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Abstract—Term rewriting induction (RI) is a principle for
automatic inductive theorem proving proposed by Reddy. There
are several strategic issues in RI: (1) which reduction order
should be applied, (2) which (axiomatic or hypothetical) rules
should be applied during rewriting, and (3) which variables
should be instantiated for induction. The multi-context rewrit-
ing induction with termination checker (MRIt) solved these
problems by creating virtual parallel processes dynamically
to handle the nondeterministic choices. In this paper, we
present a multi-context algebraic inductive theorem prover
called lz-itp and implement it in a functional, object-oriented
programming language Scala which features the lazy evaluation
mechanism. Based on MRIt, our implementation exploits the
lazy evaluation schemas to gain efficiency. Also the automatic
lemma generations are employed to support solving the lemma-
required problems. The experiments show that lz-itp is more
efficient than the original MRIt implementation of Sato and
Kurihara.

Index Terms—Term rewriting system, Term rewriting induc-
tion, Multi-completion, Lazy evaluation.

I. INTRODUCTION

AN algebraic inductive theorem is a proposition for
algebraic specifications defined on inductively-defined

data structures such as natural numbers and lists. The proof
of such inductive theorems plays a fundamental role in the
field of formal verification of information systems. There
is a method called term rewriting induction (RI) proposed
by Reddy [4], which is a automatable proof principle for
proving inductive theorems on term rewriting systems. The
RI method relies on the termination of the given term
rewriting systems representing the axioms, because if we
have a terminating term rewriting system (i.e., there exists no
infinite rewrite sequence), we can use the transitive closure
of the corresponding rewrite relation of the system as a well-
founded order over terms for the basis of induction.

However, there are several kinds of strategic issues in
constructing successful proofs by RI:

• which reduction order should be applied
• which (axiomatic or hypothetical) rules should be ap-

plied during rewriting
• which variables should be instantiated for induction

It is not a trivial task to choose appropriate strategies in
general, because of the nondeterminism during the induction
procedure. Since inappropriate ones can easily lead the pro-
cedure to divergence (i.e., infinite computation), we cannot
physically create and run a number of parallel processes
because such naive parallelization would cause serious in-
efficiency. This makes it really hard to fully automate the
RI-based inductive theorem proving.
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Aoto [5] proposed a variant of RI, called the rewriting
induction with termination checker (RIt), which partially
solved the problem by using an external automated termina-
tion checker instead of a specific reduction order. Therefore,
the users no longer had to provide promising reduction orders
and they could implicitly exploit modern termination prov-
ing methods more powerful than the simply parameterized
reduction orders (e.g., recursive path orders and polynomial
orders). However, a new issue came out: in which direction
the hypothetical equations should be oriented. Since the use
of the termination checker increased the possibility of suc-
cess in the orientation and we could decide the direction of
the equations dynamically, more flexibility in the orientation
strategy was given, from the viewpoint of strategy. Based
on a multi-context strategy a procedure called multi-context
rewriting induction with termination checker (MRIt) has been
proposed by Sato [7] in order to exploit such flexibility in
orientation and solve the other strategic issues of RI.

In this paper, we present a new implementation of multi-
context algebraic inductive theorem prover lz-itp based on
MRIt, which efficiently simulates the execution of parallel
RIt processes in a single process by dynamically dealing with
the nondeterministic choices supporting automatic lemma
exploration. Because MRIt relies on the manipulation of the
node database, we exploit the lazy evaluation schemas [9]
[10] to gain more efficiency. In our implementation, we also
combine automatic lemma exploring techniques [12] to solve
the lemma-required problems.

This paper is organized as follows. In Section II we
will provide a brief review on term rewriting systems and
inductive theorem proving procedure RI and MRIt. In Section
III, we will discuss the implementation of lz-itp. The result
of the experiments will be shown and discussed in Section
IV. In Section V, we will conclude with possible future work.

II. PRELIMINARIES

A. Term Rewriting Systems
Let us briefly review the basic notions for term rewriting

systems(TRS) [1] [2] [3] [14] [16]. We start with the basic
definitions.

Definition 2.1: A signature Σ is a set of function sym-
bols, where each f ∈ Σ is associated with a non-negative
integer n, the arity of f . The elements of Σ with arity n=0
are called constant symbols.

Let V be a set of variables such that Σ ∩ V = ∅. With
Σ and V we can build terms.

Definition 2.2: The set T (Σ, V ) of all terms over Σ and
V is recursively defined as follows: V ⊆ T (Σ, V ) (i.e., all
variables are terms) and if t1, . . . , tn ∈ T (Σ, V ) and f ∈ Σ,
then f(t1, . . . , tn) ∈ T (Σ, V ), where n is the arity of f .

For example, if f is a function symbol with arity 2 and
{x, y} are variables, then f(x, y) is a term. We write s ≡ t
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when the terms s and t are identical. A term s is a subterm
of t, if either s ≡ t or t ≡ f(t1, . . . , tn) and s is a subterm
of some tk(1 ≤ k ≤ n).

Variables can be replaced by terms with specified substitu-
tions. A substitution is a function σ : V → T (Σ, V ) such
that σ(x) 6= x for only finitely many xs. We can extend
any substitution σ to a mapping σ : T (Σ, V ) → T (Σ, V )
by defining σ(f(s1, . . . , sn)) = f(σ(s1), . . . , σ(sn)). The
application σ(s) of σ to s is often written as sσ. A term
t is an instance of a term s if there exists a substitution σ
such that sσ ≡ t. Two terms s and t are variants of each
other and denoted by s .= t, if s is an instance of t and vice
versa (i.e., s and t are syntactically the same up to renaming
variables). Now we can define TRS as follows:

Definition 2.3: A rewrite rule l → r is an ordered pair
of terms such that l is not a variable and every variable
contained in r is also in l. A term rewriting system (TRS),
denoted by R, is a set of rewrite rules.

Let � be a new symbol which does not occur in Σ ∪ V .
A context, denoted by C, is a term t ∈ T (Σ, V ∪{2}) with
exactly one occurrence of �. C[s] denotes the term obtained
by replacing � in C with s.

Definition 2.4: The reduction relation→R⊆ T (Σ, V )×
T (Σ, V ) is defined by s→R t iff there exists a rule l → r ∈
R, a context C, and a substitution σ such that s ≡ C[lσ] and
C[rσ] ≡ t. In particular, the relation ↔∗

R is the reflexive,
symmetric, transitive closure of the rewrite relation →R. A
term s is reducible if s →R t for some t; otherwise, s is a
normal form.

A TRS R terminates if there is no infinite rewrite
sequence s0 →R s1 →R · · · . We also say that R has
the termination property or R is terminating. The ter-
mination property of TRS can be proved by the following
definition and theorem.

Definition 2.5: A strict partial order � on T (Σ, V ) is
called a reduction order if it possesses the following
properties.

• closed under substitution:
s � t implies sσ � tσ for any substitution σ.

• closed under context:
s � t implies C[s] � C[t] for any context C.

• well-founded:
there exist no infinite decreasing sequences t1 � t2 �
t3 � · · · .

Theorem 2.6: A term rewriting system R terminates iff
there exists a reduction order � that satisfies l � r for all
l → r ∈ R.

The root symbol of a term s ≡ f(s1, . . . , sn) is f , denoted
by root(s). The set of all defined symbols of R is defined as
DR = {root(l) | l → r ∈ R}. The set of all constructor
symbols of R is defined as CR = Σ\DR. A term consisting
of only constructor symbols and variables is a constructor
term.

Before we talk about term rewriting induction, we also
make a review of the basic notions.

A term is a basic term if its root symbol is a defined
symbol and its arguments are constructor terms. We denote
all basic subterms of a term t by B(t). A TRS R is ground-
reducible if every ground basic term is reducible in R. An
equation s = t is an inductive theorem of R if all its
ground instances sσ = tσ are equational consequences of

the equational axioms R (regarded as a set of equations),
i.e.,sσ ↔∗

R tσ.

B. Term Rewriting Induction

The term rewriting induction (RI) is an automatable proof
principle for proving inductive consequences of equational
axioms proposed by Reddy[4]. Given a set R of rewrite rules
and a reduction order � containing R, RI works on a pair of
a set of equations E and a set of rewrite rules H. Intuitively,
E represents conjectures (i.e., theorems and lemmas) to be
proved and H represents inductive hypotheses applicable to
E.

The inference rule of RI is defined as follows:
DELETE: 〈E ∪ {s = s},H〉 ` 〈E,H〉

SIMPLIFY: 〈E ∪ {s = t},H〉 ` 〈E ∪ {s′ = t},H〉
if s→R∪H s′

EXPAND: 〈E ∪ {s = t},H〉 `
〈E ∪ Expdu(s, t),H{s→ t}〉
if u ∈ B(s) and s � t

where the function Expdu(s, t) is defined as the following:

Expdu(s, t) = {C[r]σ = tσ | s ≡ C[u], l → r ∈ R,

σ = mgu(u, l), l : basic}

Let s = t be an equation such that it can be oriented from s
to t as a rewrite rule s → t. Given such an equation s = t
and a basic subterm u of s, Expdu(s, t) returns a set of
equations by overlapping u with the basic left-hand sides l
of rewrite rules l → r of R. The resultant equations will be
used as new conjectures in the EXPAND inference rule for
a case analysis to cover the original conjecture s = t if R is
ground-reducible. The DELETE rule simply removes trivial
equations. The SIMPLIFY rule simplify the equations using
a rule of R and H.

Given a set of equations E0, a ground-reducible terminat-
ing TRS R, and a reduction order � containing R, if there is
a derivation sequence 〈E0,H0〉 `RI 〈E1,H1〉 `RI · · · `RI

〈En,Hn〉 where H0 = En = ∅, then all equations in E0 are
inductive theorems of R.

The choice of the reduction order � is important for
the success of inductive theorem proving with the rewriting
induction. However, it is often not easy to provide a suitable
reduction order before the procedure starts nor to choose
appropriate inference rules to be applied in the reasoning
steps. This problem is partially solved by a new system called
RIt proposed by [5]. The RIt is a variant of the term rewriting
induction, using an arbitrary termination checker instead of
a reduction order by modifying the EXPAND rule to:
EXPAND: 〈E ∪ {s = t},H〉 `

〈E ∪ Expdu(s, t),H{s→ t}〉
if u ∈ B(s) and
R ∪ H ∪ {s→ t} terminates

It allows us to use more powerful termination checking
techniques. However, it becomes more important to choose
an appropriate direction for an equation to be expanded, since
we can often orient the equation in both directions. Moreover,
the strategy using in simplification also plays an important
role in term rewriting induction[7].
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C. Multi-context Rewriting Induction

Trying to pursue different choices of context of RI, the
multi-context rewriting induction procedure with termination
checkers (MRIt) simulates execution of multiple RIt pro-
cesses based on the framework of MKB [7] [8]. MRIt works
on a set of nodes, where the node is defined as follows:

Definition 2.7: A node is a tuple 〈s : t,H1,H2, E〉, where
s : t is an ordered pair of terms s and t called datum, and
H1,H2, E are subsets of I called labels such that:

• H1,H2 and E are mutually disjoint. (i.e., H1 ∩H2 =
H1 ∩ E = H2 ∩ E = ∅)

• i ∈ H1 implies s �i t, and i ∈ H2 implies t �i s

Intuitively, E represents all processes containing s = t as
a conjecture to be proved, and H1 (resp. H2) represents all
processes containing s → t (resp.t → s) as an inductive
hypothesis.

Note that the process index in MRIt is a sequence of
natural numbers. Unlike MKB, the set of possible indicesI
is infinite in MRIt because the number of running processes
is not fixed: the procedure starts with one root process ε

and in the course of the execution, new processes would
be created by forking existing processes when there appear
nondeterministic choices in applying rules.

Given the current set N of nodes, (E[N, i];H[N, i]) de-
fined in the following represents the current set of conjectures
and hypothesis in a process pi.

Definition 2.8: Let n = 〈s : t,H1,H2, E〉 be a node and
i ∈ I be an index. The E-projection E[n, i] of n onto i is a
(singleton or empty) set of conjectures defined by

E[n, i] =

{
{s↔ t}, if i ∈ E,

∅, otherwise.

Similarly, the H-projection H[n, i] of n onto i is a set of
hypothesis defined by

H[n, i] =


{s→ t}, if i ∈ H1,

{t→ s}, if i ∈ H2,

∅, otherwise.

These notions can also be extended for a set N of nodes as
follows:

E[N, i] =
∪

n∈N

E[n, i], H[N, i] =
∪

n∈N

H[n, i]

The inference rules of MRIt are defined as following :
DELETE: N ∪ {〈s : s,H1,H2, E〉} ` N

EXPAND: N ∪ {〈s : t,H1, H2, E ∪ E′〉} `
N ∪ {〈s : t,H1 ∪ E′,H2, E〉}∪
{〈s′ : t′, ∅, ∅, E′〉 | s′ = t′ ∈ Expdu(s, t)}
if E′ 6= ∅, u ∈ B(s) and H[N, i] ∪ R ∪
{s→ t} terminates for all i ∈ E′

SIMPLIFY R N ∪ {〈s : t,H1, H2, E〉} `

N∪

{
〈s : t,H1,H2, ∅〉
〈s′ : t, ∅, ∅, E〉

}
if E 6= ∅ and s→R s′

SIMPLIFY H: N ∪ {〈s : t,H1,H2, E〉} `

N ∪

{
〈s : t,H1, H2, E\H〉
〈s′ : t, ∅, ∅, E ∩H〉

}
if E ∩H 6= ∅, 〈l : r,H, . . . , . . . 〉 ∈ N ,
and s→{l→r} s

′

FORK: N ` ψP (N)
for some fork function ψ and a set P of
processes in N

GC: N ∪ {〈s : t, ∅, ∅, ∅〉} ` N

SUBSUME: N ∪

{
〈s : t,H1, H2, E〉
〈s′ : t′,H ′

1,H
′
2, E

′〉

}
`

N ∪ {〈s : t,H1 ∪H ′
1,H2 ∪H ′

2, E
′′〉}

if s : t and s′ : t′ are variants and
E′′ = (E\(H ′

1 ∪H ′
2)) ∪ (E′\(H1 ∪H2))

SUBSUME P: N ` sub(N,L)
if ∀p ∈ L, ∃p′ ∈ I(N)\L :
(E[N, p],H[N, p]) = (E[N, p′],H[N, p′])

MRIt starts with the initial set N0 of nodes:

N0 = {〈s : t, ∅, ∅, {ε}〉 | s↔ t ∈ E0},

which means, given the initial set of conjectures E0

and a ground-reducible terminating TRS R, we have
(E[N0, ε]; H[N0, ε]) = (E0; ∅) for root process ε. The state
sequence of MRIt is generated as N0 ` N1 ` · · · ` Nc. If
E[Nc, i] is empty, the rewrite rules in H[Nc, i] would be the
final hypotheses proved during the whole procedure.

III. IMPLEMENTATION

In this section, we will talk about our implementation
of inductive theorem prover called lz-itp based on [4] [7]
[8] [9] [10] [11]. We use the lazy evaluation schemas
of object-oriented and functional programming supported
language Scala to build and reuse the classes to organize
the term structures, substitutions, nodes, inference rules, etc.
Meanwhile, we also follows the discipline of functional
programming in coding so that it could be safer and easier to
execute the program in a physically parallel computational
environment.

The node is a basic unit of MRIt. It is implemented as
a class which contains an equation object as a datum and
three sets as labels. We also created a class called nodes
for the set N of nodes for which several infernoce rules of
MRIt are defined. The index of MRIt which corresponding
to the process running RI procedure is implemented as a
class containing a sequence of natural numbers holding a
lazy hash code to gain efficiency during the numerous index
comparisons.

The rule FORK is the key to cover all paralleled pro-
cesses running with different states. Note that due to the
nondeterministic choices of contexts (e.g., which direction
to orient, which subterm to be expanded or which rewrite
strategy should be applied), we cannot decide the number of
processes and strategies statically. Therefore, we do not fix
the number of processes in the new procedure, and allow
it to dynamically change. When a process encounters n
nundeterministic choices, we have it forked into n different
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processes, with each process associated with one of the
choices. The fork function ψ maps each process index to
a natural number which represents the number of processes
to be created from the given process by the fork operation.
The fork function over a given set P of processes, denoted
by ψP is defined as follows:

ψP (p) =

{
{p1, p2, . . . , pψ(p)}, if p ∈ P,

{p}, otherwise.

This function will be used to fork all processes in P ,while
remaining other processes untouched.

For example, if a process with the index

p = [a1a2 . . . ak]

have n possible choices of contexts, we have it forked into
n processes as:

[a1a2 . . . ak1], [a1a2 . . . ak2], . . . , [a1a2 . . . akn].

Based on the label representation, we can simulate the fork
operation by replacing the label p in the labels of all nodes
with the set of n identifiers p1, . . . , pn. In practice, we embed
this fork operation into other operations if necessary.

The operation expand(N,N ′, n) is the core of the whole
procedure. Let n = 〈s : t,H1,H2, E ∪ E′〉, the operation
applies the EXPAND rule of RI in all processes of E′ that
can orient the equation s = t from left to right. The set E′

is moved from the third label to the first in n since in each
process in E′ the conjecture s = t is removed and the new
hypothesis s → t is added after the expansion. Moreover,
for each new conjecture s′ = t′ in Expdu(s, t), a new node
〈s′ : t′, ∅, ∅, E′〉 is created in order to store the conjecture in
the processes of E′. Note that (1) the direction of orientation
and (2) the choice of the basic subterm to be expanded are
two kinds of nondeterministic choices. Therefore there are
two possible fork operations, where one is that to fork the
original index p ∈ N ∪N ′ into p1 and p2 by different choice
of orienting directions (i.e., left to right or right to left),
another is to fork the index p′ into p′1, . . . , p′k, if term s
have k basic subterms to expand. In our implementation, we
follow the discipline of functional programming by never
mutating the nodes. We just update them from outside. This
means the method needs to return the intermediate results
as fresh sets of nodes. The result is structured as a tuple
〈F1,F2,M,C〉 where:

F1: the forked nodes from N (i.e., the labels of original
nodes in N are forked into new labels depends on
the nondeterministic choices)

F2: the forked nodes from N ′ (i.e., the labels of original
nodes in N ′ are forked into new labels depends on
the nondeterministic choices)

M: the nodes “modified” during expand(N,N ′, n) op-
eration (i.e., a set only contains one node n′ which
holds the same datum s : t but modified labels)

C: the nodes newly created by expand(N,N ′, n) op-
eration (i.e., the nodes containing new conjectures)

The SIMPLIFY R rule applies the SIMPLIFY rule of RI
using a rewrite in the equational axiom R, which is common
to all processes. E is the set of all processes that have s =
t as a conjecture. Since this equation is transformed to an
equation s′ = t, the set E is removed from the original node,

and a new node 〈s′ : t, ∅, ∅, E〉 is created. The SIMPLIFY H
rule is almost the same as SIMPLIFY R. The difference is
that SIMPLIFY R applies a rule of R, while SIMPLIFY H
applies an inductive hypothesis of H, which may exist only
in some distinguished processes. This makes the third labels
of the original node and the new node E\H and E ∩ H ,
respectively.

The operation simplify(N,N ′, n) applies the rule SIM-
PLIFY R and SIMPLIFY H to n as much as possible. Note
that in the original MRIt, the two rules are defined separately.
However, in our implementation we combine the two rules
into one operation because we have to fork the other nodes
N and N ′ at the same time. The rewrite strategy often plays
an important role in simplification [7] [13] [15], therefore we
fork the original index p ∈ N ∪N ′ into p1, . . . , pk, if there
are k normal forms generated by different strategies (e.g.,
outermost and innermost strategy). Like the result tuple of
EXPAND operation, the result of SIMPLIFY operation is
also structured as a tuple 〈F1,F2,M,N〉 where N stands for
the nodes newly created by simplify(N,N ′, n) (i.e., the
nodes containing rewritten term s′ with modified labels).

The operation N.delete() removes from N all nodes that
contain a trivial equation, and returns the remaining nodes
as N ′. This operation would be applied to the nodes created
by rules SIMPLIFY R, SIMPLIFY H and EXPAND.

The operation N.gc() implements the rule GC of MRIt,
removes the nodes with three empty labels. It can effectively
reduce the size of the current node database by removing
nodes with three empty labels, because no processes contain
the corresponding rule or equation.

The operation N.subsume() combines two nodes into
a single one when they contain the variant data (which
are the same as each other up to renaming of variables).
The duplicate indices in the third labels are removed to
preserve the label conditions. The operation N.subsume()
is invoked by the operation union(N,N ′) which is designed
for combining nodes N and N ′. We exploited the same lazy
technique as [9] [10] to gain efficiency by creating a hash
map [Is,N], where N is a list of nodes and Is is a lazy value
defined in the node class as the size of the node, so that we
need only check the nodes with the same size as the original
nodes. This check can be done effciently by using the hash
map with the node size as its key. In other words, for every
n ∈ N , n uses its size In as the key to [Is, N ], then the set
Nn containing all the nodes with same size In is looked up
for the nodes with variant data.

The operation N.subsume P () stops redundant pro-
cesses, which have the same state as other existing processes.
The function sub(N,L) is defined as sub(N,L) = {〈s :
t,H1\L,H2\L,E\L〉 | 〈s : t,H1,H2, E〉 ∈ N}, it simply
removes all indices in L from every node in N .

The operation lemmaExplore(N,n) is a new introduced
operation of MRIt. In term rewriting induction, it is well-
known that it is effective for proving some problems by
supplying appropriate lemmas. We exploit the lemma explo-
ration by divergence analyzation [12], which is a powerful
lemma generation method. We consider with the pseudocode
of our implementation in Algorithm 1. The procedure is
based on the open/closed (set-of-support/have-been-given)
lists algorithm, which is well-known in the literature of
search and automated reasoning for artificial intelligence.
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When a node n = 〈s : t,H1,H2, E〉1 is simplified (both s
and t are the normal forms in the corresponding processes)
and expanded (line 24). We put it into Nc as the hypothesis
and try to analyze all processes P holds by n (line 28).
It is not efficient to directly analyze all process that n
covers. Because although after operation N.subsum P (),
the state (E[Nc, i],H[Nc, i]) becomes unique, there may still
exist duplicate projections where H[Nc, i] = H[Nc, j]. We
created a hash map [Si,Li] in order to deal with the lemma
generations in every process i ∈ P , where Si indicates
the hash code of H[Nc, i] (we created an class projection
for projections, where contains the lazy hash code) and Li

denotes the result of possible lemmas. Since the key is unique
in a hash map, we filter the duplicate keys easily by creating
the map. The lemma generation function scans every set
of hypotheses in different processes corresponding to the
keys as the values of hash map [Si,Li]. Finally, the new
nodes as possible lemmas in corresponding processes of n
are constructed, then they are put into No (line 28).

The procedure success(No, Nc) checks if this induction
procedure has succeeded. The process succeeds if there exists
an index i ∈ I such that i is not contained in any labels of No

and any E labels of Nc nodes. Then E[No ∪Nc, i] = ∅, and
R[Nc, i] is a set of rewrite rules as the final hypotheses which
have been proved. The proof details will also be captured by
the program as an output.

Note that in line 22 to 26 of Algorithm 1, we ap-
ply SUBSUME P rule of MRIt to No, Nc and n by the
same context. Which means we should implicitly sub-
sume the same duplicate indices L (depends on their
states) with No, Nc and n (i.e., No = sub(No, L), Nc =
sub(Nc, L), n = sub({n}, L).head). For the same reason,
we build simplify(No, Nc, n) and expand(No, Nc, n) to
take three parameters in order to fork nodes form No and
Nc at the same time.

The N.choose() always choose the minimal node in terms
of its size which makes the computation efficient. And there
is another heuristic idea in our implementation that different
from the original MRIt. We try to simplify the conjectures
at the very first before we expand them. Because we found
that some inductive theorems are often reducible to the given
TRS. We are not sure if this will make the proofs itself
shorter (because in some cases it does while others not),
however in many cases observed in our experiments, this will
reduce the choices of nodes as well as the scale of whole
node database.

IV. EXPERIMENT

In this section, we talk about some experimental results. In
the implementation of lz-itp, we used a built-in termination
checker (developed by ourselves) based on the dependency-
pair method [17] [18] [19]. We also used the combination
of polynomial interpretation and SAT solving as proposed in
[20] in order to find reduction orders for ensuring termina-
tion. All experiments were performed on a PC with i5 CPU
and 4GB main memory.

1n.mir represents the symmetric case of n

Algorithm 1 lz-itp(E,R)
1: No := {〈s : t, ∅, ∅, {ε}〉 | s↔ t ∈ E}
2: Nc := ∅
3: while success(No, Nc) = false do
4: if No = ∅ then
5: return(fail)
6: else
7: n := No.choose()
8: 〈F1,F2,M,N〉 := simplify(No, Nc, n)
9: No := union(No − {n},N.delete())

10: No := F1

11: Nc := F2

12: n := M.head
13: if n 6= 〈. . . , ∅, ∅, ∅〉 then
14: if n 6= 〈. . . , ∅, ∅, . . . 〉 then
15: 〈F1,F2,M,N〉 := simplify(No, Nc, n.mir)
16: No := union(No,N.delete())
17: No := F1

18: Nc := F2

19: n := M.head
20: 〈F1,F2,M,C〉 := expand(No, Nc, n)
21: No := union(No,C.delete())
22: No := F1.subsume P ()
23: Nc := F2.subsume P ()
24: n := M.head
25: end if
26: n := n.subsume P ()
27: Nc := union(Nc, {n}).gc()
28: No := union(No, lemmaExplore(Nc, n))
29: end if
30: end if
31: end while
32: return H[Nc, i] where i = success(No, Nc)

First we consider a propositional logic problem from [21]:

R =



not(T ) → F

not(F ) → T

and(T, p) → p

and(F, p) → F

or(T, p) → T

or(F, p) → p

implies(p, q) → or(not(p), q)

We prove the theorem

implies(and(p, q), or(p, q)) = T

by at least two EXPAND operations. It is obvious that the
left-hand side of the theorem can be rewritten to

or(not(and(p, q)), or(p, q))

by the last rule implies(p, q) → or(not(p), q) first. Then it
can be expanded to

or(not(and(T, p)), T ) = T,

or(not(and(F, p)), p) = T,

where the first conjecture will be rewritten to
or(not(p), T ) = T which needs the second expansion
to finish the proof.
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We can also expand the original target directly into

implies(p, or(T, p)) = T,

implies(F, or(F, p)) = T.

After the simplification of the first conjecture we will still
get

or(not(p), T ) = T

to be ready for the second expansion. As we can see,
although the length of the proof did not change, in our pro-
gram, the first method checked 7 nodes with one succeeded
process over 2 processes and the second checked 11 nodes
with 2 succeeded processes over 6 processes.

Some other problems form [6] [21] also showed the similar
performance summarized in the TABLE I and TABLE II:

TABLE I
SIMPLIFY FIRST

problem time (ms) # of nod. # of succ. # of proc.
ex 1 17988 263 9 105
ex 2 6706 305 2 32
ex 3 1108 37 2 9

TABLE II
EXPAND FIRST

problem time (ms) # of nod. # of succ. # of proc.
ex 1 47866 276 18 223
ex 2 7075 398 2 26
ex 3 1322 57 2 11

where “# of nod.” shows the number of processed nodes
when the procedure succeed; “# of succ.” shows the number
of succeeded processes on average during the computation;
“# of proc.” shows the number of all processes when a
process has succeeded. We can see that in these problems,
the “simplify first” strategy could reduce the number of
processed nodes so that the computation time of the whole
procedure was also reduced.

In our implementation, the SIMPLIFY operation tries two
rewrite strategies: the leftmost innermost strategy and the
leftmost outermost strategy. Since MRIt also works on the
set of nodes, we exploited the lazy evaluation scheme for
the nodes manipulation proposed in [9] [10] to gain more
efficiency. Moreover, we implemented the lemma exploration
function with divergence analyzation [12] to deal with the
lemma-required problems. The problems selected from [6]
which need appropriate lemmas were examined as shown in
TABLE III.

TABLE III
EXPAND FIRST

problem lem 1 lem 2 lem 3 lem 4 lem 5 lem 6
lz-itp 602 932 12379 17738 1050 1023
mrit+ 615 969 12801 18090 1075 1049
mrit - - 12952 - - -

Note that the mrit+ in TABLE III stands for an implemen-
tation of MRIt with the lemma exploration, while the mrit
stands for the original implementation of MRIt. The mrit
failed in most of the cases with a time limit in 60000ms. We
can see lz-itp which used the lazy evaluation schemas was
more efficient than mrit+.

V. CONCLUSION

We have presented a new implementation of the multi-
context algebraic inductive theorem prover lz-itp based on the
multi-context rewriting induction. We applied lazy evaluation
schemas with several heuristic ideas in our implementation.
The experiments show that lz-itp was more efficient than
MRIt in all the problems examined. To implement and
examine with more powerful lemma exploring methods is
a possible work in future. To study extensions for handling
non-orientable equations is also an interesting future work.
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