
Computational Speeds Analysis of RSA and
ElGamal Algorithms on Text Data

A.E .Okeyinka

 Abstract- The Elgamal and RSA algorithms are two of the
cryptographic techniques that are actively in use for securing
data confidentiality and authentication. The energy usage
analysis of the two algorithms has been investigated and it was
established that RSA is more energy efficient than Elgamal.
The goal of this study is to carry out computational speeds
analysis of the two algorithms. The methodology employed
involves implementation of the algorithms using same
programming language, programming style and skill, and
programming environment. The implementation is tested with
text data of varying sizes. The results obtained reveal that
holistically RSA is superior to Elgamal in terms of
computational speeds; however, the study concludes that a
hybrid algorithm of both the RSA and Elgamal algorithms
would most likely outperform either the RSA or Elgamal. It is
therefore recommended that efforts at designing a new
algorithm from the study of these two algorithms should be
considered.

 Index Terms- algorithm, cryptography, ElGamal, RSA,
speeds

I. INTRODUCTION

Cryptography is concerned with the study of how to keep
secrets secret. Its classical task is to provide confidentiality.
However, in recent times, the scope of cryptography has
expanded beyond issues of confidentiality. Its domain now
covers the study of techniques for message integrity,
identity, authentication, digital signatures and so forth. The
rapid growth of electronic communication means that issues
in information security are of increasing practical
importance [3]. Many cryptographic algorithms have been
developed among which are the following:

A. RSA: This is a public key. It is a bijective function and
computationally efficient. It was designed by Rivest,
Shamir, and Adleman.
B. ElGamal: ElGamal is a discrete logarithm algorithm. It is
a one-way function, and contains no trap door.
C. DES: This is Data Encryption Standard. It uses a 56-bit
key and operates on 64-bit blocks of data.
D. HASH: This is also known as ‘fingerprint’ or ‘message
digest’. It is used for computing condensed representation of
a fixed length message.
E. MD5: This is a 128-bit message digest function,
developed by Ron Rivest.

 Manuscripts received June 11, 2015; revised July 28, 2015.
A.E.Okeyinka,(phone:+2348035776226; email:ae.okeyinka@gmail.com) is
with Landmark University, Omu-Aran, Nigeria. He was formerly with
Ladoke Akintola University of Technology, Ogbomoso,Nigeria

 A cryptographic algorithm is a set of mathematical rules
used in encryption and decryption. In addition to securing
data being communicated, there is also the need to ensure
that the data which is communicated is authentic. A digital
signature is a means of ensuring that an electronic document
is authentic. “Authentic” in this context implies that the
receiver knows the person who created the message, and he
knows that the message has not been altered since it was
created. A digital signature mechanism consists of an
algorithm for generating the signature as well as an
associated verification algorithm. Digital signatures are
designed to provide authentication and also non-repudiation.
In this study, the RSA and Elgamal algorithms including
their digital signatures are implemented and compared.

II. RESEARCH MOTIVATION

 In addition to creating new algorithms to solve problems
that are so far regarded as unsolvable or impractical, the
research gradient in computational complexity is also
skewing towards algorithm efficiency. It is not enough to
invent an algorithm; indeed, considering the computational
efficiency of such an algorithm vis-à-vis the existing ones
professing to do same task is of great importance. Many
cryptographic algorithms abound but they are not equally
efficient. In that case there is need to measure and compare
their level of computational efficiency. Doing so, would
enable us to know which of the algorithms should be used in
specific situations for overall maximum efficiency.
Furthermore, a reflection on their performance may suggest
the need for more study of the algorithms to establish
whether or not a more efficient algorithm could be obtained
by hybridization or concatenation. So far it has been
established that RSA is more energy efficient than Elgamal
[6]; however, other performance parameters need to be
investigated and studied.
 In this paper, RSA and ElGamal algorithms including
digital signatures are studied. The choice of these two
algorithms is not arbitrary. RSA is a classical technique and
most security systems in use today were based on RSA. In
short RSA appears to be the most acceptable technique for
securing electronic data communication. RSA, was
proposed in 1977, [1]. It was patented in the United States
by Massachusetts Institute of Technology (MIT) September
20, 1983, [1]. Although the patent for RSA expired
September 21, 2000, [4], RSA has become the most
popularly implemented public-key cryptosystem [1].
Elgamal on the other hand was proposed in1985, [5]. It is an
extension of the Diffie-Hellman key agreement protocol. It
is a non-deterministic algorithm, [5]. So the goal of this
study is to determine and compare the complexity of RSA
and Elgamal algorithms; given that RSA is deterministic
and Elgamal is non-deterministic.

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

III. RESEARCH METHODOLOGY

Both the RSA and Elgamal cryptographic algorithms with
digital signature are implemented using C# programming
language on the same programming environment. Each
algorithm consists of three phases:Key generation,
Encryption and decryption, Signing and verification.

 The C# program takes as inputs ten different text data one
by one; each character of the text document is converted
into its ASCII form and used appropriately in the algorithms
in computing cipher text information, which is sent to the
receiver by the sender. The cipher text information received
by the receiver is decrypted by the module meant for that in
order to extract the original message. The length of the text
used as input is automatically determined by the C# code.
The signature generation, and signature verification module
of the code determines the validity of the signature. The
execution times of each input text as a whole are observed
using the computer internal clock for both Elgamal and RSA
algorithms. The execution times are compared to determine
which of the two algorithms is more computationally
efficient.

IV. RSA AND ELGAMAL ALGORITHMS

 The two algorithms (Elgamal and RSA) are presented
below.

A. Elgamal Algorithm
Elgamal cryptosystem requires a modular exponentiation
operation. The security strength of the cipher is a function of
the sizes of the modulus; it is based on the discrete
logarithm.
i) Key Generation
 This process generates required keys (private key and
public key) for both encryption and decryption. The
algorithm is stated as follows:
Generate a large Prime number p
Choose a Generator number a subject to the following
conditions
1 < a < p-1
To ensure that the value of a picked is a generator number,
additional conditions have to be considered as follows
Find Ø = p – 1
Find all the factors of Ø i.e. (f1, f2…fn).
a is a generator number if and only if wi= a Ø/fi mod p <> 1,
for all qi
Choose an integer x such that
1 < x < p – 2
x is the private key
Compute d = ax mod p
Public key information = (p, a, d)
Private key = x
ii) Encryption and Decryption Algorithm
The encryption is done using the public key information
while the Decryption is done using the private key
information.

1) Encryption

 The sender receives the public key information only,
 which will enable her to encrypt
 The sender encodes the message m by converting its

 string representation to its corresponding numerical
 value.
 The sender chooses an integer k such that 1 < k < p - 2
 The sender computes y = a k mod p
 The sender also computes z = (d k * m) mod p
 The sender then sends the cipher text information C =
 (y, z) to the receiver

2) Decryption

The following steps are taken to decrypt a cipher text: The
receiver needs the private key x to decrypt
The receiver picks up the cipher text information C = (y, z)
He then computes r = yp-1-x mod p
The receiver finally computes m = (r * z) mod p to extract
the original message

3) Signing And Verification Algorithm
 This signature process aims at signing a message to
 ensure message authentication and integrity.
 There are two processes involved in this section,
 they are; Signature Generation Process Signature
 Verification Process.

4) Signature Generation Process
 The sender should do the following
 Pass the numerical representation m of the
 message into an hash function to produce an
 hashed message M (i.e. M = hashfunction(m))
 Choose a secret key x such that 1 < x < p-1
 Choose random integer k with 1 <= k <= (p-1) and
 gcd(k, p-1) = 1(gcd is the grand common divisor)
 Compute h = a k mod p
 Compute: k_Inverse = k-1 mod p
 Compute the value: s = (M - (x * h)) * -
 k_Inverse mod (p - 1)

Compute s = (p – 1) – s

5) The signature is the tuple (h, s)
 Signature Verification Process
 The receiver should do the following
 Collect the signature (h, s)
 Compute b = a x mod p
 Compute var1 = (b h * h s) mod p
 Compute var2 = a M mod p
 If var1 == var2 then signature is valid otherwise
 invalid.

B. RSA Algorithm

 The security of RSA is inherent in the difficulty of
factoring large numbers. The RSA encryption and
decryption algorithms require a single modular
exponentiation operation. The size of the modulus
determines the security strength of the cipher [2].

i) Key generation

 The algorithm is stated as follows;
Generate two large random(and distinct) primes p and q,
each roughly the same size.
Compute n=p.q and Ø = (p-1)(q-1).
Select a random integer e, where 1<e< Ø, such that the
greatest common divisor, gcd(e, Ø)=1.

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

Use Extended Euclidean algorithm to compute the unique
integer where 1<d< Ø, such that e≡ 1(mod Ø).
Sender’s public key is (n,e) and private key is d.

ii) Encryption and Decryption

 m is the message
1) Encryption
 This is done using the public key, (n,e).

 c = me mod n.
2) Decryption
 This is done using the private key, (d,n)
 m = cd mod n.

3) Signing and Verification
 This has two stages which are the signature
 generation and signature verification.
4) Signature Generation
 The Sender should do the following:
 Compute m = R(m), an integer in the range [0,n-1].
 Compute s = md mod n.
 Sender’s signature form is s.
5) Signature verification
 To verify Sender’s signature
 Compute var1= m mod n
 Compute var2 = se mod n

 If var1 = var2, Signature valid else invalid

V. RESULTS

 The results obtained are shown below as figures and tables.

Table 1: Execution Times for Encryption and Signing

Text Length in characters ElGamal RSA
18580 29083.6349ms milliseconds (29s) 3818.8579milI(3s)
9242 13232.2388 milli (13s) 641.4635milli(0s)
6095 8380.3855milli (8s) 224.8633milli(0s)
4680 6502.8839milliseconds (6s) 142.941milli(0s)
3739 5199.6898milliseconds (5s) 108.6065milli(0s)
3209 4462.4788milliseconds (4s) 83.7358milli(0s)
2762 3731.9332milliseconds (3s) 67.6062milli(0s)
2524 3490.1043milliseconds (3s) 62.7788milli(0s)
2247 3115.9792milliseconds (3s) 56.3892milli(0s)
2083 2892.6267milliseconds (2s) 49.9453milli(0s)

Table 2: Execution Times for Decryption

Text Length in characters ElGamal RSA
18580 111.9454milliseconds (0s) 162.4227milliseconds (0s)
9242 40.795milliseconds (0s) 63.6866milliseconds (0s)
6095 23.8803milliseconds (0s) 40.5696milliseconds (0s)
4680 19.4903milliseconds (0s) 32.777milliseconds (0s)
3739 16.9437milliseconds (0s) 28.0812milliseconds (0s)
3209 13.2764milliseconds (0s) 23.5664milliseconds (0s)
2762 12.1137milliseconds (0s) 19.2534milliseconds (0s)
2524 10.3053milliseconds (0s) 16.4246milliseconds (0s)
2247 9.4394milliseconds (0s) 14.9514milliseconds (0s)
2083 8.5182milliseconds (0s) 14.3429milliseconds (0s)

Table 3: Execution Times for Signature verification

Text Length in characters ElGamal RSA
18580 3803.3193milliseconds (3s) 2013.0053milliseconds (2s)
9242 1216.9236milliseconds (1s) 332.1506milliseconds (0s)
6095 705.5812milliseconds (0s) 133.1629milli(0s)
4680 526.0838milliseconds (0s) 94.382milli(0s)
3739 413.8463milliseconds (0s) 61.7007milli(0s)
3209 348.0134milliseconds (0s) 50.902milli(0s)
2762 302.8908milliseconds (0s) 39.5771milli(0s)
2524 277.0682milliseconds (0s) 32.6042milli(0s)
2247 242.8458milliseconds (0s) 27.1777milli (0s)
2083 224.3202milliseconds (0s) 27.0507milli(0s)

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

0 50 100 150 200

2083

2247

2524

2762

3209

3739

4680

6095

9242

18580

Fig 2: Execution Times for Decryption

Te
xt
 L
en

gt
h
 in
 c
h
ar
ac
te
rs

RSA

ElGamal

Fig 1: Execution Times for Encryption and Signing

Fig 2: Execution Times for Decryption

Fig 3: Execution Times for Signature verification

VI. ANALYSIS OF RESULTS

 The Execution times for both the Elgamal and RSA
algorithms are shown on the Tables and Figures. The times
are measured in milliseconds, but converted to seconds as
displayed on the result templates. We observe and deduce as
follows from the results obtained
 In the encryption and signing process, the RSA performs
better than Elgamal in all cases.In the decryption process,
the Elgamal outperforms RSA; meaning that text messages
are decrypted faster by Elgamal than does the RSA
technique. In the signature verification process, the RSA
again performs better than the Elgamal approach.
 When viewed as a single tool, the RSA is superior to the
Elgamal algorithm in terms of computational speeds. This,
in part, explains why the RSA algorithm has been and is still
being used in designing many security protocols for data
communication.

VII. CONCLUSION

 From this study, we have observed that even though the
RSA is superior to the Elgamal on the overall assessment, it
is not as efficient as Elgamal when the rate of data
decryption is considered. It is therefore fathomable that a
platform that will hybridize both approaches may yield a
more efficient technique than either the Elgamal or RSA
algorithm. Hence efforts at designing a hybrid algorithm of
these two techniques are strongly recommended as
candidates for further research work. Furthermore, other
performance evaluation parameters apart from energy and
speeds may be investigated. Measures such Halstead,
Cyclomatic, Lines-of-code and related ones could be
computed, to enable us conclude with greater probability
which of RSA and Elgamal algorithms is more efficient for
pragmatic purposes.

ACKNOWLEDGEMENT

 The efforts of Oyewole Samson Opeoluwapo in computer
programming are greatly recognized and appreciated.

REFERENCES

[1] Adam J. Elbirt (2008); Understanding and Applying
Cryptography and Data Security, Auerbach
Publications, Taylor and Francis Group.

[2] Padmavathi, D.Shanmuga Priya (2009); “A Survey of
Attacks, Mechanisms and challenges in wireless, Sensor
Networks” International Journal Of Computer Science
and Information Security, Vol.4, No. 1&2.

[3] Hans Delfs, Helmut Knebl (2007); Introduction to
Cryptography; Springer-Verlag Berlin Heidelberg.

[4] R. Rivest (1992); The MD5 Message-Digest Algorithm
Internet Request for Comments; Presented by Rump
session of Advances in Cryptography – CRYPTO’ 91.

[5] T. El Gamal (1985); A Public Key Cryptosystem and a
Signature Scheme Based on Discrete Logarithms. IEEE
Transactions on Information Theory 31(4):469 472.

[6] Xiahua Luo, Kuogen Zheng (2004); “Encryption
algorithms comparisons for wireless networked
sensors”; IEEE International Conference on Systems,
Man and Cybernetics, College of Computer Science,
Zhejiang University, China.

0 10000200003000040000

2083

2247

2524

2762

3209

3739

4680

6095

9242

18580
Te
xt
 L
en

gt
h
 in
 c
h
ar
ac
te
rs

RSA

ElGamal

0 1000 2000 3000 4000

2083

2247

2524

2762

3209

3739

4680

6095

9242

18580

Te
xt
 L
en

gt
h
 in
 c
h
ar
ac
te
rs

RSA

ElGamal

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

