
Formal Methods for Business Processes: A
Survey

Sanjana Sahayaraj1, S Sheerazuddin2∗†‡

Abstract—As service oriented architecture gains
momentum, the business processes are composed of
several modular web services which provide service to
and take services from each other. As all communi-
cation between these web services happens over the
internet in real time, it is very crucial that the way
each web service participates will not affect the overall
business process in any case. Web services description
language is often used to describe the business pro-
cesses. If formal models can be developed for these
descriptions, the verification of various properties of
the business process would be easier and accurate.
This is what the paper focuses on.

Keywords: BPEL-Business Process Execution Lan-

guage; PN-Petri Nets; FSA- Finite State Automaton;

SOA- Service Oriented Architecture

1 INTRODUCTION

As more business processes in organizations require the
aid of web services, it is essential that these web services
are no longer isolated and are able to collaborate and
function as a single unit, profiting the organization. In
such a scenario, the business process description should
be fault-proof. This requires some formal methods of
verifying the business process description for properties
such as soundness, variability, the business compliance,
process termination, compatibility between the various
web services, et-cetera. BPEL is commonly used to de-
scribe the business processes. Web services are the basic
modules that make up most of the business processes.
When these modules are put together, just the BPEL
description may not be sufficient in ensuring the proper
behavior of the business process as a whole. This is where
formal representations such as automatons and petri nets
need to be explored. Once, the business processes are for-
mally represented, the business organization can be sure
of making profits by coalescing the web services together
as a business process.

∗
†1Sanjana Sahayaraj is a student in SSN College of

Engineering, affiliated to Anna University, Chennai, India.
sanjana.sahayaraj@gmail.com

‡2S Sheerazuddin is a faculty in the Department of Computer
Science and Engineering, SSN College of Engineering, affiliated to
Anna University, Chennai, India. sheerazuddins@ssn.edu.in

2 BUSINESS PROCESS EXECUTION
LANGUAGE

Business Process Execution Language (BPEL) is used in
organizations to specify the way in which a business pro-
cess works. It is often associated with Business Process
Modeling and Notation (BPMN). While BPMN is the
visualization part, BPEL serves as the execution specifi-
cation. BPEL is capable of describing the business pro-
cesses as abstract process and as well as executable pro-
cess. BPEL includes many features from other languages
such as WSFL by IBM and XLANG by Microsoft.

An example BPEL process representing switch activity:

<process name="newSwitch"

targetNameSpace="http://ex.otn.com"

xmlns:services="http://exserv.otn.com">

<switch name="s1">

<invoke name="act1">

<sources>

<source linkname="tok1">

</sources>

</invoke>

<invoke name="act2">

<sources>

<source linkname="tok2">

</sources>

</invoke>

</switch>

</process>

There are two kinds of activities that can be included
in a BPEL description. They are basic activities and
structured activities. Basic activities are elementary ac-
tivities like assign, reply, invoke, wait, etcetera and a
few structured activities may be sequence, switch, while,
flow, etcetera. Ever since, BPEL was introduced, several
propositions have been made for its semantics. In this
paper we shall discuss the semantics for BPEL based on
finite state automaton and petri nets.

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I 
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015



3 PETRI NETS TO REPRESENT
BPEL

Petri Nets is a mathematical model that can be referred
to as a kind of graph with two types of nodes namely
places and transitions, between which arcs are present.
Petri nets can represent basic and structured activities
mentioned in the BPEL [18]. Representations of many
structured activities in BPEL have been explored in
[1]. Scope is one of the structured activities with comes
along with its related concepts of event handlers, fault
handlers, exception handlers and compensation handlers.

The event handlers can be associated with system
occurrences or internal events or environmental occur-
rences or external events. Each event handler will be
invoked if and only if the corresponding event occurs.
An event handler can also have many instance operating
simultaneously.

Petri nets also include control links which are facilities
to depict the dependencies between activities. The link
status can be true or false indicating whether the depen-
dency condition has been satisfied or not. Let us say, a
place in the petri net should have a specified number of
tokens before a transition from it can be fired. Thus, the
link status of each of the outgoing links from this place
will be true only when all the tokens are present. In a
similar way, join conditions are evaluated [18]. A join
condition can be defined by a boolean expression where
each variable of the expression corresponds to a single
control link with the link status set to either true or false.
In addition to verifying certain properties of the business
process that is specified in the BPEL, petri nets can also
be used to reveal any ambiguities if present in the BPEL
specification. The concept of control links and structured
activities has been clarified in [1]. WofBPEL is a tool that
uses these petri nets to check for unreachable activities,
conflicting message receipt actions, etcetera.

3.1 Scope and the handlers

The main focus of scope is event handling for normal flow
and exception handling or fault handling if anything goes
wrong. The main activity has event handlers, fault han-
dlers and compensation handlers.The exception handling
is represented using flags depicting the

• normal execution of a process without any exception
being raised to continue.

• situation where an error occurs and all activities
need to stop executing to stop.

• snapshot to indicate that a snapshot has been pre-
served after successful completion of scope.

• no snapshot if the scope has been compensated and
no snapshot is available.

Extension of petri nets has been done in [1] to represent
the above.
In a sunny day scenario, the to continue flag will be set
and when the execution completes without any error,
the snapshot is set for the scope. On the other hand,
if an exception occurs, then no snapshot is set with the
to continue changing to to stop.

The event handlers are present to handle normal events
that occur while the scope is running. An event handler
can be invoked once or multiple times. An event handler
is ready to be invoked once the corresponding scope
starts. When an event occurs, an instance of the event
handler is created. As long as the scope is active,
the event handler remains active. The normal event
is also enabled till the main activity of the scope is
running. The completion of the scope has to wait for the
completion of event handlers. Even if an event handler
starts in the absence of any active events, it is allowed to
complete. An event handler can have several instances
running at the same time based on the nature of the
activity.

Unlike this character of event handlers, there can be
only one fault handler running at a time for a scope. A
default handler is always present to handle the fault if
not caught by any other fault handler.These handlers in
the scope can be represented as basic activities within an
enclosing structured activity using petri nets. Analysis
of such nets give us vital information about how many
event handlers are allowed, mapping of fault handler,
etcetera. During mapping fault handlers, the causes for
a fault are taken as transitions (fault events) in the petri
net. There can be an arc from such a transition to a
place, denoting the normal flow after fault occurrence.
Nested fault handlers can be present to aid the case of
faults occurring within fault handlers.

Compensation handlers and exception handlers are yet
another class where the compensation handler refers to
application-specific activities (basic or structured) that
undo the work of a completed scope. The compensation
may also involve one of the sub-scopes of the concerned
scope. The compensate activity can be called from
within a fault handler or compensation handler. This
can be shown by an arc from a transition labeled com-
pensate to a place in the compensation handler subnet
[1]. Faults can occur during compensation handling and
such faults are handled by fault handlers associated with
the scope of the compensation handler.

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I 
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015



Termination of a scope due to fault is yet another case
which is shown in BPEL by the execution of an exit ac-
tivity. Execution of exit activity requires all the activities
in the scope to be terminated as soon as possible without
any fault handling or compensation handling. In case of
termination, the core activity of the corresponding scope
has to be skipped. This can be shown in PN using a
transition bypass.

3.2 Verifying properties

Given the representational power of PN, it can be
used to verify many properties of the business process
under consideration. Automated analysis is also possible
with tools like Woflan. For this, the BPEL has to be
modelled onto workflow nets and they are known for
their soundness property [18]. As an example here,
the following petri net clearly checks the reachability
property and shows the unreachable activity which other-
wise might go undetected with just a BPEL specification.

Figure 1. A flow where A3 is unreachable

The concept of presence of tokens and join condition
evaluation in the above PN makes it easier to detect
unreachability. WofBPEL tool is able to detect all runs
of the PN starting from the initial state and going upto
the final state [1]. For the above PN, WofBPEL would
have reported that there is no possible run to reach A3.
Two different methods are used for property verification.
They are relaxed soundness and transition variants.
Relaxed soundness keeps track of every possible run.
Every transition in these runs is said to be relaxed sound
and vice versa. Though relaxed soundness is complete,
it involves expensive computation. Transition invariants
includes a multiset of transitions, all of which cannot
execute simultaneously.Every run from initial state to
final state will correspond to a transition invariant.

When many web services are involved, it is a must to en-
sure that the service provided by one is consumed by the
correct recipient. While the correct recipient is identified
by the port type, partner link, etcetera in the BPEL, it

is necessary to ensure that this recipient has only receive
activity associated with it. This again can be solved by
using petri nets to represent the BPEL and using some
automated tool which generates an exhaustive state space
and checks for these properties.

4 AUTOMATA BASED FORMAL
MODELS FOR BPEL

The BPEL constructs can be converted into finite state
automaton. Much work has been done in the ways of
converting rational expressions to automatons. For the
construction of a finite state machine corresponding to
BPEL description, information regarding the peers and
the communication (messages) between them have to be
extracted in the first place. This is known as the peer
list P and the message type M. Once the automaton has
been obtained, details of this can be represented in the
language Promela which again is given as input to the
model checker SPIN [16]. This way, the correctness of
the business process made of web services, as described
in the BPEL can be verified. Now let us, see how BPEL
for basic activities and structured activities can be rep-
resented by finite state machines. The first example de-
scribes a basic receive activity. If the input actions do not
block time progress, then they have a lazy urgency, oth-
erwise an eager urgency. The second example describes
a structured activity- a sequence which is made of two
other basic activities. The final state is connected to the
initial state through local transitions.

Example 1:

<receive partnerLink=" ">

Figure 2. Receive activity

Example 2:

<sequence>

<action_1 ...>

<action_2 ...>

</sequence>

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I 
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015



Figure 3. Automaton for a sequence activity

In promela, each automaton is taken as a process type
proctype and the main process is called init. The trans-
lation of XPath expressions to Promela is a challenge
and is a scope for research in the formal representation
of business processes.

When many web services are involved, there might be an
order of execution of these services. One typical scenario
is that an answer message or reply message must follow
a service request. Thus, the correctness properties in
modeling these business processes, needs some temporal
representation. They use Computational Tree Logic
(CTL) in this paper because it not only shows the details
regarding the present sequence of activities, but also
what might happen in future in this business process
which involves several services. In Computational Tree
Logic, the changes with time are represented in a tree
like model. The occurrence in the future can be the
result of taking any of the path in the tree. Business
process descriptions have been converted to CTL in [12]
using XPath predicates. Since BPEL is an XML based
language, XPath expressions can be used to select the
nodes, some of which represent the partner service in
the business process. Once the BPEL is converted into
formal representation, verifying it should be the next
focus. This formal model is converted into NuSMV
language representation which is given as input to the
NuSMV model checker. NuSMV is capable of analysing
models that have properties expressed in Computational
Tree Logic and Linear Temporal Logic. A framework
is proposed in [12] in which, once the BPEL is input,
all the information regarding each and every entity is
extracted from the BPEL file. There can be a finite
state machine for each entity in the business process.
The result of this phase will be a set of graphs for each
entity and a set of conditions for each message which
may specify the order in which they have to be sent.

Another approach is to use Intermediate Format (IF)
Model based on timed automata [13]. Each activity spec-
ified in the BPEL is represented here as an IF process. A
structured activity can be represented by an IF process
that dynamically creates its sub-activities. Most BPEL
construct have a corresponding representation in the IF
language. [16] proposes a conversation protocol which

is a finite state automaton depicting the conversations
between the various web services of a business process.
Guarded automaton are also introduced showing the
behavior of each peer in the composite web service, where
a guard (XPath expression) is present for each transition.

Just like using petri nets to represent the join condi-
tions, the IF timed automaton [13] can also be used. A
special IF process called linksManager is used. The
linksManager has knowledge all the sources and the
targets (activities). When a source activity finishes, it
evaluates the guards and sends a source message to the
linksManager, which sends a target message with the
guard to the target activity. When target receives mes-
sage on all its inputs and the guard is satisfied, then the
join condition evaluates to true. Otherwise, a join failure
occurs. Just as in PN, scope can be represented by an IF
process which creates two sub processes- one for its main
activity and the other for its event handlers.

4.1 Web Service Automaton

A web service automaton (WSA) has a signature M
which is defined by input events, output events and
internal events [20]. It also has a set of states, a set
of transitions and a transition relation. In WSA each
activity is abstracted as a machine. For example, an
activity X is said to be MachineX. In WSA, the
activities are represented by rounded rectangles and
arcs are present to depict the control flow and data
flow, that the BPEL wishes to convey. Using WSA,
unreachable activities such as the one shown in the petri
nets section can be detected. WSA also has the feature
of hierarchical representation of BPEL activities. As
stated already, each activity is mapped into a machine.
Once the child machine (child activity) reaches its final
state, it signals its parent machine (parent activity).
This signal can be in the form of a message denoted by a
labeled arc. Sometimes, even in fault handling, the fault
message of the children can be forwarded to the parent.

Just as in PN, the concept of scope is found even in WSA
and this also encloses fault handlers, event handlers and
compensation handlers. The event handler runs along
with the primary or main activity of the scope. Here
the compensation handler can be invoked only after the
normal completion of scope is done. But in the case of
fault handler, the normal execution stops as soon as a
fault is encountered. Fault handlers (FH) may be present
for child activities. Once the FH of child is invoked, it
completes execution and the main activity and event
handler of child also complete. Even after this the fault
may be rethrown to the parent and the parent scope can
complete only after this rethrown fault is handled by its
FH. All these handlers are again represented as machines
made of states and solid arcs. When the scope starts,

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I 
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015



the primary machine (meant to represent the primary
activity) starts and the event handler’s machine also
starts simultaneously. Once the primary machine’s final
state is reached, the event handler is disabled. The state
of the primary machine is made known by done message.

Data flow analysis is an important feature of WSA, that
serves to capture the relation between inputs and out-
puts of BPEL activities. The data flow analysis can be
through a shared model or centralized data flow model
and the other approach is through analysing the data de-
pendencies between the various activities. In the first
approach, a linkcentre is represented by a rectangle
through which all the data exchanges must pass. In the
second approach, the activities are allowed to directly ex-
change data among each other.

4.2 Annotated DFA

An annotated DFA just like any other DFA has a set
of states, set of final states, set of messages, set of
transitions and set of relation between states. It also
supports logical formulae. Boolean entities like true
and false, symbols and variables are part of the logical
formulae supported by annotated DFA. It is used to
recursively define a formal representation for the BPEL
description. The recursion starts with the first activity
which is a child of < process > element. Here, the
recursion starts with the creation of the start and final
states and passed to a partial structure which is used
in the recursion as input and output places. The start
state of this partial DFA is denoted by qin and the
final state by qout as they are the places to enter and
exit the partial structure. Finally a full structure for
the annotated DFA is obtained from the partial structure.

In this DFA, the simple activities usually have only a
single state and no transitions. Usually the annotations
are given for the transitions and thus in the simple
activity, the single state is annotated by true. The two
simple activities are empty activity, which is represented
by a partial annotated DFA with a single state and
terminate activity in which the output state is an empty
state and the input is marked final. When it comes to
structured activities, a number of partial structures are
combined together to get the corresponding annotated
DFA. The communication activities in BPEL are shown
by message exchanges in annotated DFA.

In case of message sending, the recipient must be able to
handle what was sent to it. The sender will select and
send only those messages that are compatible with its
normal working. On the other hand, not all the incom-
ing messages are suitable for the receiver. While giving
annotations, the sending messages are represented as a

conjunction of messages, since they are mandatory tran-
sitions. But, as a receiver needs alternative options, the
receiving messages are represented as a disjunction of
messages.

4.3 Constraint Automata

Constraint automata are used especially in verifying
those business processes that involve orchestration. In
orchestration, a central co-ordinator is present between
the various web services making up the business process.
The formal language used to represent the BPEL before
converting into automaton is called Reo which guaran-
tees possibilities for both model checking and verification
[6]. Reo consists of primitive connectors consisting of two
ends. One end can be source which will be the sender of
messages and the other will be sink which will be the
recipient. A constrain automata is based on timed data
streams in which each element is a pair. Each pair is
made of data and time. The time will give information
regarding whether the data is being sent or received. The
constraint automata has a set of states, initial state, set
of final states and set of transition relations. The state of
the automaton changes over time. At each point of time,
there may be a data item in a port of the component.
Based on the characteristics of this data item, a transi-
tion fires and the state changes accordingly. Any basic or
structured activity in BPEL can be mapped onto Reo cir-
cuits where each component has a start port and an end
port. A tool has also been designed to automatically con-
vert BPEL specification to Reo circuits and from there to
automaton. Further verification can be performed on the
obtained automaton to study the possible occurrences in
the course of the business process in detail.

5 CONCLUSIONS

Thus, the mapping of BPEL onto PN and finite state
machines, not only gives a clear visual representation of
the business process but also provides a formal technique
of verifying the validity of the service composition. Since
the service composition involves several individual mod-
ular units, it is highly essential to make sure that they
work together perfectly fine by designing a formal model.
This is one important step before deploying any busi-
ness process as a collection of web services. Given that,
mappings onto Petri nets and finite state machines are
tried and tested for most of the BPEL constructs, follow-
ing these procedures benefits the business organization as
they can be sure of the behavior of the web services when
they try to collaborate and work together.

References

[1] Formal Semantics and Analysis of Control Flow in
WS-BPEL-Chun Ouyang, Eric Verbeek, Wil M.P.
van der Aalst, Stephen Breutel, Marlon Dumas and

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I 
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015



Arthur H.M. ter Hofstede - 2007.

[2] Transforming BPEL to Petri Nets Sebastian Hinz,
Karsten Schmidt and Christian Stahl- 2005.

[3] Workflow Management Principles for Interactions
between Petri Net-based Agents- Thomas Wagner
and Daniel Moldt- Application and Theory of Petri
Nets and Concurrency Lecture Notes in Computer
ScienceVolume 9115,2015.

[4] Analyzing BPEL processes using Petri nets -
H.M.W. Verbeek, W.M.P. van der Aalst-2005.

[5] Petri Nets- Properties, Analysis and Applications
Tadao Murata -1988.

[6] Web Services and Formal Methods- S.Tasharofi et
al; 4th International Workshop, WS-FM 2007.

[7] A Comparative Study of Web Service Composition
via BPEL and Petri Nets Mohammad Salah Uddin,
Member IACSIT, S. Ripon, Nakul C. Das, and Orin
Hossain-2014.

[8] Petri Net Transformations for Business Processes
A Survey Niels Lohmann, Eric Verbeek, and Remco
Dijkman - Transactions on Petri Nets and Other
Models of Concurrency II -2009.

[9] A Petri Net Semantics for BPEL- Informatik-
Berichte 188, Humboldt-Universitt zu Berlin-
Christian Stahl- July 2005.

[10] Translating Workflow Nets to BPEL Wil M.P. van
der Aalst and Kristian Bisgaard Lassen - 2006.

[11] Analyzing Web Service Based Business Processes.
In M. Cerioli, editor, Proceedings of the 8th Inter-
national Conference on Fundamental Approaches to
Software Engineering - A. Martens- 2005.

[12] Modelling and verification of BPEL business pro-
cesses -Proceedings of the Fourth Workshop on
Model-Based Development of Computer-Based
Systems and Third International Workshop on
Model-Based Methodologies for Pervasive and
Embedded Software -2006.

[13] Transforming BPEL into Intermediate Format
Language For Web Services Composition Testing -
Mounir Lallali, Fatiha Zaidi, Ana Cavalli - 2008.

[14] Formal analysis of BPEL workflows with by model
checking- Mate Kovacs, Daniel Varro and Laszlo
Gonczy 2008.

[15] Elementary Net Systems - Grzegorz Rozenberg and
Joost Engelfriet 1996.

[16] Analysis of Interacting BPEL Web Services -
Xiang Fu, Tevfik Bultan, Jianwen Su - Systems
and Information Theory(E.4) formal models of
communication ACM- 2004.

[17] Timed automata: Semantics, algorithms and tools-
J. Bengtsson, W. Yi, W. Reisig, G. Rozenberg
(Eds.)- Lecture Notes on Concurrency and Petri
Nets, Lecture Notes in Computer Science, vol. 3098,
Springer-Verlag, 2004.

[18] Using Petri Nets in the formal representation of
Business processes- Sanjana Sahayaraj, S Sheer-
azuddin, Seventh International Conference on
Computational Intelligence, Modelling and Simula-
tion 2015- accepted.

[19] Automata Semantics and Analysis of BPEL-
Yongyan ZHENG, Paul KRAUSE- IEEE Inter-
national Conference on Digital Ecosystems and
Technologies- 2007.

[20] Transforming BPEL into annotated Deterministic
Finite State Automata for Service Discovery-
Andreas Wombacher, Peter Fankhauser - 2005.

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I 
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015




