

Abstract—Web service technology has been part of many

software systems for quite some time as the technology to drive

business processes and enable reuse of software functionality

and system integration. Service-oriented systems, like other

software systems, need to undergo regular maintenance and

hence maintainability is one key desirable attribute of such

systems. This paper presents a maintainability assessment

model for determining whether a service-oriented system is

maintainable. The model follows the Quality Model of Object-

Oriented Design assessment method or QMOOD to define a

hierarchy of service maintainability attributes based on

ISO/IEC 9126, i.e., analyzability, changeability, stability, and

testability. These quality attributes are accompanied by a set of

metrics that measure the quality of the service design as well as

the quality of development and operational practice of the

organization that hosts the service-oriented system. The

assessment model is applied to the case of a communication

solutions provider in Thailand and the assessment results can

point the organization to the areas where it can improve

maintainability.

Index Terms—maintainability, Web services, measurement,

SOA

I. INTRODUCTION

EB service technology has been around for quite

some time as the key enabling technology for

automation of business processes, reuse of software

functionality, and integration of software systems. A Web

service is described by an interface definition or Web

Service Description Language (WSDL) that specifies the

offered operations, messages, data parameters to be

exchanged, and how to use the service. Different Web

services form a Service-Oriented Architecture (SOA) system

in which the functionalities of the services are orchestrated

to achieve business functions [1]. Like other software

systems, a service-oriented system need to undergo regular

maintenance either for fixing errors, preventing errors,

adapting to new environment, or adding new functionality.

Maintainability is hence an important quality attribute of a

service-oriented system. Maintainability assessment is useful

for an organization to determine how maintainable its

Manuscript received June 29, 2015; revised July 18, 2015.

T. Senivongse is with the Department of Computer Engineering, Faculty

of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

(corresponding author phone: +66 2 2186996; fax: +66 2 2186955; e-mail:

twittie.s@chula.ac.th).

A. Puapolthep was with the Department of Computer Engineering,

Faculty of Engineering, Chulalongkorn University, and is now with True

Corporation Public Company Limited, Bangkok 10310, Thailand (e-mail:

assawin_pua@truecorp.co.th).

service-oriented system is and which areas need to be

improved so that future maintenance would be easier and

faster.

 Maintainability is one of the software quality

characteristics in ISO/IEC 9126 software quality model [2].

It bears on the efforts needed to make modifications to the

software and is broken down to four subcharacteristics: 1)

Analyzability characterizes the ability to identify the root

cause of a software failure, 2) Changeability characterizes

the amount of efforts to change a system, 3) Stability

characterizes the negative impact that may be caused by

system changes, and 4) Testability characterizes the amount

of efforts needed to verify or test a system change. This

paper presents a maintainability assessment model to assess

the degree of maintainability of a service-oriented system.

We follow ISO/IEC 9126 and adopt the Quality Model of

Object-Oriented Design (QMOOD) assessment

methodology [3] to define a hierarchy of service

maintainability attributes and a set of accompanying metrics.

The metrics either measure at the design of the services in

the system (i.e., measure direct quality) or measure at the

development and operation environment of the organization

that hosts the service-oriented system (i.e., measure indirect

quality). Metrics for direct quality are taken from the SOA

design metrics in [4] whereas metrics for indirect quality are

defined based on a questionnaire on development and

operation environment of the organization. In an experiment,

we apply the model to assess maintainability of the service-

oriented system of a communication solutions provider in

Thailand.

Section II of the paper discusses background and related

work. Section III proposes the maintainability assessment

model for service-oriented systems together with related

metrics. Section IV applies the model to the case study and

the paper concludes in Section V.

II. BACKGROUND AND RELATED WORK

The Quality Model for Object-Oriented Design or

QMOOD [3] is one of the quality models for assessment of

the design of object-oriented software. QMOOD presents a

quality model as a hierarchy of the quality attribute and the

characteristics of the software design which reflect such a

quality attribute. The hierarchy comprises four levels,

linking the abstract quality attribute at the top level down to

the more concrete characteristics at lower levels. An

example is depicted in Fig. 1 [4]. At level 1 is the quality

attribute that is the target of assessment. At level 2 are the

more tangible quality-carrying design properties that can be

directly assessed by examining the design components. Each

A Maintainability Assessment Model for

Service-Oriented Systems

Twittie Senivongse and Assawin Puapolthep

W

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

of the design property can be objectively assessed using one

or more design metrics at level 3 where the targets for

applying the design metrics are the design components at

level 4. Linking the four levels are inter-level mappings L12,

L23, and L34 that define relationships between levels. To

define a quality model using QMOOD, a mathematical

model is formulated based on a mapping between the quality

attribute and the design properties that carry such quality

(L12) as well as a mapping between each design property

and the design metric that is used to assess that property

(i.e., L23). Relative significance of individual design

properties with positive or negative impact on the quality

attribute can be weighted proportionately within the range of

0 to ± 1, and the summation of all weights for that quality

attribute is either 1 or -1. The QMOOD method is simple to

apply and the organization conducting a quality assessment

can adjust the weights in the model as it sees fit.

Using the QMOOD method, Shim et al. [4] define a

design quality model for service-oriented architecture. They

define assessment models for five quality attributes of SOA

design, i.e., effectiveness, understandability, flexibility,

reusability, and discoverability. These quality attributes are

influenced by a number of design properties, i.e., coupling,

cohesion, complexity, design size, service granularity,

parameter granularity, and consumability. They propose

many service internal metrics, service external metrics, and

system metrics that examine design components, i.e.,

services in the system, operations, calls, and messages. Their

quality model does not address maintainability as they focus

on attributes of service design artifacts, but a number of the

proposed design properties and metrics will be adopted here.

On service maintainability, Zhe and Kerong [5] analyze

the characteristics of service-oriented architecture and the

factors affecting software maintainability, including quality

of the software development method, developers, and

document produced, as well as the degree of standardization

and reuse. They propose a service-oriented software

maintainability assessment method that takes into account

the four subcharacteristics of ISO/IEC 9126 maintainability.

The method addresses maintainability factors that should be

considered but does not define any metrics. We will consider

these factors when building our assessment model.

Fig. 1. An example of an OO software quality model built by QMOOD

method.

Zarrin et al. [6] present a model to assess maintainability

of SOA systems. The idea is quite similar to ours in that

service structural properties in the design phase as well as

service management mechanism structures in the operation

phase are considered as effective factors in assessing service

maintainability. In the design phase, the factors are three

design properties from [4], i.e., coupling, cohesion, and

granularity, and in the operation phase, the factors are the

ITIL processes that are practiced in the system. However,

their model is only conceptual, without specific assessment

details. Other work focuses merely on structural properties

of the design, such as the work by Perepletchikov [7] which

focuses on cohesion and coupling as useful predictors of

maintainability of service-oriented software. Leotta et al. [8]

take a different approach and compare maintainability of

non-SOA and SOA systems. They focus only on

changeability at the architectural level, i.e., maintainability is

determined by the number of architectural components of the

system which are affected by the change requests as well as

the level of efforts put to respond to the change requests.

III. MAINTAINABILITY ASSESSMENT

Following QMOOD, we build a hierarchical

maintainability model for service-oriented systems in Fig. 2.

Level 1 is the level of system quality attributes and is

divided into three sublevels (see III.A). At level 1H is the

high-level system quality attribute that is the target of

assessment, i.e., maintainability. At level 1M are the

medium-level system quality attributes, i.e., analyzability,

changeability, stability, and testability. These attributes are

further characterized by low-level system quality attributes

at level 1L.

Level 2 is the level of service system properties. They are

more tangible properties that show the quality attributes at

level 1L (see III.B).

Level 3 is the level of service system metrics. They are

used to objectively assess the service system properties at

level 2 (see III.C).

Level 4 is the level of service system components, i.e.,

service, interface, message, program, business process,

relationship between system components, and service

environment. These system components are the targets of

measurement by the service system metrics at level 3.

Mappings between the levels relate service system metrics

and service system properties to system quality attributes,

and form the assessment model (see III.D).

Fig. 2. Hierarchical maintainability model.

Reusability = -0.25*Coupling + 0.25*Cohesion + 0.5*Design Size + 0.5*Messaging

 L12

 L23

 L34

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

A. System Quality Attributes and Mapping to Service

System Properties

As maintainability (level 1H) bears on the efforts needed

to make modifications to the software, we consider a

maintainable service-oriented system as one with the design

and operation environment that are easy and fast to change

and maintain. Based on ISO/IEC 9126, maintainability is

characterized by analyzability, changeability, stability, and

testability at level 1M, and these attributes are further

characterized by system quality attributes at level 1L which

are adapted from [5]. We mark the service system properties

that carry the 1L attributes with [4] if they are adopted from

[4], and with * if they are newly introduced here. (see the

definitions of service system properties in III.B).

1) Analyzability (level 1M) characterizes the ability to

identify the root cause of a software failure or the points

to be fixed. Analysis of service code and operation

environment is hence required. Analyzability is broken

down into the following attributes:

1.1) Readability (level 1L) is related to code convention

or programming style that make the service

program easy to read. An organization should

follow standard naming convention and coding

format.

Service system property (level 2): Readability

level*

1.2) Understandability (level 1L) characterizes the

effort necessary to learn and comprehend the

design. Dependency between services, complexity,

size of the system/service/exchanged data, and the

likelihood of the service being found by other

services are the signs of understandability.

Service system property (level 2): Coupling,

cohesion, complexity, system size, service

granularity, parameter granularity, and

consumability [4].

1.3) Accessibility (level 1L) characterizes the ability to

access services in the system during the

development and maintenance processes. The

services should be accessible remotely, have

interoperable interfaces, and be appropriately

documented in order to aid the maintenance.

Service system property (level 2): Accessibility

level*

2) Changeability (level 1M) characterizes the amount of

efforts to change a system. It is broken down into the

following attributes:

2.1) Coupling structure (level 1L) is related to the

strength of dependency between services in the

system. The system with highly coupled services is

more difficult to change.

Service system property (level 2): Coupling [4]

2.2) Isolatability (level 1L) is related to the strength of

relationship between operations in a service. If the

operations are cohesive, any change in the service

and its operations is likely to be isolatable and other

parts of the system would be less impacted.

Service system property (level 2): Cohesion [4]

2.3) Functional coverage (level 1L) is related to size or

coverage of the function provided by a service as

well as the amount of data exchanged with a

service. Large size makes it likely that service

change would be change to the detail within the

service while operations and data are not affected,

making it easier to change as other parts of the

system are unaffected.

Service system property (level 2): Service

granularity and parameter granularity [4]

3) Stability (level 1M) characterizes the negative impact

that may be caused by system changes. The system

should be able to continue to service in the face of

changes. Stability is broken down into the following

attributes:

3.1) Availability (level 1L) is related to the frequency

and length of downtime when the services and

system undergo maintenance and changes. Service

and system redundancy and load balancing should

be in place to provide continuous operation.

Service system property (level 2): Availability

level*

3.2) Data encapsulation (level 1L) is related to size of

the data exchanged with a service. Exchange of the

data of small size can generate lots of traffic

between services which can make the system less

stable.

Service system property (level 2): Parameter

granularity [4]

3.3) Independence of changes (level 1L) is related to

the effort to avoid changes that may impact many

parts of the system. When change is made to a

service, existing clients should be considered.

Service system property (level 2): Independence of

changes level*

4) Testability (level 1M) characterizes the amount of

efforts needed to verify or test a system change. Service

and system tests should be done in an easy and efficient

manner. Testability is broken down into the following

attributes.

4.1) Environment focus (level 1L) is related to the focus

on service environment in operation when testing

the system. Functional testing of individual services

is not enough as testing should consider services in

operation environment, their QoS, and how they

operate with middleware and service bus as well as

other external systems such as security, data, and

legacy systems.

Service system property (level 2): Environment

focus level*

4.2) Process simulation (level 1L) is related to testing

not only the services and service environment but

also the process. Automated testing to simulate

business process orchestration and input/output

along the process flow is needed to test the

behavior of the system.

Service system property (level 2): Process

simulation level*

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

B. Service System Properties and Mapping to Service

System Metrics

The definitions of service system properties are as

follows. We mark the service system metrics that are used to

assess the service system properties with [4] if they are

adopted from [4], and with * if they are defined here. (see

the definitions of service system metrics in III.C).

1) Readability level (level 2) refers to the degree of

readability of the services in the system.

Service system metric (level 3): Total readability*

2) Coupling (level 2) refers to the strength of dependency

between services in the system.

Service system metric (level 3): Average number of

directly connected services [4]

3) Cohesion (level 2) refers to the strength of relationship

between operations in a service.

Service system metric (level 3): Inverse of average

number of used message [4]

4) Complexity (level 2) refers to the difficulty of

understanding relationship between services.

Service system metric (level 3): Number of operations

[4]

5) System size (level 2) refers to the size of the system.

Service system metric (level 3): Number of services [4]

6) Service granularity (level 2) refers to the

appropriateness of size of service.

Service system metric (level 3): Squared average

number of operations to squared average number of

messages [4]

7) Parameter granularity (level 2) refers to the

appropriateness of size of parameters.

Service system metric (level 3): Coarse-grained

parameter ratio [4]

8) Consumability (level 2) refers to the likelihood of other

services to discover the given service.

Service system metric (level 3): Adequately named

service and operation ratio [4]

9) Accessibility level (level 2) refers to the degree of

accessibility of the services in the system.

Service system metric (level 3): Total accessibility*

10) Availability level (level 2) refers to the degree of

availability of the services in the system.

Service system metric (level 3): Total availability*

11) Independence of changes level (level 2) refers to the

degree of independence of changes of the services in the

system.

Service system metric (level 3): Total independence of

changes*

12) Environment focus level (level 2) refers to the degree of

environment focus on the system.

Service system metric (level 3): Total environment

focus*

13) Process simulation level (level 2) refers to the degree of

process simulation in the system.

Service system metric (level 3): Total process

simulation*

C. Service System Metrics

Service system metrics from [4] measure at the design of

the services in the system (i.e., measure direct quality) and

are listed in Table I. Other metrics measure at the

development and operation environment of the organization

that hosts the service-oriented system (i.e., measure indirect

quality) and we define them based on the questionnaire in

Table II. The service team (i.e., team leader, analysts,

developer, admin) answer each question by giving the score

of 2 (Yes), 1 (Partly), 0 (No). Thus each metric calculates

the total score for the questions under each service system

property.

D. Maintainability Assessment Model

The maintainability assessment model for a service-

oriented system is defined by equations in Table III. It

follows the hierarchy of system quality attributes and service

system properties. The equations are defined by the

QMOOD method by which the weight of each system quality

attribute/service system property is in (0, 1]. First, we

determine whether the quality attribute/system property has

positive or negative impact on the quality attribute of

interest. The weight of -0.5 or -1 is assigned to the quality

attribute/system property with a negative impact, and 0.5 or

1 to those with positive impact. Then we adjust the weights

proportionately so that the summation of all weights for the

quality attribute of interest is 1 or -1. QMOOD lets the

organization conducting a quality assessment adjust the

weights in the model as it sees fit.

 TABLE I

SERVICE SYSTEM METRICS

Service System

Metric
Definition

Average

number of

directly

connected

services

NDPS NDCS

SSNS

+

NDPS = Number of

directly connected

producer services in

the system

NDCS = Number of

directly connected

consumer services in

the system

SSNS = System size in

number of services

TMU = Total number

of messages used in

the system

NSO = Number of

Synchronous

operations in the

system

NAO = Number of

Asynchronous

operations in the

system

NFPO = Number of

fine-grained parameter

operations in the

system

NINS = Number of

inadequately named

services in the system

NINO = Number of

inadequately named

operations in the

system

Inverse of

average

number of used

message

SSNS

TMU

Number of

operations

*1.5NSO NAO+

Number of

services

SSNS

Squared

average

number of

operations to

squared

average

number of

messages

2

2

NAO NSO

SSNS

TMU

SSNS

+

Coarse-grained

parameter ratio

NSO NAO NFPO

NSO NAO

+ −

+

Adequately

named service

and operation

ratio

*2

()*2

SSNS NINS

SSNS

NSO NAO NINO

NSO NAO

−
+

 + −

+

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

TABLE II

SERVICE SYSTEM METRICS QUESTIONNAIRE

Service

System

Metric

Question

Score

(2= Yes,

1 = Partly,

0 = No)

Total

readability =

Sum of all

readability

scores

1. Program development follows

standard programming convention

and style, e.g., for naming, coding

format, comment.

2. Standard data formats are used, e.g.

organization-wide data schema.

3. Proper and meaningful naming is

applied, e.g. to services, operations,

parameters, variables.

4. Condition statements must be clear.

5. Programs must be adequately

described and commented.

6. Programs have modular structure or

are decomposed into components.

7. Operations or methods must not be

too long, e.g., around 10-20 lines.

8. Naming, logic, and process within

programs must conform to common

usage within the business domain.

Total

accessibility

= Sum of all

accessibility

scores

1. Activities and steps of the system

process are documented.

2. Changes to systems and programs

are documented.

3. The services and system can be

accessed remotely for changes and

maintenance.

Total

availability

= Sum of all

availability

scores

1. Redundancy technique is employed

to increase uptime by having more

than one system component in

operation at the same time for

failover in the case of service and

system failure.

2. Load balancing technique is

employed to distribute loads from

service invocation to different

servers.

3. Frequency of downtime is

appropriate. Service and system

maintenance is planned and

notified to service users in advance.

4. When a service is down, it takes

short time to recover, e.g., within

15 minutes.

Total

independenc

e of changes

= Sum of all

independenc

e of changes

scores

1. When a service is changed, the

change is at the implementation

code, not the interface.

2. Change is not likely to be made at a

service that is used heavily by other

services or other parts of the

system.

3. For change that results in a new

version of a service, the old and

new versions are both kept in

operation, i.e., to still accommodate

old-versioned service clients.

4. Change that results in a new

version of a service considers

compatibility with the old version.

Total

environment

focus = Sum

of all

environment

focus scores

1. Service system testing is done on

the infrastructure and middleware

in the real operation environment.

2. When there are changes, the

services and system are thoroughly

tested.

3. Service availability is tested.

4. Service security is tested.

5. Service performance is tested.

6. Service interoperability with other

systems is tested.

7. Automated tools are used in service

and system testing.

Total

process

simulation =

Sum of all

process

simulation

scores

1. Business process orchestration

involving coordination of services

must be tested.

2. Automated tools are used to

simulate and test the business

process.

TABLE III

MAINTAINABILITY ASSESSMENT MODEL

System Quality

Attribute
Model

Maintainability

(1H)

0.25* 0.25*

0.25* 0.25*

Analyzability Changeability

Stability Testability

+ +

+

Analyzability

(1M)

0.33* 0.33*

0.33*

Readability Understandability

Accessibility

+ +

Changeability

(1M)

0.3* 0.65*

0.65*

Coupling structure Isolatability

Functional coverage

− + +

Stability (1M) 0.33* 0.33*

0.33*

Availability Data encapsulation

Independenceof changes

+ +

Testability

(1M)

0.5* 0.5*Environment focus Process simulation+

Readability

(1L)

Readability level

Understandabil

ity (1L) [4]

0.66* 0.25*

0.66* 0.66*

0.25*

0.25*

0.25*

Coupling Cohesion

Complexity System size

Service granularity

Parameter granularity

Consumability

− + −

− +

+

+

Accessibility

(1L)

Accessibility level

Coupling

structure (1L)

Coupling

Isolatability

(1L)

Cohesion

Functional

coverage (1L)

0.5*

0.5*

Service granularity

Parameter granularity

+

Availability

(1L)

Availability level

Data

encapsulation

(1L)

Parameter granularity

Independence

of changes (1L)
Independenceof changeslevel

Environment

focus (1L)
Environment focus level

Process

simulation (1L)

Process simulation level

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

As in Table III, the organization can put more weight on a

certain quality attribute/system property if it is considered as

having stronger impact on the quality attribute of interest.

Note that, before applying the metric values to the model,

the values have to be normalized in the range of [0, 1] as

they are of different measurement units.

IV. EXPERIMENT

In an experiment, we use the maintainability assessment

model to assess a Customer Service Management for Billing

System of a communication solutions provider in Thailand.

The first version of the system consists of 12 services and

the second version has the functionality extended to 18

services. We use the service system metrics in Table I to

measure the design of the services. For the questionnaire, we

ask 6 system analysts and project leader with 4-to-7-year

experiences to assess the two system versions, and record

the average score for each question in order to calculate the

average score of all questions with regard to each service

system metric in Table II. The measured values and

normalized values are in Tables IV and V. Normalization

assumes the measured values of the first version as 1 and the

values of the second version as the ratio to the first version.

 TABLE IV

SERVICE SYSTEM PROPERTY ASSESSMENT RESULTS

Service System Property

Assessed Value
Normalized

Value

V. 1 V. 2 V. 1 V. 2

Coupling 1 1 1 1

Cohesion 0.08 0.05 1 0.63

Complexity 74 142 1 1.92

System size 12 18 1 1.5

Service granularity 0.22 0.17 1 0.77

Parameter granularity 1 1 1 1

Consumability 0.49 0.46 1 0.94

Readability level 1.48 1.56 1 1.05

Accessibility level 1.06 1.28 1 1.21

Availability level 1.33 1.46 1 1.1

Independence of changes level 1.46 1.54 1 1.05

Environment focus level 1.36 1.52 1 1.12

Process simulation level 0.75 0.83 1 1.11

 TABLE V

SYSTEM QUALITY ATTRIBUTE ASSESSMENT RESULTS

System Quality Attribute

Assessed Value
Normalized

Value

V. 1 V. 2 V. 1 V. 2

Readability (1L) 1.48 1.56 1 1.05

Understandability (1L) -0.98 -2.08 -1 -2.12

Accessibility (1L) 1.06 1.28 1 1.21

Coupling structure (1L) 1 1 1 1

Isolatability (1L) 0.08 0.05 1 0.63

Functional coverage (1L) 1 0.89 1 0.89

Availability (1L) 1.33 1.46 1 1.1

Data encapsulation (1L) 1 1 1 1

Independence of changes (1L) 1.46 1.54 1 1.05

Environment focus (1L) 1.36 1.52 1 1.12

Process simulation (1L) 0.75 0.83 1 1.11

Analyzability (1M) 0.99 1.45 1 1.46

Changeability (1M) 1 0.69 1 0.69

Stability (1M) 0.99 1.04 1 1.05

Testability (1M) 1 1.12 1 1.12

Maintainability (1H) 1 1.08 1 1.08

The assessment results conform to the expected quality

changes during the redesign. The second version is a larger

system with extended functionality, so it could be more

complex and more difficult to understand and change.

However, this communication solutions provider improves

their service management in the second version of the

system, so the overall maintainability is improved.

V. CONCLUSION

The proposed maintainability assessment model for

service-oriented systems is based on assessment of both

service design and service management aspects, and follows

ISO/IEC 9126. The model can be used by organizations as a

self-assessment tool to assess whether their service-oriented

systems are maintainable, and which parts of the service

design and which areas of service operation management

should be improved. However, it is possible for an

organization to adjust the model or extend it to take into

account other system quality attributes. Also, the

questionnaire can be extended to include more questions or

follow a service management standard such as ITIL, but a

trade-off has to be considered by including only necessary

questions to keep the questionnaire practical to use. For

future work, we plan to develop a tool to better automate the

assessment by automatically analyzing service design and

supporting the assessment by the service team. Statistical

methods can be used to verify the correlation between

system quality attributes and service system properties, and

verify weight values in the model.

REFERENCES

[1] T. Erl, Service-Oriented Architecture: Concepts, Technology, and

Design. Prentice Hall, 2005.

[2] ISO/IEC, ISO/IEC9126-1: 2001 Software Engineering: Product

Quality – Quality Model, Geneva, 2001.

[3] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented

design quality assessment,” IEEE Trans. Software Engineering, vol.

28, issue 1, pp. 4-17. Jan. 2002.

[4] B. Shim, S. Choue, S. Kim, and S. Park, “ A design quality model for

service-oriented architecture,” in Proc. 15th Asia-Pacific Software

Engineering Conf. (APSEC 2008), Beijing, China, 2008, pp. 403-

410.

[5] M. Zhe and B. Kerong, “Research on maintainability evaluation of

service-oriented software,” in Proc. 3rd IEEE Int. Conf. Computer

Science and Information Technology (ICCSIT 2010), Chengdu,

China, 2010, pp. 510-512.

[6] M. Zarrin, M. A. Seyyedi, and M. Mohsenzaeh, “Designing a

comprehensive model for evaluating SOA-based services

maintainability,” Int. J. Computer Science and Information Security,

vol. 9, no. 10, pp. 51-57. Oct. 2011.

[7] M. Perepletchikov, “Software design metrics for predicting

maintainability of service-oriented software,” Doctoral Thesis, RMIT

Univ., 2009.

[8] M. Leotta, F. Ricca, G. Reggio, and E. Astesiano, “Comparing the

maintainability of two alternative architectures of a postal system:

SOA vs. non-SOA,” in Proc. 15th European Conf. Software

Maintenance and Reengineering (CSMR 2011), Oldenburg,

Germany, 2011, pp. 317-320.

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

