

 Abstract— Project managers and developers don't always
see eye-to-eye on what tools to use. So what happens when an
unstoppable force meets an immovable object? Something has
to give. We have had to find a balance of keeping the project
management happy, while simultaneously conforming to their
documentation and time-management policies. We also have
had to keep our development team on task and moving
forward in a way that is most efficient for the project. In this
paper, we discuss the techniques, tools, and methodologies
we're using to stay on track, and the compromises we've had to
make in order to keep as many people happy about the process
as possible.

Index Terms— Agile, GitHub, Project Management, Scrum

I. INTRODUCTION
In “No Silver Bullet”, Fred Brooks wrote: “There is no

single development, in either technology or management
technique, which by itself promises even one order-of-
magnitude improvement within a decade in productivity, in
reliability, in simplicity.”[1] Still, nearly 30 years later, we
keep searching.

Our team supports the ACME (Accelerated Climate
Model for Energy) [2] project, creating software to facilitate
climate science research. The project under discussion is the
ACME Web Dashboard; an ambitious project that binds
together the many disparate services, calling out to them
from a single web application. Matthew Harris started as the
sole developer for this project and transitioned into the team
leader as more developers were added, including a number
of remote developers from other companies and facilities.
His role has been to implement and enforce project policies
and practices, while guiding the development direction and
team member tasks.

This experience has been very insightful for our team.
Our project is open source, so we host the code, issues and
wiki on GitHub [2]. As a group of around eight developers,

Manuscript received July 9, 2015; revised July 22, 2015. This work was

funded by the ACME project at Lawrence Livermore National Laboratory
as a process for managing the ACME dashboard web team.

 M. B. Harris is a Computer Scientist, Mathematical Programmer in the
AIMS (Analytics and Informatics Management Systems) team at Lawrence
Livermore National Laboratory, Livermore, CA 94550 USA (phone: 925-
423-8978 email: harris112@llnl.gov).

S. B. Fries is a Computer Scientist, Mathematical Programmer in the
AIMS team at Lawrence Livermore National Laboratory, Livermore, CA
94550 USA (phone: 925-422-5859 email: fries2@llnl.gov).

S. A. Baldwin is a Computer Science Intern, in the AIMS team at
Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
(phone: 925-423-8954 email: sterling16@mac.com).

D. S. M. Webb is a Computer Science Intern in the AIMS team at
Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
(phone: 541-761-7041 email: Dakotah.Webb@oit.edu).

this model has worked well, but as the team grows, we must
allow our project management approach to grow with it. Our
first goal was to produce a demo piece of software to show
as a proof of our concept. Once we hit that point in early
June of 2015, it was time to get on board with the rest of the
project.

We started assigning tasks through GitHub issues, with
tags and milestones, and the first two sprints were very
successful. At that point, we were directed to conform to the
testing, documentation, and project management tools
proscribed by the management of the ACME project. Along
with this, we had to transfer the entire project to Atlassian’s
[4] Confluence [5] and JIRA [6].

II. DEVELOPER’S MANAGEMENT TOOLS

A. GitHub
GitHub is one of the best places to share code with

friends, co-workers, classmates, or even complete
strangers. Over 9.9 million people use GitHub to build
amazing things together [2]. Our team started and still
uses GitHub as our primary development tool for that
very reason. Some of the features (besides sharing code)
are listed here:

1) Repositories

Our source code is hosted on GitHub, stored in a
publicly readable git [7] repository. Each team member
maintains a fork of the repository to which they make
changes. When ready to merge, they submit a “Pull
Request” to the main repository, owned by our
organization, which will eventually be approved and
merged.

2) Issues

GitHub’s Issues are a developer-friendly way to
manage bugs and tasks. They are tied directly to the
repository, and have many features tying them to the
source code. They can be automatically managed via
commit messages, and can display snippets of source
code inline. Each Issue can be assigned to a Milestone,
which is an easy way to schedule a deadline for when
work should be completed by. Issues can also be
directly assigned to a specific developer, prompting
them with email notifications, and can be watched by
interested parties [8].

3) Documentation (Wiki)

GitHub Wikis provide a barebones documentation
system that allows developers to share long-form
content about their project; installation instructions,
dependencies, API documentation, development

Matthew B. Harris, Samuel B. Fries, Sterling A. Baldwin, Dakotah S. M. Webb

Nerd Herding:
Practical Project Management in the Field

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

guidelines, etc. They provide a straightforward
mechanism to host information about a project without
having to jump through too many hoops to set up [9].

B. Travis CI
Travis CI [10] is an open-source, hosted, distributed

continuous integration (CI) [11] service used to build
and test projects hosted by a git repo. We directly
integrated our GitHub repo with Travis CI using
GitHub’s Service Hooks feature [12], so a new build is
triggered on the submission of each Pull Request to the
repo. This build process can be used to execute
arbitrary commands, allowing for all sorts of post-
processing on the built software, including packaging,
testing, and code linting.

III. LEADERSHIP’S MANAGEMENT TOOLS

A. Atlassian
1) JIRA

JIRA is an issue tracker. It provides a diverse array
of features, including Project Planning, Time Tracking,
and Reporting Tools. It allows organization to create
customized workflows, require specific pieces of
information, and provides an astronomical amount of
metadata for issues [6].

2) Confluence
Confluence is a wiki, also by Atlassian. It allows

users to create detailed pages containing
documentation, project plans, and more. It allows
documents to be organized and centralized, gives the
ability for users to discuss pages, is searchable, and has
a simple integration with JIRA that allows for directly
embedded JIRA issues. [5].

B. Citrix GoToMeeting
Citrix GoToMeeting is digital conference software. It

allows users to view screens remotely. It lets us demo
new features to one another, and handles conference calls
as well as recording the entire presentation to share with
anyone who did not attend the meeting. It also allows for
remote debugging sessions when corporate firewalls
prevent access to development servers [13].

IV. MANAGEMENT METHODOLOGIES

A. Agile Development
Agile development is a methodology that espouses 4

core tenets: Individuals and Interactions over Processes
and Tools, Working Software over Comprehensive
Documentation, Customer Collaboration over Contract
Negotiation, and Responding to Change over Following a
Plan [14]. These are backed up by 12 principles, which
follow themes of having software always be in a buildable
state, working directly with stakeholders, and generally
remaining as flexible about the development as possible
[15].

B. Scrum
The Agile manifesto doesn’t go into any specifics as to

how to run a project; instead, it’s just a series of general
guidelines as to how to make decisions. Scrum is an Agile

methodology for incremental product development that
uses small teams that manage independent parts of a
project. [16].

Scrum uses fixed-length iterations, called “sprints” that
are typically 1-2 weeks long, but are almost never more
than 30 days. Scrum teams attempt to build a potentially
shippable (properly tested) product increment after every
sprint.

Fig. 1. An example of four sprints and shows the details of
iterations [16].

Scrum is the most popular way of introducing Agility,
due to its simplicity and flexibility. Because of this
popularity, many organizations claim to be “using Scrum”
but aren’t actually applying anything close to Scrum’s actual
definition. Scrum emphasizes empirical feedback, team self-
management, and strives to build properly tested product
increments within short iterations [17].

V. ACME DASHBOARD TEAM IMPLEMENTATION

A. Overview of Practices
We are following the Agile Methodology and

implementing some of the core concepts from Scrum. We
try to follow the principles of the Agile Methodology to the
best of our ability. Due to the realities of the project and the
organization, we have adopted some loose guidelines from
Scrum and tried to work with the Agile Manifesto as a
guiding light for our project planning processes. Our process
as a whole has continuously evolved as time goes on.

At the start of the project, when there was only one
developer dedicated to the task, there was no real structure;
he implemented the mock-up for the project, demoed it to
management, and was eventually given the green light to
start a team. The initial team was distributed across the
country, and meetings were geared towards requirements
gathering as the scope of the project was assessed.

As more developers were brought on, development began
in earnest. Due to the nature of the project (an overarching
frontend to a variety of existing services), work was broken
up quite naturally by service. One person started work on
building up the frontend to actually integrate in all of the
external services, while the other developers worked on
creating APIs from those external services to integrate with.
Unfortunately, poor communication led to wasted
development, and a stricter project management scheme was
needed.

To help formalize our project, we began breaking tasks
down into milestones of seven two-week sprints. Due to the

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

distributed nature of the team, rather than tie everyone up
with extra phone meetings, we used a weekly meeting to
make sure nobody was blocked on their tasks. Developers
that are co-located interact more frequently, helping each
other with blocking issues.

B. Tools Used
Our organization relies heavily on GitHub for code

hosting, which meant that we defaulted to using GitHub
Issues and the Github Wiki for project planning and
documentation. This became a pain point, as our
organization uses Atlassian products for planning overall
progress, and our project management wanted us to track
our time using JIRA, as well as our development progress
in Confluence. Initially, tasks were double-entered; once
in GitHub for the developers, and eventually in JIRA for
the project management team to gather data for reports.

This became a huge time-sink. To address this issue, we
decided to dedicate some developer time. A subtask of our
project was to create a dedicated site for users of our many
disparate services to report bugs. To avoid having them
register GitHub accounts and hunt down all of the correct
repos for the exact issue they have, we created a single
form with a series of Yes/No questions that helps identify
what the general category of their problem is, and pass the
issue to the appropriate location. It was easy enough to add
a small web-hook [18] implementation to this site, and
automate the duplication of issues from GitHub to JIRA.
This allowed our developers to file issues on only one
platform, and kept project management’s reports full of
the data that they are looking for.

We also integrated Travis CI to make sure our frequent
pull requests would not break the build. As part of the
build process, we run a code linter that enforces a style
guide against our code. Since we write all of our backend
code in Python, we chose to use the PEP8 standard [19]
(with the line-length requirement removed). All code is
homogenous, and easily readable by all developers.

Before a build can be marked as “Successful”, it has to
pass all of the tests in our test suite. We wrote a small
wrapper around Robot [20], which runs all of our
Selenium [21] tests on the frontend. The wrapper
integrates the frontend tests with our web framework’s
testing module, so our whole test suite can be run with a
single command.

With the automated testing and a strict “no new features
without tests” philosophy, we are able to refactor existing
code without any concerns of breaking things; an example
is a recent upgrade of our web framework, which turned
out to be a very straightforward upgrade with only a few
imports to tweak.

C. What differs between your system and Agile or Scrum?
Our process is less customer-integrated than Agile aims

to be. We currently demo to our principal stakeholder no
more than monthly; moving forward, we’d like to have a
live and user-visible server as we reach the point of having
genuinely useful features. Also, due to the requirements of
our organization, we’ve had to focus more on “Processes
and Tools” than on “Individuals and Interactions”, though
that’s improving. We definitely respond well to change;
new feature requirements, like the GitHub Webhook, were

easy to work in, and the various services we’re integrating
with are still being defined, so we focus work on
whichever ones are in a stable state.

As for Scrum, our milestones are underdeveloped and
our middle range goals are a little fuzzy. We do have
short-term and long-term goals; the end product is defined,
though loosely enough for us to fill in the gaps as we come
to them. Our backlog isn’t fully fleshed out, we don’t
really have daily scrums, and our Sprint Planning / Review
/ Retrospective meetings are generally collapsed into a
single meeting, in which we discuss what we’ve
accomplished and what we’re going to be working on for
the next sprint.

Currently, strict Scrum is not the fit we need, but
sticking to a loose Agile for its streamlined approach and
quick iterations seems to be working well. We still like
and use a generalized form of the meeting structure in
Scrum’s handbook; however, we find it easier to adhere to
a much looser structure than any one methodology.

VI. CONCLUSION

The title of this report has a purpose greater than

amusement; it is a metaphor for the position of project
managers. We are the shepherds of a group of amazing and
talented developers, who are tasked with getting our project
delivered on time—budgeted and properly documented per
the customer’s demands. Getting organizational
requirements and developer practices to meet in the middle
is challenging, but ultimately accomplishable. Adhering to a
strict methodology proved to be fruitless for our team,
though using a loose set of guidelines with a barebones
structure as the foundation has led to a harmonious
development process.

The Agile methodology provides bright, clear guidelines.
It doesn’t spell out the exact way of doing things; it actually
decries that quite specifically (Individuals and Interactions
over Process and Tools). There are many ways to implement
them, and many strict methodologies that have sprung up
around them over the years. Picking and choosing the parts
that fit with our process has proven to be a very effective
strategy for our group, though it may not for all teams. The
lesson learned here should be that if you trust the team, and
give them the enough power to control the tools they use,
you can still find a comfortable place between the
unstoppable force and the immovable object.

ACKNOWLEDGMENT
We would like to thank each member of our team for all

their hard work and dedication to the project and its goals:
Dean Williams, Renata McCoy, Matthew Harris, Jonathan
Beezeley, John Harney, Samuel Fries, Bibi Raju, Brian
Smith, Sterling Baldwin, Dakotah Webb and every member
of the ACME project.

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DEAC52-07NA27344.
LLNL-CONF-674398

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

REFERENCES
[1] Brooks, F.P., Jr., "No Silver Bullet Essence and Accident in Software

Engineering." Computer, vol.20, no.4, pp.10,19, April 1987
<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1663532
&isnumber=34828>.

[2] "Build Software Better, Together." GitHub. N.p., n.d. Web. 18 June
2015. <https://github.com/>.

[3] "ACME." Enterprise. N.p., n.d. Web. 07 July 2015.
<http://aims.llnl.gov/acme.html>.

[4] "Software Development and Collaboration Tools | Atlassian" N.p.,
n.d. Web. 18 June 2015. <https://www.atlassian.com>

[5] "Where Work Becomes Teamwork." Confluence. N.p., n.d. Web. 18
June 2015. <https://www.atlassian.com/software/confluence/>.

[6] "JIRA." Atlassian. N.p., n.d. Web. 18 June 2015.
<https://www.atlassian.com/software/jira/>.

[7] "Git." Git. N.p., n.d. Web. 18 June 2015. <http://www.git-scm.com/>.
[8] "Issues 2.0: The Next Generation." GitHub. N.p., 09 Apr. 2011. Web.

18 June 2015. <https://github.com/blog/831-issues-2-0-the-next-
generation>.

[9] "GitHub Help." About GitHub Wikis. N.p., n.d. Web. 18 June 2015.
<https://help.github.com/articles/about-github-wikis/>.

[10] "Travis CI - Test and Deploy Your Code with Confidence." Travis CI
- Test and Deploy Your Code with Confidence. N.p., n.d. Web. 07
July 2015. <https://travis-ci.org/>.

[11] "Thoughtworks." Continuous Integration. N.p., n.d. Web. 31 June
2015. <http://thoughtworks.com/continuous-integration>.

[12] “GitHub Services.” Official GitHub Services Integration. N.p., n.d.
Web. 07 July 2015. <https://github.com/github/github-services>

[13] "GoToMeeting - Online Meetings and HD Vdeo Conferencing."
Citrix.com. N.p., n.d. Web. 18 June 2015.
<http://www.citrix.com/products/gotomeeting/overview.html>.

[14] "Manifesto for Agile Software Development." Manifesto for Agile
Software Development. N.p., 2001. Web. 30 June 2015.
<http://agilemanifesto.org/>.

[15] "Principles behind the Agile Manifesto." Principles behind the Agile
Manifesto. N.p., 2001. Web. 30 June 2015.
<http://agilemanifesto.org/principles.html>.

[16] "Scrum Reference Card." Scrum Reference Card. N.p., n.d. Web. 18
June 2015. <http://scrumreferencecard.com/>.

[17] “A glance at Agile Scrum Methodology.” A glance at Agile Scrum
Methodology. N.p., 08 August 2014. Web. 30 June 2015. <
http://www.360logica.com/blog/2014/08/glance-agile-scrum-
methodology.html>

[18] “Webhooks level up.” Webhooks level up. N.p., 02 February 2011.
Web. 30 June 2015 <https://github.com/blog/1778-webhooks-level-
up>

[19] "PEP 8 -- Style Guide for Python Code." PEP 8 -- Style Guide for
Python Code. N.p., n.d. Web. 18 June 2015.
<http://www.python.org/dev/peps/pep-0008/>.

[20] "ROBOT FRAMEWORK." Robot Framework. N.p., n.d. Web. 18
June 2015. <http://robotframework.org/>.

[21] "Browser Automation." Selenium Blog Posts. N.p., n.d. Web. 07 July
2015. <http://docs.seleniumhq.org/>.

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

