R for future use in the regeneration stage.  

3) Regeneration 

The regeneration operator has a repair mechanism that 

considers the feasibility of the candidate solution. All 

infeasible elements are repaired using problem domain 

specific heuristics, developed from problem constraints. 

Elements in the reject list R are used as food for enhancing 

the repair mechanism. 

After regeneration, the candidate solution is tested for 

readiness for transition to the maturation phase. This is 

controlled by the dissatisfaction level (juvenile hormone) mt 

at iteration t, represented by the expression, 

 

1 21 ...t nm         (3) 

 

Here, µ1,…,µn, represent the satisfaction level of the 

respective objective functions; “˄” is the min operator. This 

implies that the growth phase repeats until a pre-defined 

acceptable dissatisfaction m0 is reached. However, if there is 

no significant change in mt after a pre-defined number of 

trials, then the algorithm proceeds to the maturation phase. 

C. Maturation 

The maturation phase is a loop consisting of 

intensification and post-processing operators. The aim is to 

bring to maturity the candidate solution, so as to obtain the 

best solution. 

1) Intensification 

The aim of the intensification operator is to ensure 

complete search of an improved solution in the 

neighborhood of the current solution. This helps to improve 

the current solution further. Howbeit, at this stage, the 

juvenile hormone has ceased to control or balance the 

growth of the solution according to the constituent fitness 

functions. 

2) Post-processing 

The post-processing operator is user-guided; it allows the 

user to interactively make expert changes to the candidate 

solution, and to re-run the intensification operator. As such, 

the termination of the maturation phase is user determined. 

This also ensures that expert knowledge and intuition are 

incorporated into the solution procedure. This enhances the 

interactive search power of the algorithm. 

D. Comparing SM and Related Algorithms 

The proposed SM algorithm has a number of advantages 

over related metaheuristics. Contrary to Simulated 

Annealing (SA) which makes purely random choices to 

decide the next move, SM employs intelligent selection 

operation to decide which changes to perform. Furthermore, 

SM takes advantage of multiple transformation operations 

on weak elements of the current solution, allowing for more 

distant changes between successive iterations. 

The SM algorithm, like Genetic Algorithm (GA), uses the 

mechanics of evolution as it progresses from one generation 

to the other. GA necessarily keeps a number of candidate 

solutions in each generation as parents, generating offspring 

by a crossover operator. On the contrary, SM simulates 

metamorphosis, evolving a single solution under hormonal 

control. In addition, domain specific heuristics are employed 

to regenerate and repair the emerging candidate solution, 

developing it into an improved and complete solution. In 

retrospect, SM reduces the computation time needed to 

maintain a large population of candidate solutions in GA. 

The selection process in the SM is quite different from 

GA and other related evolutionary algorithms. While GA 

uses probabilistic selection to retain a set of good solutions 

from a population of candidate solutions, SM selects and 

discards inferior elements of a candidate solution, according 

to the goodness of each element. This enhances the 

computational speed of the SM procedure. 

At the end of the growth phase, the SM algorithm goes 

through maturation phase where intensive search process is 

performed to refine the solution, and possibly obtain an 

improved final solution. The algorithm allows the decision 

maker to input his/her managerial choices to guide the 

search process. This interactive facility gives SM an added 

advantage over other heuristics. 

The proposed algorithm uses hormonal control to enhance 

and guide its global multi-objective optimization process. 

This significantly eliminates unnecessary search through 

regions with inferior solutions, hence, improving the search 

efficiency of the algorithm. In summary, the above 

mentioned advantages provide the SM algorithm enhanced 

convergence characteristics that enable the algorithm to 

perform fewer computations relative to other evolutionary 

algorithms. 

IV. THE NURSE SCHEDULING PROBLEM 

The nurse scheduling problem (NSP) is a hard multi-

criteria optimization problem that involves assignment of 

different types of shifts and off days to nurses over a period 

of up to one month. The decision maker considers a number 

of conflicting objectives, choices, and preferences associated 

with the healthcare organization and individual nurses [9] 

[10] [11]. In practices, contractual work agreements govern 

the number of assignable shifts and off days per week. 

Imprecise personal preferences should be satisfied as much 

as possible. Typically nurses are entitled to day shift d, night 

shift n, and late night shift l, with holidays or days-off o 

[12]. Table I lists and describes common shift types and 

their time allocations. 

The primary aim is to search for a schedule that satisfies a 

given set of hard constraints while minimizing a specific cost 

function [10] [12]. However, in practice, individual nurse 

preferences, which are often imprecise, have to be satisfied 

to the highest degree possible; the higher the degree of 

satisfaction, the higher the schedule quality [9]. This ensures 

not only healthcare service quality, but also satisfactory 

healthcare work environment (job satisfaction). 

 
TABLE I 

TYPICAL SHIFT TYPES 

Shift Shift Description Time allocation 

1 d: day shift  0800 - 1600 hrs 

2 e: night shift  1600 - 2400 hrs 

3 n: late night shift  0000 - 0800 hrs  

4 o: off days as nurse preferences 
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TABLE II 

TYPICAL CONSTRAINTS TYPES 

Constraints Description of the constraint 

Daily 

Restrictions 

 

C1: Assign each nurse at most one shift per day. 

C2: Shift sequences (e-d), (n-e) and (n-d) are not 

permissible. 

C3: Assigned legal holidays = Legal holidays. 

C4: Interval between night shifts should ≥ 1 week. 

Nurse 

Preferences 

 

P1: Preferred or desired day off or holidays. 

P2: Fairness or equality of shifts for each nursing staff 

P3: Congeniality - compatible shift assignments 

between work mates 

 

Table II provides a list of typical hard constraints (C1 to 

C4) and soft constraints (P1 to P3). In most cases, hard 

constraints consist of daily restrictions that arise from 

legislative laws, while soft constraints arise from nurse 

preferences [8] [9] [10].  

V. SIMULATED METAMORPHOSIS FOR NURSE SCHEDULING 

In this section, we present an application of simulated 

metamorphosis for nurse scheduling in a fuzzy environment 

with multiple objectives. 

A. Initialization 

The initialization algorithm is designed such that, while 

assigning shifts at random, all hard constraints are satisfied. 

This is achieved by incorporating all the hard constraints 

into the initialization procedure. In addition, the coding 

schema ensures that only one shift is assigned to a nurse on 

each day, thus satisfying constraint C1. This improves the 

speed of the initialization process. Fig. 3 presents an 

enhanced initialization algorithm that incorporates hard 

constraints. 

 

 
Fig. 3  SM initialization procedure incorporating hard constraints 

B. Growth Phase 

1) Evaluation 

The goodness, fitness, or quality of a solution is a function 

of how much it satisfies soft constraints. As such, fitness is a 

function of the weighted sum of the satisfaction of soft 

constraints. Thus, each soft constraint is represented as a 

normalized fuzzy membership function in [0,1]. In this 

study, we use two types of membership functions: (a) 

triangular functions, and (b) interval-valued functions, as 

show in Fig. 4. 

 

 
Fig. 4  Linear membership functions 

 

In (a), the satisfaction level is represented by a fuzzy 

number Am,a, where m denotes the centre of the fuzzy 

parameter with width a. Thus, the corresponding 

membership function is, 

 

| |
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 (4) 

 

In (b), the satisfaction level is represented by a decreasing 

linear function where [0,a] is the most desirable range, and b 

is the maximum acceptable. Therefore, the corresponding 

function is,  

 

1 If 

( ) ( ) ( ) If 

0 If otherwise

B

x a

x b x b a a x b



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


 (5) 

 

Membership Function 1 - Workload Variation: For fair 

workload assignment, the workload hi for each nurse i 

should be as close as possible to the mean workload w. 

Therefore, the workload variation xi=hi-w should be 

minimized. Assuming symmetrical triangular membership 

function from (3), we obtain, 

 

1( ) ( )i A ix x   (6) 

 

where, xi is workload variation for nurse i from mean w of 

the fuzzy parameter, with width a. 

Membership Function 2 - Allocated Days Off: This 

membership function measures the variation of the allocated 

days off from the mean. We assume symmetrical triangular 

membership function derived from (3) as follows; 

 

2 ( ) ( )i A ix x   (7) 

 

where, xi is the actual variation of days off for nurse i from 

the mean m of the fuzzy parameter with width a. 
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Membership Function 3 - Variation Night Shifts: For shift 

fairness the variation xi of the number of night shifts (shifts e 

and n) allocated to each nurse i should be as close as 

possible to the mean allocation m. Assuming symmetrical 

triangular membership function from (3), we obtain, 

 

3( ) ( )i A ix x   (8) 

 

where, xi is the variation of number of nights shifts allocated 

to nurse i from mean m of the fuzzy parameter, with width a. 

Membership Function 4 - Congeniality: This membership 

function measures the compatibility (congeniality) of staff 

allocated similar shifts; the higher the congenialities, the 

higher the schedule quality. In practice, a decision maker 

sets limits to acceptable number of uncongenial shifts xi for 

each nurse i to reflect satisfaction level. Assuming interval-

valued functions in Fig. 4 (b), the corresponding 

membership function is, 

 

4 ( ) ( )i B ix x   (9) 

 

where, xi is the actual number of uncongenial allocations; a 

is the upper limit to the preferred uncongenial shifts; b is the 

maximum uncongenial shifts. 

Membership Function 5 – Understaffing: High quality 

schedule minimize as much as possible the understaffing for 

each shift k. In practice, the level of understaffing xj = ∑uk in 

each day j should be within acceptable limits. This can be 

represented by a linear interval-valued membership function 

derived from (4); 

 

5 ( ) ( )j B jx x    (10) 

 

where, xj is the staffing variation from mean m of the fuzzy 

parameter, with width a. 

Membership Function 6 – Overstaffing: For high quality 

schedule, overstaffing ok for each shift k should be 

minimized as much as possible. In a practical setting, the 

level of overstaffing xj = ∑ok for all shifts in each day j 

should be within acceptable limits, which can be represented 

by a linear interval-valued membership from (4); 

 

6 ( ) ( )j B jx x   (11) 

 

where, xj is the staffing variation from mean m of the fuzzy 

parameter, with width a. 

The Overall Fitness: The fitness for each shift pattern i for 

each nurse is obtained from the weighted sum of the first 

four membership functions. For horizontal fitness As such, 

the fitness for each shift pattern (or element) i is obtained 

according to the following expression; 

 
4

1

( )i z z i

z

w x i 


    (12) 

 

where, wz is the weight of each function µz, such that 

condition ∑wz = 1.0 is satisfied. 

Similarly, the fitness according to shift requirement in 

each day j is given by, 

6

5

( )j z z j

z

w x j 


    (13) 

 

where, wz is the weight of each function µz, with ∑wz = 1.0. 

The overall fitness of the candidate solution is given by 

the expression, 

 

1 2

1 1f
 

 

   
      
   

  (14) 

 

where,  = ˄ ˄4; µ = µ1˄µ2; ω1 and ω2 are the 

weights associated with η and λ, respectively; “˄” is the min 

operator. 

The weights wz, ω1 and ω2 offer the decision maker an 

opportunity to incorporate his/her choices reflecting expert 

opinion and preferences of the management and the nurses. 

This feature gives the SM algorithm an added advantage 

over other methods. 

2) Transformation 

In NSP, elements are two-fold: one that represents 

horizontal shift patterns, denoted by ei, and another 

representing the vertical shift allocations for each day, 

denoted by ej. Fitness ηi and j of each element are 

probabilistically tested for transformation by comparing with 

a random number pt∊[0,1], generated at each iteration t. A 

transformation probability pt = p0e
-t/T

 is used to 

probabilistically change elements ei and ej using column-

wise and row-wise heuristics to improve the solution. 

3) Regeneration 

Regeneration repairs infeasible elements using a 

mechanism similar to the initialization algorithm which 

incorporates hard constraints. Based on the juvenile 

hormone level mt at iteration t, the candidate solution is then 

tested for readiness for maturation,  

 

   1 2 3 4 1 21tm              (15) 

 

The growth phase repeats until a pre-defined acceptable 

dissatisfaction m0 is reached. However, the algorithm 

proceeds to the maturation phase if there is no significant 

change ε in mt within a predetermined number of iterations, 

with the value of ε set in the order of 10
-6

. 

C. Maturation 

Intensification ensures complete search of a near-optimal 

solution in the neighbourhood of the current solution. In the 

post-processing stage the user interactively makes expert 

changes to the candidate solution, and to execute 

intensification. Expert knowledge and intuition are coded in 

form of possible adjustments through weights w1,…,w4 and 

ω1, ω1. Illustrative computations are presented in the next 

section. 

VI. COMPUTATIONAL RESULTS AND DISCUSSION 

To illustrate the effectiveness of the proposed SM 

algorithm, computational experiments were carried out on a 

typical nurse scheduling problem with 13 nurses over a a 

planning horizon of 14 days. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 Fitness ηi 

Nurse 1 o o e e o d d d d d d e e e 0.6308 

Nurse 2 e n o d d d d o d d e e o d 0.7308 

Nurse 3 d d d d d n n n n o d d o d 0.8635 

Nurse 4 n o d d d d d d d d o n n n 0.8885 

Nurse 5 d d d n n o d d o d d d e e 0.8385 

Nurse 6 d d d o e e e o d d d d d d 0.8385 

Nurse 7 d d o d n n o d d d d d d e 0.7385 

Nurse 8 o d d d d d d e e e e o d d 0.8885 

Nurse 9 d d d d d e n n o d d e e o 0.8442 

Nurse 10 o e e e e o d d d d d d d d 0.8385 

Nurse 11 d d d d d o e e e n o d d o 0.7308 

Nurse 12 e n n n o d d d n n o o d d 0.4865 

Nurse 13 d n n o d d o d d o d n n n 0.6615 

Fitness λk 0.80 0.67 1.00 1.00 1.00 0.80 1.00 1.00 1.00 0.67 0.47 0.67 0.67 0.67 f = 0.4667 

 

Fig. 5  Initial nurse schedule 

 

 
1 2 2 4 5 6 7 8 9 10 11 12 13 14 Fitness ηi 

Nurse 1 n n o d d d d o d e e o d d 0.6558 

Nurse 2 e n n n o d d d o d d d d d 0.9385 

Nurse 3 d o n n n o d d d d d d e e 0.9385 

Nurse 4 n o d d d d d d d d o n n n 0.9385 

Nurse 5 d d d d d n n n n o d d o d 0.9385 

Nurse 6 o d d d e e e o d d d d d d 0.8385 

Nurse 7 o d d d d d d e n n n o d d 0.9385 

Nurse 8 d e e o o d d d d n o e d d 0.7308 

Nurse 9 d d d d d e n n o d d e e o 0.8692 

Nurse 10 e e e e e o o d d d d d d d 0.7942 

Nurse 11 d d d d d d e e e e n d o o 0.8692 

Nurse 12 d d o e n n o d d d d d d e 0.7885 

Nurse 13 d d d o d d d d e o e n n n 0.8692 

Fitness λk 1.0 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 f = 0.8197 

 

Fig. 6  Final nurse schedule 

 

Fig. 5 shows the initial schedule created using the 

enhanced initialization procedure. The shift requirements for 

shifts d, e, and n are 7, 2, and 2, respectively. Only 6 out of 

14 days have 100% satisfaction of shift requirements. 

Assume that, due to congeniality issues, nurse combinations 

(1,10) and (1,12) are to be avoided as much as possible. The 

fitness values for each shift pattern are obtained using 

expression (11). Similarly, the fitness values for each day are 

obtained from (12). The maximum number of iterations T = 

200. The initial overall fitness is 0.4667, which is very low. 

Fig. 6 shows the final nurse schedule obtained after 200 

iterations. The solution shows a marked improvement in the 

fitness values of individual shift patterns. Also, there is a 

100% satisfaction of the shift requirements in each day, 

which is a marked improvement from the initial solution. 

Consequently, the overall fitness value of the final schedule 

is 0.8197, which is a significant improvement from the initial 

schedule. 

VII. CONCLUSIONS AND FURTHER WORK 

Motivated by the biological metamorphosis process and 

the need to solve multi-objective optimization problems with 

conflicting and fuzzy goals and constraints, this research 

proposed a simulated metamorphosis algorithm, based on 

the concepts of biological evolution in insects, including 

moths, butterflies, and beetles. The algorithm mimics the 

hormone controlled evolution process going through 

initialization, iterative growth loop, and finally maturation 

loop. 

The suggested methods offers a practical approach to 

optimizing multi-objective problems with fuzzy conflicting 

goals and constraints such as the nurse scheduling, homecare 

nurse routing and scheduling, vehicle routing, job shop 

scheduling, and task assignment. Equipped with the facility 

to incorporate the user’s choices and wishes, the algorithm 

offers an interactive approach that can accommodate the 

decision maker’s expert intuition and experience, which is 

otherwise impossible with other optimization algorithms. 

The proposed metaheuristic is efficient and effective. By 

using hormonal guidance and unique operators, the 

algorithm employs two successive iterative loops, working 

on a single candidate solution to efficiently search for the 

best solution. 

Simulated metamorphosis is an invaluable addition to the 

operations research and operations management community, 

specifically to researchers concerned with multi-objective 

global optimization. Learning from the preliminary 

experimental tests of the algorithm, the application of the 

proposed approach can be extended to a number of practical 

hard problems such as task assignment, vehicle routing, 

home healthcare nurse scheduling, job sequencing, and time 

tabling. 

ACKNOWLEDGMENT 

The authors appreciate the reviewers for their invaluable 

comments on the previous version of this paper. 

 

REFERENCES 

[1] G. Tufte, “Metamorphosis and Artificial Development: An Abstract 

Approach to Functionality,” In G. Kampis, I. Karsai, and E. 

Szathm´ary (Eds.): ECAL 2009, Part I, LNCS 5777, Springer-Verlag 

Berlin Heidelberg, pp. 83–90, 2011. 

[2] J.W. Truman and L.M. Riddiford, “Endocrine insights into the 

evolution of metamorphosis in insects,” The Annual Review of 

Entomolog, vol. 47, pp. 467–500, 2002. 

[3] A. Jan, M. Yamamoto, A. Ohuchi, “Evolutionary algorithms for nurse 

scheduling problem,” IEEE Proceedings of the 2000 Congress on 

Evolutionary Computation, vol. 1, pp. 196 – 203, July 2000. 

[4] M. Mutingi, C. Mbohwa, “Healthcare staff scheduling in a fuzzy 

environment: A fuzzy genetic algorithm approach,” Proceedings of 

the 2014 International Conference on Industrial Engineering and 

Operations Management, Bali, Indonesia, pp. 303-312, January 7 – 

9, 2014. 

[5] T. Inoue, T. Furuhashi, H. Maeda, and M. Takaba, “A proposal of 

combined method of evolutionary algorithm and heuristics for nurse 

scheduling support system,” IEEE Transactions on Industrial 

Electronics, vol. 50, no.5, pp. 833-838, 2003. 

[6] C.D. Tarantilis, C.T. Kiranoudis, V.S.A. Vassiliadis, “A threshold 

accepting metaheuristic for the heterogeneous fixed fleet vehicle 

routing problem,” European Journal of Operations Research, vol. 

152, pp. 148–158, 2004. 

[7] M. Cheng, H.I. Ozaku, N. Kuwahara, K. Kogure, J. Ota, “Nursing 

care scheduling problem: Analysis of staffing levels,” IEEE 

Proceedings of the 2007 International Conference on Robotics and 

Biomimetics, vol. 1, pp. 1715-1719, December 2007. 

[8] S. Topaloglu, S. Selim, “Nurse scheduling using fuzzy modeling 

approach,” Fuzzy Sets and Systems, vol. 161, pp. 1543–1563, 2010. 

[9] M. Mutingi, C. Mbohwa, “A fuzzy genetic algorithm for healthcare 

staff scheduling,” International Conference on Law, 

Entrepreneurship and Industrial Engineering (ICLEIE'2013), pp. 

239-243, April 15-16, 2013. 

[10] S. Shaffer, “A rule-based expert system for automated staff 

scheduling. IEEE International Conference on Systems, Man, and 

Cybernetics, Decision Aiding for Complex Systems, vol.3 pp. 1691-

1696, 1991. 

[11] E. Burke, P. Causmaecker, V. G. Berghe, H. Landeghem, “The state 

of the art of nurse rostering,” Journal of Scheduling, vol. 7, pp.441-

499, 2004. 

[12] B. Cheang, H. Li, A. Lim, and B. Rodrigues, “Nurse rostering 

problems–a bibliographic survey,” European Journal of Operational 

Research, vol. 151, pp. 447–460, 2003. 

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol II 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19253-7-4 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014




