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Abstract—A geometrical construction of the transcomplex
numbers was given elsewhere. Here we simplify the transcom-
plex plane and construct the set of transcomplex numbers from
the set of complex numbers. Thus transcomplex numbers and
their arithmetic arise as consequences of their construction,
not by an axiomatic development. This simplifies transcomplex
arithmetic, compared to the previous treatment, but retains to-
tality so that every arithmetical operation can be applied to any
transcomplex number(s) such that the result is a transcomplex
number. Our proof establishes the consistency of transcomplex
and transreal arithmetic and establishes the expected contain-
ment relationships amongst transcomplex, complex, transreal
and real numbers. We discuss some of the advantages the
transarithmetics have over their partial counterparts.

Index Terms—transcomplex numbers, transcomplex arith-
metic, transreal numbers, transreal arithmetic

I. INTRODUCTION

TRANSARITHMETICS are total over the basic opera-
tions of arithmetic: all of addition, subtraction, multipli-

cation and division can be applied to any numbers with the
result being a number. Consequently any syntactically correct
sentence is semantically correct in the sense that its execution
does not cause an exception in an appropriate computer
architecture. Transreal arithmetic and transreal numbers are
explained in other papers in this proceedings: the removal
of exceptions from floating-point arithmetic is discussed in
[6], transreal limits are discussed in [7], transreal arithmetic
as a basis for paraconsistent logics and their computer
implementations is discussed in [9]. We refer the reader to
those papers to obtain an insight into transreal arithmetic
and to obtain references to tutorial material. However, we do
draw the reader’s attention to the fact that transreal arithmetic
obeys quadrachotomy, not the weaker trichotomy of real
arithmetic, and gives a unique and non-trivial meaning to
every combination of the relational operators: less-than (<),
equal-to (=), greater-than(>). See [6] for details.

The reader might hope that the transcomplex numbers
can be obtained from the transreal numbers by a simple
application of the Cayley-Dickson construction. See [1] for
a discussion of the construction. That is a forlorn hope
given the current state of knowledge. Firstly non-finite angles
cannot be expressed uniquely by Cartesian components so
the Cayley-Dickson construction falls at the first hurdle.
And, we should add, the complex argument function, Arg(z),
must be generalised for the same reason. Secondly the
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transreal numbers are necessarily non-distributive at infinity
so, again, the Cayley-Dickson construction fails. Thirdly
the transcomplex numbers are necessarily non-associative
at infinity so, for a third time, the Cayley-Dickson con-
struction fails. Non-associativity follows from the property
of transreal arithmetic that ∞ + ∞ = ∞. To see this
consider sums of transcomplex numbers of the form (r, θ)
where r is the radius and θ is the angle. These terms
and arithmetic are defined in the present paper, whence:
[(∞, 0)+(∞, 0)]+(∞, 1) = (∞, 0)+(∞, 1) = (∞, 1/2) but
(∞, 0)+[(∞, 0)+(∞, 1)] = (∞, 0)+(∞, 1/2) = (∞, 1/4)
which is non-associative. We return to the issue of non-
associativity in Section V, Discussion.

Given this presently complicated state of affairs, no simple,
algebraic method seems powerful enough to generalise the
transreal numbers to the transcomplex numbers ab initio.
Instead we follow the original, geometrical construction of
the transcomplexes, simplify the construction and apply alge-
braic methods to the simplification. Our objective is expressly
not to present transcomplex arithmetic as a finished system
but to show that the transcomplex numbers, as currently
conceived, are consistent with the complex, transreal, and
real numbers, and that these sets of numbers have the
expected superset/subset relationships. These issues are taken
up again in the Discussion.

Transreal arithmetic was generalised to transcomplex arith-
metic by giving a geometrical construction for the basic arith-
metical operations in a space containing an extended cylinder
(or cone) and its axis as a real line, augmented with two non-
finite points [5]. This transcomplex space describes both an
infinite set of oriented infinities, which may occur at any real
angle, and an unoriented infinity. Both kinds of infinity are
used in various areas of mathematics [18][14][13][15]. The
transcomplex space also contains a single, isolated, non-finite
point, nullity, Φ = 0/0, which is essential to totalising both
real and complex arithmetic. Despite the intricate structure
of this space, complex arithmetical operations are carried
out in three simple steps. Firstly a dilatation and translation
prepares the data. Secondly complex arithmetic is carried
out in the usual geometrical way. Finally the result is
made available, following a dilatation and translation. This
is satisfactory from a computational point of view but the
different treatment of the unoriented transcomplex and the
unsigned transreal infinities is inelegant.

Transreal arithmetic represents the signed infinities,
+∞ = 1/0 and −∞ = −1/0, but does not have an
explicit representation of an unsigned infinity that has infinite
magnitude and no sign. This unique, unsigned, infinity is
obtained, in those mathematical applications that need it, by
operating on the modulus or absolute value of the signed
infinities. Here we give a new derivation of the transcomplex
numbers which has no unoriented infinity so that, as in
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transreal arithmetic, the unoriented infinity may be computed
from the modulus of the oriented infinities. This is an elegant
solution which deals, in the same way, with the unoriented
infinity of transcomplex arithmetic and the unsigned infinity
of transreal arithmetic, making them functionally identical.
As a side effect, dispensing with the explicitly unoriented,
transcomplex infinity allows us to dispense with the part of
the whip that is the non-negative part of the real axis [5]
so that all that remains is an extended complex plane and a
single point at nullity. This makes the treatment of transreal
and transcomplex infinities equivalent and enables a natural
computation in the new transcomplex plane without the need
for pre and post transformations. Indeed the new operations
of transcomplex arithmetic are extremely closely related to
the usual complex form.

Fig. 1. The transreal numbers,
being the extended x-axis and the
point at nullity, Φ, as a subset of
the transcomplex numbers.

Fig. 2. Entire transcomplex plane
described by polar co-ordinates:
z = (r, θ) and w = (∞, θ) and
Φ = (Φ,Φ) with r, θ finite.

The new transcomplex plane is shown in Figure 1. The
usual complex plane is shown as a grey disk. It has no
real bound but, after a gap, it is surrounded by a circle at
infinity. The point at nullity, Φ, lies off the plane containing
the complex plane and the circle at infinity. The transreal
number line is shown as the x-axis, together with the point
at nullity, Φ. Figure 2 shows that any point in the complex
plane and the circle at infinity can be described in polar co-
ordinates. The system of polar co-ordinates also describes
the point at nullity which lies at nullity distance and nullity
angle. Thus every point in the transcomplex plane, including
the point at nullity, is described by polar co-ordinates.

The new derivation of transcomplex arithmetic is given
in terms of equivalence classes of the form [c, d] where,
initially, c is an ordinary complex number and d is unity,
d = 1, for finite transcomplex numbers and zero, d = 0,
for non-finite transcomplex numbers. However, the transreal
numbers provide explicitly non-finite numbers −∞,∞, Φ so
we may, ultimately, dispense with equivalence classes of the
form [c, d] so that the arithmetic is carried out on equivalence
class representatives of the form (r, θ) where r and θ are
transreal numbers.

The main mathematical work stops with the set of
transcomplex numbers, CT , being represented by polar co-
ordinates of a non-negative, transreal radius and a real angle
in the principal range (−π, π]. The point at nullity lies at an
arbitrary angle which may be taken as zero so that its polar
co-ordinates are (Φ, 0). As usual the point at zero also lies at
an arbitrary angle, which is conventionally taken to be zero,
so its polar co-ordinates are (0, 0). This set of transcomplex
numbers is mathematically elegant and supports a total
arithmetic but it is not sufficient for computation where it
is required that parameters, here r and θ, are taken from the
entire input class of machine, usually binary, representations

of, in this case, transreal numbers. A little more work is
done to extend the angles from the principal range to the
whole set of real numbers so that they wrap to describe a
Riemann surface [13]. The real angles are then augmented
with the non-finite angles so that, as in previous work [5],
all non-finite angles describe the angle nullity. In the new
transcomplex plane only the point at nullity lies at angle
nullity. This totalises angle over the entire set of transreal
numbers. However, we prefer (Φ,Φ) as the representative
of the equivalence class of polar co-ordinates that describe
the point at nullity because angle Φ makes it immediately
obvious that nullity lies outside the extended-complex plane,
comprising the complex plane and the circle at infinity:
Figures 1 and 2. We then take (−r, θ) = (r, θ + π) which
totalises radius over the transreal numbers. In this form there
are no exceptions to the polar co-ordinates.

In future all of these number systems may be referred to
as transcomplex numbers, CT , but it would be helpful for
authors to explicitly state the transreal values over which the
radius and angle range. Such variety in notation is entirely
normal, especially in the early stages of the development of
a new mathematical system. In time some one form may be
taken as the canonical form of transcomplex numbers.

The absence of all exceptions is extremely powerful in
computation. It means that it is possible to construct compu-
tational systems where all syntactically correct expressions
are semantically correct. For example it is possible to guar-
antee that any program which compiles has no logical run
time errors (though it may have physical run time errors due
to electrical faults). This is valuable in safety critical systems
and in data-flow machines where the absence of exceptions
means it can be guaranteed that the flow of data will not be
interrupted. The existence of even one total system of Turing
complete computation is enough to obtain these advantages
so all Turing computations could be described in transreal
arithmetic, say via a Gödelisation, but where engineering and
scientific computations are wanted in complex arithmetic,
it is more efficient to provide a direct totalisation of the
complex numbers, as we do here.

In the next section we construct the new transcomplex
numbers from the complex numbers and derive the new
transcomplex arithmetic. This is followed by a tutorial on
transcomplex arithmetic. We then discuss the role of the
new transcomplex arithmetic in mathematics, physics and
computation.

II. NOVELTY

The problem of defining division by zero has remained
open for a long time. Martinez discusses various approaches
that have been taken over the last, approximately, one thou-
sand years [17] ch. 6. In the last one hundred years, the
consensus view, among mathematicians, is that the result of
dividing by zero is undefined. Some areas of mathematics
allude to division by zero as an asymptotic process but do
not define exact division by zero. For example the theory of

limits allows the calculation of lim
x→0−

k

x
and lim

x→0+

k

x
, where

k, x ∈ R; similarly the theory of hyperreal numbers allows
division by infinitesimal numbers that are infinitesimally
close to, but not exactly, zero [19]. Elsewhere, in this
proceedings, we take the novel approach of extending real

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I 
WCECS 2014, 22-24 October, 2014, San Francisco, USA

ISBN: 978-988-19252-0-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2014



limits and both the real differential and real integral calculus
to operate exactly on division by zero [7][11].

The IEEE floating-point standard uses symbols to express
a fraction with zero denominator, such as∞ and NaNs. How-
ever the NaNs are not arithmetically well defined numbers,
as shown in novel results presented in this proceedings [6].

Exact division by zero is allowed in the theory of Wheels
[10]. This theory, like the theory of transreal arithmetic
[2][3], is motivated by the syntactic application of the rules
for operations on ordinary fractions to fractions with a
denominator of zero. There are, however, significant differ-
ences between the two theories. The elements of a Wheel
are unordered so they do not immediately generalise real
numbers, whereas the transreals explicitly do generalise the
real numbers. The two theories have different numbers that
arise on division by zero. Briefly, a Wheel is a ring adjoined
with two new elements, ∞ = 1/0 and ⊥= 0/0, whereas the
set of transreals is the set of reals adjoined with three new
elements: −∞ = −1/0,∞ = 1/0 and Φ = 0/0. Moreover a
Wheel is restricted to an algebraic structure but the transreals
occur in a transmetric space [4] with topological properties
that, as we have said, extend the concepts of limit, continuity,
differentiation and integration [7][11].

Transreal numbers have been enunciated via axioms and
have received a machine proof of consistency [8]. The
transcomplexes have been enunciated geometrically [5]. A
construction of transreal numbers has been proposed in a
paper in review for publication. Now we present the first
construction of the set of transcomplex numbers from the set
of complex numbers. We simplify the set of transcomplexes
proposed in [5] and give the first human proof of the
consistency of the transcomplexes. A further novelty of the
present paper, compared to Wheels, is that we adjoin oriented
infinities to the complex numbers.

III. THE SET OF TRANSCOMPLEX NUMBERS

Our aim is to extend the set of complex numbers and
their arithmetic to a set where the arithmetic is total. That is,
where all results of any arithmetical operation, applied to any
elements of the set, belongs to the set. We know that division
by zero is not allowed in ordinary complex numbers, C, so
we extend the concept of division and, for that, we also need
to extend the concept of number.

Any complex number, z ∈ C, can be written in the form
z = a+ bi, where a, b ∈ R and i is the imaginary unit, that
is, i =

√
−1. As usual we write the modulus of z as |z|, that

is, |z| =
√
a2 + b2, and we write the principal argument of

z, when z 6= 0, as Arg(z), that is, θ = Arg(z) if and only if

cos(θ) =
a

|z|
, sin(θ) =

b

|z|
and θ ∈ (−π, π].

Definition 1: Let T :=
{

(x, y); x ∈ C, y ∈ {0, 1}
}

.
Given (x, y), (w, z) ∈ T , we say that (x, y) ∼ (w, z), that
is, (x, y) is equivalent (w, z) with respect to ∼, if and only
if there is a positive α ∈ R such that x = αw and y = αz.

Notice that the relation, ∼, is an equivalence relation1 on
T . Indeed the reflexive property of ∼ is immediate. Now

1Remember [16] that ∼ is an equivalence relation on a set A, if and only
if, for all a, b, c ∈ A, the three following properties hold:

(reflexivity) a ∼ a,
(symmetry) if a ∼ b then b ∼ a and
(transitivity) if a ∼ b and b ∼ c then a ∼ c.

let (x, y), (w, z), (u, v) ∈ T such that (x, y) ∼ (w, z) and
(w, z) ∼ (u, v). Then there are positive α, β ∈ R such that

x = αw, y = αz, w = βu and z = βv. Since w =
1

α
x and

z =
1

α
y, so (w, z) ∼ (x, y) whence follows the symmetric

property and since x = αβu and y = αβv, so (x, y) ∼ (u, v)
whence follows the transitive property.

For each (x, y) ∈ T , let us write the equivalence class of
(x, y) as [x, y]. That is, [x, y] :=

{
(w, z) ∈ T ; (w, z) ∼

(x, y)
}

. Let us call each element of T/∼, the quotient set of
T with respect to ∼, the transcomplex number and let us
write this set as CT .

Definition 2: Given [x, y], [w, z] ∈ CT let us define:

a) (addition) [x, y] + [w, z] :=
[
x

|x|
+

w

|w|
, 0

]
, if [x, y] , [w, z] ∈

{
[u, 0];u ∈ C \ {0}

}
[xz + wy, yz] , otherwise

b) (multiplication) [x, y]× [w, z] := [xw, yz]

c) (opposite) −[x, y] := [−x, y]

d) (reciprocal) [x, y]−1 :=

{ [y
x
, 1
]
, if x 6= 0

[y, x] , if x = 0

e) (subtraction) [x, y]− [w, z] := [x, y] +
(
− [w, z]

)
f) (division) [x, y]÷ [w, z] := [x, y]× [w, z]−1.

We are conscious that we abuse notation when we reuse
the symbols for arithmetical operations on complex numbers
to define the arithmetical operations on CT . However, we
emphasise that this is not a problem because the context
distinguishes the set to which the symbols refer. For example
when we say that [x, y] + [w, z] = [wy + xz, yz] it is clear
that the sign “+” on the left hand side of the equality refers
to addition in CT while the sign “+” on the right hand side
of the equality refers to addition in C. Moreover, as will be
seen in Theorem 4 and Observation 5, in a suitable sense,
C is a subset of CT and when the operations in CT are
restricted to C they coincide with the usual operations of C.

Proposition 3: The operations +, ×, −, −1 and ÷ are
well defined. That is, [x, y] + [w, z], [x, y]× [w, z], −[x, y],
[x, y] − [w, z], [x, y]−1 and [x, y] ÷ [w, z] are independent
of the choice of the representatives of the classes [x, y] and
[w, z].

Proof: Let [x, y], [w, z] ∈ CT , (x′, y′) ∈ [x, y] and
(w′, z′) ∈ [w, z]. We have that there are positives α, β ∈ R
such that x = αx′, y = αy′, w = βw′ and z = βz′.

a) First let us analyse the operation +. If [x, y] , [w, z] ∈{
[u, 0]; u ∈ C \ {0}

}
, then x 6= 0, w 6= 0, y = 0 and

z = 0 whence x′ 6= 0, w′ 6= 0, y′ = 0, z′ = 0, |x| = α|x′|
and |w| = β|w′|. Thus

x

|x|
=

αx′

α|x′|
=

x′

|x′|
and

w

|w|
=

βw′

β|w′|
=

w′

|w′|
, whence

(
x

|x|
+

w

|w|
, 0

)
=

(
x′

|x′|
+

w′

|w′|
, 0

)
.

Otherwise xz +wy = αx′βz′ + βw′αy′ = αβ(x′z′ +w′y′)
and yz = αy′βz′ = αβ(y′z′), whence (xz + wy, yz) ∼
(x′z′ + w′y′, y′z′). Hence, in both cases, [x, y] + [w, z] =
[x′, y′] + [w′, z′].
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b) Next let us analyse the operation ×. Notice that xw =
αx′βw′ = αβ(x′w′) and yz = αy′βz′ = αβ(y′z′), whence
(xw, yz) ∼ (x′w′, y′z′). Hence [x, y] × [w, z] = [x′, y′] ×
[w′, z′].

c) Now let us analyse the operation −. Note that −x =
−(αx′) = α(−x′) and y = αy′. Thus (−x, y) ∼ (−x′, y′).
Hence −[x, y] = −[x′, y′].

d) Finally let us analyse −1. If x 6= 0 then
y

x
=
αy′

αx′
=
y′

x′
,

whence
(y
x
, 1
)

=

(
y′

x′
, 1

)
. If x = 0 then x′ = 0, y = αy′

and x = 0 = α0 = αx′, whence (y, x) ∼ (y′, x′). Hence
[x, y]−1 = [x′, y′]−1.

Notice that [x, y]−[w, z] and [x, y]÷[w, z] are well defined
by consequence of the four previous items.

It is important to note that CT =
{

[x, 1];x ∈ C
}
∪{

[w, 0];w ∈ C, |w| = 1
}
∪
{

[0, 0]
}
. Indeed, if [x, y] ∈ CT

then y = 1 or y = 0. If y = 1 then [x, y] ∈
{

[x, 1]; x ∈ C
}

.
On the other hand, if y = 0 then either x 6= 0 implying

x = |x| x
|x|

and
∣∣∣∣ x|x|

∣∣∣∣ = 1 whence [x, y] =

[
x

|x|
, 0

]
∈{

[w, 0];w ∈ C, |w| = 1
}

or x = 0, whence [x, y] = [0, 0].
Note also that

{
[x, 1]; x ∈ C

}
,
{

[w, 0];w ∈ C, |w| = 1
}

and
{

[0, 0]
}

are pairwise disjoint. Furthermore, if x 6= w
then [x, 1] 6= [w, 1] and if |x| = 1, |w| = 1 and x 6= w then
[x, 0] 6= [w, 0].

Theorem 4: The set C :=
{

[x, 1]; x ∈ C
}

is a field2.
Proof: The result follows from the fact that π : C −→

C, π(x) = [x, 1], is a bijective function, from the fact that

(i) [x, 1] + [y, 1] = [x+ y, 1] and
(ii) [x, 1]× [y, 1] = [xy, 1]

for any [x, 1], [y, 1] ∈ C and from the fact that C is a field.

Notice that, for each x ∈ C, −[x, 1] = [−x, 1] and if
x 6= 0 then [x, 1]−1 = [x−1, 1].

Observation 5: Notice that since π is an isomorphism of
fields between C and C, we may say that C is a “copy” of
C in CT . Therefore we may allow an abuse of language and
notation: each [x, 1] ∈ C will be written, merely, as x and
C will be called set of the complex numbers. In this sense
we may say that C ⊂ CT .

Transcomplex arithmetic is total. In particular division
by zero is allowed. Thus all transcomplex number can be
represented by fractions

x

y
, with x ∈ C and y ∈ {0, 1}

(remember that C ⊂ CT ). As usual
x

y
denotes the result of

x ÷ y in CT . Indeed, if z ∈ CT then z = [x, y] for some

2Remember [16] that a set F is a field if and only if F is provided
with two binary operations + and × which, for all a, b, c ∈ F , satisfy the
following properties:

(closure under addition and multiplication) a+ b, a× b ∈ F ,
(additive and multiplicative identity) there are 0, 1 ∈ F such that a+0 =

a and a× 1 = a,
(additive and multiplicative inverses) there is −a ∈ F such that a +

(−a) = 0 and, if a 6= 0 there is a−1 ∈ F such that a× a−1 = 1,
(commutativity of addition and multiplication) a+b = b+a and a×b =

b× a,
(associativity of addition and multiplication) a+ (b+ c) = (a+ b) + c

and a× (b× c) = (a× b)× c and
(distributivity of multiplication over addition) a× (b + c) = (a× b) +

(a× c).

x ∈ C and some y ∈ {0, 1}. So

[x, y] = [x× 1, 1× y] = [x, 1]× [1, y]
= [x, 1]× [y, 1]−1 = [x, 1]÷ [y, 1]

= x÷ y =
x

y
.

Notice that the transcomplex arithmetic, developed here,
using numbers in the form

x

y
, is analogous to the arithmetic

of fractions of complex numbers. In fact if
x

y
,
w

z
∈ CT ,

where y, z ∈ {0, 1}, then

(addition) if y = z = 0, x 6= 0 and w 6= 0, so

x

y
+
w

z
=
x

0
+
w

0
=

x
|x|
0
|x|

+

w
|w|
0
|w|

=

x
|x|

0
+

w
|w|

0
=

x
|x| + w

|w|

0
,

otherwise,
x

y
+
w

z
=
xz + wy

yz
.

(multiplication)
x

y
× w

z
=
xw

yz
.

More than that, the operations of transcomplex arithmetic
can be understood geometrically, as set out in the Tutorial,
Section IV.

Now let us define infinity and nullity, respectively, by
∞ := [1, 0] and Φ := [0, 0]. Any complex number can be
represented, in polar form, by an ordered pair (r, θ), where
r ∈ [0,∞) and θ ∈ (−π, π] . Note that zero does not have
a unique description because (0, θ) describes zero for all
θ ∈ (−π, π]. Now we describe Φ by the ordered pair (Φ, θ),
where θ is arbitrary in (−π, π]. We represent all transcomplex
numbers in the form [u, 0] where u 6= 0, by the ordered pair
(∞, θ), where θ = Arg(u). In this way all transcomplex
numbers can be represented by an ordered pair, in the form
(r, θ), where r ∈ [0,∞] ∪ {Φ} and θ ∈ (−π, π], observing
that (0, θ) represents zero for all θ ∈ (−π, π] and (Φ, θ)
represents Φ for all θ ∈ (−π, π]. We can ultimately write

CT = C ∪
{

(∞, θ); θ ∈ (−π, π]
}
∪ {Φ}.

Now the reader can better appreciate figures 1 and 2. Let us
refer to the elements of C as finite transcomplex numbers, to
the elements of

{
(∞, θ); θ ∈ (−π, π]

}⋃
{Φ} as non-finite

transcomplex numbers and, particularly, to the elements of{
(∞, θ); θ ∈ (−π, π]

}
as infinite transcomplex numbers

then the elements of
{

(∞, θ); θ ∈ (−π, π]
}⋃
{Φ} are

strictly transcomplex numbers.
Observation 6: Note that CT is a superset of RT defined

in [8].
Observation 7: As a matter of convenience for computing,

we would like to consider every ordered pair, in polar form
(r, θ), as transcomplex numbers, where r and θ range over
all transreals. This can be done by keeping the equivalence
established for (r, θ) when θ ∈ R and establishing that
(r, θ) is equivalent to (Φ, 0) for all θ ∈ {−∞,∞,Φ}.
That is, (r,−∞) ∼ (r,∞) ∼ (r,Φ) ∼ (Φ, 0) for all
r ∈ [0,∞] ∪ {Φ}. Furthermore we observe that, as usual
in polar form, (−r, θ) ∼ (r, θ + π) so that r ranges over all
transreal numbers. Thus both the radius and angle may be
taken from the entire set of transreal numbers.

Notice that (r, θ) is equivalent to (Φ, 0) or, as may be
preferred, to (Φ,Φ), for all θ ∈ {−∞,∞,Φ}.
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IV. TUTORIAL

The reader is perfectly free to perform transcomplex arith-
metic by operating on fractions with a complex numerator
and zero or unit denominator, as given in the construction
of the transcomplex numbers above. However, it may be
helpful to present transcomplex arithmetic in others terms.
We assume the reader is fluent in real and complex arith-
metic. The reader should then learn transreal arithmetic. The
easiest way to learn is by studying the tutorial in [5]. We now
present a series of lessons, each of which teaches a different
way of doing transcomplex arithmetic. Readers may then
use whichever method best suits their temperament or the
problem at hand.

A. By Abstract Cases

There are six abstract cases to consider:
(a) Multiplication and division are the usual dilatation
and rotation but taken in the whole of the transcomplex
plane. (See below.)
(b) When nullity is combined arithmetically with any
transcomplex number the result is nullity.
(c) When opposite infinities are added the result is
nullity.
(d) When non-opposite infinities are added the result is
infinity along the unique bisector of the given infinities.
(e) When infinity is added to a finite number the result
is the given infinity.
(f) Complex arithmetic holds in all finite cases.

B. By Geometrical Cases

Transcomplex arithmetic can be understood geometrically.
(a) Multiplication and division are a generalisation of
the usual rotation and dilatation where dilatation of a
finite radius by ∞ is ∞ and dilatation of any radius by
Φ is Φ.
(b) Addition is performed using a generalisation of the
usual parallelogram rule where addition of an infinite
number and a finite number involves a parallelogram
whose one side has infinite length and whose other
side has finite length such that the diagonal has infinite
length and lies at the same angle as the infinite side.
(c) The sum of two, non-opposite, infinite numbers
involves a parallelogram with sides of equal and infinite
length such that the sum is the infinitely long diagonal.
(d) The sum of any number with Φ is a diagonal of
length Φ.
(e) The sum of finite numbers is given by the ordinary
parallelogram rule.

C. By Polar Arithmetic

Consider transcomplex numbers in the polar form (r, θ)
with r, θ ∈ RT .

We prefer to reduce all arithmetical results to canonical
form. As usual, we accept (0, 0) as the canonical form of
(0, θ) with θ ∈ R. For arbitrary r, θ ∈ RT , we may rewrite
any of (Φ,Φ) = (Φ, 0) = (Φ, θ) = (r,−∞) = (r,∞) =
(r,Φ) by whichever of these forms we prefer as the canonical
form. Two of these seem natural: (Φ,Φ) and (Φ, 0). We
have a slight preference for (Φ,Φ) because θ = Φ makes

it immediately apparent that the point at nullity lies off
the extended complex plane. See figure 2. Therefore we
recommend (Φ,Φ) as the canonical form for the point at
nullity.

We re-write any transcomplex number with a negative
radius, (−r, θ), as the corresponding transcomplex number
with positive radius (r, θ+π) before applying any arithmeti-
cal operator.

The usual formula for polar-complex multiplication ap-
plies to the transcomplex numbers without side conditions.
Thus: (r1, θ1)× (r2, θ2) = (r1 × r2, θ1 + θ2).

The usual formula for polar-complex division applies to
the transcomplex numbers without side conditions. Thus:
(r1, θ1)÷ (r2, θ2) = (r1 ÷ r2, θ1 − θ2).

A sum over a common radius, r, is written as (r, θ1) +
(r, θ2) = (rr′,Arg(x, y)) where x = cos θ1 + cos θ2, y =
sin θ1 +sin θ2 and r′ =

√
x2 + y2. Notice that applying Arg

to the x and y components of a complex number x + iy
is an abuse of notation. The computer programmer will be
familiar with the use of a function commonly called arctan2
to obtain the result of Arg(x, y).

The sum of transcomplex number with distinct radii is
computed as follows. Without loss of generality let r1 6<
r2. Compute r′2 = r2 ÷ r1 then (r1, θ1) + (r2, θ2) =
(r′r1,Arg(x, y)) where x = cos θ1 + r′2 cos θ2, y = sin θ1 +
r′2 sin θ2 and r′ =

√
x2 + y2.

D. By Trigonometric Components

The transcomplex numbers were originally given [5] as
triples (r, c, s), where r is the radius and c = cos θ and
s = sin θ with θ ∈ RT . The original algorithms are effective
with the new definition of the transcomplex numbers when
the whip is collapsed onto the point at nullity. The reader who
is skilled in computer algorithms will recognise opportunities
to simplify the algorithms given in [5].

V. DISCUSSION

We have developed a generalisation of complex arithmetic
that provides binary operations of addition, subtraction, mul-
tiplication and division. This is sufficient to establish the con-
sistency of transcomplex arithmetic, as currently conceived,
but the non-associativity of the addition of transcomplex
numbers, with infinite radius, may militate against having
binary operators for addition and subtraction. In future we
may prefer to have a single addition operator of arbitrary arity
or we may allow the numerators of transcomplex numbers
to be summed and differenced associatively, with a separate
operator that reduces the sums and differences to a canonical
transcomplex number. That is a matter for the future which
might best be explored by examining generalisations of
vector algebra and differential geometry or by examining the
interrelationship between the transcomplex exponential and
transcomplex logarithm. Thus we identify the partial non-
associativity (and partial non-distributivity) of transcomplex
arithmetic as subjects for future work.

Leaving aside these concerns, it may help the reader if
we discuss how the transcomplex numbers relate to more
familiar number systems and how they can be exploited in
computer applications and the design of novel computers.
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The first thing to say is that every transcomplex number is
exact. It is described by exactly one point in the transcomplex
plane which is composed of the complex plane, the circle
at infinity and the point at nullity. Zero is an exact real
number. It is the only real number which has neither a
positive sign nor a negative sign. In order to make sign total,
zero is said to have sign zero. In the same way complex
zero is said to have angle zero. Similarly transreal nullity
has no negative, zero or positive sign. In order to make sign
total, nullity is said to have sign nullity. In the same way
transcomplex nullity is said to have angle nullity. Whereas
each transcomplex number is described by a unique point
in the transcomplex plane, it is described by a conventional
representative, a least terms form, drawn from its equivalence
class. It shares this two-fold property of a unique point and
non-unique representative with the real and complex number
systems. But the transnumbers have a profound difference
from the ordinary treatment of numbers where division by
zero introduces an indefinite or undefined result. There are
no indefinite or undefined results in transcomplex or transreal
arithmetic. All transnumbers are defined and definite.

It may take the reader some time to appreciate that all
transnumbers are defined, definite and exact. For example
it is never an arithmetical error to divide any transnumber
by zero. Dividing a number by zero might or might not
be intended by the mathematician or programmer but that
is a question of how the numbers are being used, in other
words what they are being used to model, rather than being
a property of the number system itself. One is free to use the
non-finite transreal numbers to model, say, indefinite num-
bers in calculus but, as we show in a paper in preparation,
one can equally read calculus as operating at and on the
exact non-finite transnumbers. This involves a paradigm shift
in thinking: division by zero produces exact solutions. In
another paper, also in preparation, we show that Newton’s
laws of motion apply on division by zero so that we obtain
exact solutions at mathematical singularities. Fundamentally,
transnumbers allow us to consider that infinity is a number,
not only an asymptotic form, as in calculus, nor only a
cardinality, as in Cantor’s set theory. This allows us to
define non-finite distance in a generalised metric. Metrics
are usually defined in terms of real numbers but transreal
numbers give a natural description of non-finite distance [12].

Of course the reader would be more comfortable if all
of the consequences of division by zero had been worked
out but we are at an early stage in the development of the
transnumbers. Results will necessarily appear in a more or
less haphazard order. Today we present a construction of
the transcomplex numbers from the complex numbers. A
construction of the transreal numbers from the reals, given by
the first named author of the present paper, is under review
for publication. No doubt it will appear at some future time,
despite having been written earlier and being logically prior
to the present paper. Such irregularities are a natural part of
the advancement of science in a new area.

A consequence of totality is that no checking for division
by zero need be done at a program’s run time nor in the hard-
ware that executes it. A suitably designed, total, computer
system has the property that any program that compiles for
the machine, executes without any run time errors, aside from
physical errors and unintended, but programmed, behaviours.

This is certainly beneficial in data-flow machines and may be
beneficial in safety critical systems. In the longer term, we
may find physical systems where the solution at a singularity
has some practical benefit. In the mean time, the present
paper records the state of the art in the development of the
transcomplex numbers.

VI. CONCLUSION

We derive the set of transcomplex numbers from the
complex numbers and describe a transcomplex arithmetic
which totalises the operations of complex arithmetic so that
any complex number can be divided by zero. This establishes
that transcomplex arithmetic is consistent and that we obtain
the expected containments of transcomplex, transreal, com-
plex and real arithmetic. Specifically transcomplex arithmetic
contains transreal arithmetic, which contains real arithmetic
and transcomplex arithmetic contains complex arithmetic
which contains real arithmetic.

Transcomplex arithmetic may find application in math-
ematical physics where solutions of complex systems are
wanted at singularities. Also data-flow machines, operating
on transcomplex data, can be guaranteed to run without any
interruption to the flow of data, as would otherwise occur on
arithmetical exceptions.

REFERENCES

[1] Simon L. Altmann. Rotations, Quaternions and Double Groups. Dover
Publications Inc, 1986.

[2] J. A. D. W. Anderson. Representing geometrical knowledge. Phil.
Trans. Roy. Soc. Lond. Series B., 352(1358):1129–1139, 1997.

[3] James A. D. W. Anderson. Exact numerical computation of the rational
general linear transformations. In Longin Jan Lateki, David M. Mount,
and Angela Y. Wu, editors, Vision Geometry XI, volume 4794 of
Proceedings of SPIE, pages 22–28, 2002.

[4] James A. D. W. Anderson. Perspex machine xi: Topology of the tran-
sreal numbers. In S.I. Ao, Oscar Castillo, Craig Douglas, David Dagan
Feng, and Jeong-A Lee, editors, IMECS 2008, pages 330–33, March
2008.

[5] James A. D. W. Anderson. Evolutionary and revolutionary effects of
transcomputation. In 2nd IMA Conference on Mathematics in Defence.
Institute of Mathematics and its Applications, Oct. 2011.

[6] James A. D. W. Anderson. Trans-floating-point arithmetic removes
nine quadrillion redundancies from 64-bit ieee 754 floating-point
arithmetic. In this present proceedings, 2014.

[7] James A. D. W. Anderson and Tiago S. dos Reis. Transreal limits
expose category errors in ieee 754 floating-point arithmetic and in
mathematics. In Submitted for consideration in this proceedings, 2014.

[8] James A. D. W. Anderson, Norbert Völker, and Andrew A. Adams.
Perspex machine viii: Axioms of transreal arithmetic. In Longin Jan
Lateki, David M. Mount, and Angela Y. Wu, editors, Vision Geometry
XV, volume 6499 of Proceedings of SPIE, pages 2.1–2.12, 2007.

[9] James A.D.W. Anderson and Walter Gomide. Transreal arithmetic as
a consistent basis for paraconsistent logics. This proceedings, 2014.

[10] Jesper Carlström. Wheels - on division by zero. Mathematical
Structures in Computer Science, 14(1):143–184, 2004.

[11] Tiago S. dos Reis and James A. D. W. Anderson. Transdifferential
and transintegral calculus. In In this proceedings, 2014.

[12] W. Gomide and T. S. dos Reis. Números transreais: Sobre a noção
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