
Cloud Deployment Patterns: Migrating a Database
Driven Application to the Cloud using Design

Patterns

A.A. Adewojo, J.M. Bass and K.Hui, I.K. Allison

Abstract— Cloud computing provides scalable and reliable

computing services that can be beneficial to software
organizations that intend to migrate their existing or new
applications to the cloud. However, migration is potentially
complex, so cloud computing deployment patterns are
proposed to support the migration process. This research
compares the format, structure and notations of previous
object oriented design patterns with a recent cloud computing
design pattern. Firstly, the gaps in cloud computing design
patterns catalogue are identified. Secondly, we present a
template for creating pattern catalogue for cloud deployment
patterns. This template was derived from a widely accepted
and most highly cited design pattern catalogue and we applied
this template to the shared component pattern, a variant of
multi-tenancy pattern. Finally, we demonstrated the shared
component’s pattern validity by applying it to the data model
of a database driven desktop application that was migrated to
the cloud. The result shows that: (i) there is an improvement
in the structure and clarity of the shared component pattern
catalogue; and (ii) Information conveyed to software
developers is enhanced.

Index Terms— SaaS; Cloud Computing; Deployment
Patterns; Cloud Migration

I. INTRODUCTION
Global software engineering researchers and practitioners

have rightly focused on distributed models of software
development [1] [2] [3]. We argue here that the development
of software services for worldwide deployment presents a
significant challenge for practitioners of global software
engineering.

 Cloud services centralize deployment, maintenance and
evolution but cater for a worldwide user audience [4]. Cloud
services are classified into three namely: Software as a
Service (SaaS), Platform as a Service (PaaS) and
Infrastructure as a Service (IaaS) [5] [6]. SaaS releases

Manuscript received April 3, 2015, revised June 20, 2015. This work was

supported by the Scottish Funding Council who funded the Scottish cloud
horizon project, the Technology Strategy Board and WML UK who
provided funds for the conference expenses.

A.A. Adewojo is a researcher with the School of Computing Science and
Digital Media, Robert Gordon University, Aberdeen, Scotland. Phone:
+441224262575; e-mail: a.a.adewojo@rgu.ac.uk

J.M. Bass is a senior lecturer with the School of Computing Science and
Digital Media, Robert Gordon University, Aberdeen, Scotland. e-mail:
j.m.bass@rgu.ac.uk

K.Hui is a lecturer with the School of Computing Science and Digital
Media, Robert Gordon University, Aberdeen, Scotland. e-mail:
k.hui@rgu.ac.uk

I.K. Allison is the Dean, School of Engineering and Computing
University of the West Scotland, Paisley, Scotland, email:
ian.allison@uws.ac.uk

application to customers as a service [7], these services are
accessed via the internet and consumers are charged for only
the quantity of software, its functionalities and time used [5].
PaaS provides development platforms as a service. It makes
provision for customizing and deploying applications on the
infrastructure [5]. IaaS provides computing infrastructure in
the form of virtual machines as a service to customers [7].
Consumers can enjoy flexibility of creating, managing,
deploying and customizing their servers to to suit their needs.
Cloud computing also provides scalable, reliable and
ubiquitous computing representing a paradigm shift in
computing that has a potential of transforming IT industry
[8]. Cloud computing has gained much popularity both in
academic and industrial world; hence prompting large
organizations and startups to either move their on-premise
applications to the cloud or build a cloud compliant
application [9] [10]. However, this migration is potentially
complex so cloud computing deployment patterns are
proposed to assist these organizations.

Several design patterns are advocated to help make good
design decisions, capturing best practices on how system
applications should be designed [11]. The benefits of using
these patterns include development of reusable and
compliant software systems [12]. Interoperability, portability
and manageability of software systems are specific benefits
of using cloud design patterns [9].

Cloud deployment patterns play a major role in
architectural restructuring and migration of on-premise
software applications to the cloud [11]. Current cloud
computing deployment patterns lack details which make
them difficult to use. Furthermore, this lack of detail hampers
deployment pattern selection.

We address this issue by comparing previous object
oriented software design patterns catalogue [13] with recent
cloud computing deployment patterns catalogue [11]. The
format, structure, and graphical notations were the main basis
of comparison. We used the object oriented design patterns
as the baseline for comparison [13]. This is because it has a
consistent format of describing patterns and is one of the
most highly cited design patterns catalogues.

The contribution of this research is an enhanced cloud
deployment pattern description for the shared component
pattern. The benefits of the enhanced shared component
pattern are: that they are more systematically presented,
easier to implement, with more logical headings and detailed
pattern description. This will help software developers to
make right design decisions as fast as possible [13].

The paper is structured as follows: a description of related
work on design patterns is done in section 2. Section 3

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

describes the research method used to implement this
research. Section 4 introduces shared component pattern.
Section 5 describes how the shared component pattern was
improved. Section 6 describes the case study application that
was used to validate the pattern. Section 7 discusses how it
was implemented and Section 8 summarizes the work done
and thoughts on future work. Finally, the appendices contain
the enhanced pattern.

II. RELATED WORK

In this section, we discuss existing work on design

patterns, pattern languages, cloud computing principles and
how these relate to cloud deployment patterns.

Several parts constitute design patterns such as a recurrent
problem, its proposed solution, factors that might affect the
problem or solution, and rationale behind the solution.
However, a recurrent problem in software design is the main
motivator of a software design pattern and a formal
approach that generalizes the solution to this problem is a
key factor to a successful design pattern.

To identify and get acquainted with the standardized
format of design patterns, pattern languages, and pattern
catalogue, we reviewed the following literatures: Design
patterns: elements of reusable object-oriented software by
[13]. They defined pattern language and its applicability to
object oriented software system. They used a systematic
approach to catalogue 23 different object oriented design
patterns. These patterns are widely and consistently used in
building object oriented system to date. Coad [14] presented
seven different patterns for object oriented analysis (OOA)
and object oriented design (OOD). Each pattern had an
example that illustrates how to use it, also guidelines on how
to apply each of them were provided. Martin [15] described
software architectures and how design patterns can either
positively or negatively affect the software application.
They identified rigidity, fragility, immobility and viscosity
as major symptoms of rotting design.

Because these patterns are specific to object oriented
design, there is a need to review literatures on cloud basic
properties, their architectural needs, and design patterns that
apply to them. Khorshed et. al [16] describes cloud
computing as a system whose data center’s resources are
delivered as services using virtualization technologies via
the internet to provide elastic, on-demand and instant
services to its customers. Armbrust et. al [17] identified
utility computing, scalability, multi-tenancy, flexibility,
manageability, portability as key properties of cloud
computing. Based on these principles and their
requirements, we reviewed how design patterns in cloud
computing are captured to help improve on the identified
features of cloud computing. In [11], the basic properties of
cloud computing were described and how these properties
can be used in our IT infrastructure. Based on these
properties they captured best practices on solving recurrent
problems in architecting applications for the cloud and
migrating existing applications to the cloud. Wilder [18]
explored cloud patterns that are useful for architecting
cloud-native applications and that can be used to overcome
specific challenges that can be encountered in cloud
application development. For each of the pattern covered in

the book, there is a primer that precedes it. Primer gives a
broad understanding of why there is or might be a need for
the preceding pattern. This book does not catalogue patterns
because the authors argue that each pattern impact multiple
architectural concerns, hence it cannot be cleanly
catalogued. Having looked at these literatures, object
oriented patterns by [13] and cloud computing patterns by
[11] inspired us to improve the shared component pattern; a
cloud deployment pattern in line with best practices from the
software design pattern literature.

III. RESEARCH METHOD

The sequential mixed method approach [19] was used to

devise our research process. This will inform the priority of
data collection strategy, data analysis, and theoretical
perspective of our research. It comprised an inductive
development of enhanced cloud deployment pattern and an
application case study. The theoretical aspect explores and
compared existing design patterns with cloud deployment
patterns available from the literature. The format, structure,
graphical notations and applicability of these patterns are
studied and compared in-line with best practices to develop
an enhanced pattern format for the multi-tenancy patterns.

Case study strategy is used to gather and analyze
information. The case study approach investigates an
observable circumstance in its real-life context [20]. The
aim of observing in real-life context is to provide an analysis
of the context and processes involved so that the theoretical
issues being studied can be well understood [21] and
because evidence is gotten from a real-life setting of the
case [22].

For our case study, we selected a small business software
application. This software application is used to produce
business processes. It maximizes a company’s efficiency and
resources by providing an automated and concise way of
defining and communicating what the company does. Its
potential users range from company managers to employees
who are in the business support unit. This application
however has some significant limitations, in its lack of
scalability and resource sharing. Hence, we chose this
application because the multi-tenancy principle is of utmost
importance to it. We applied the newly developed cloud
deployment pattern, and tested it with a load tester called
LoadUI [23] and by different users. The results establish that
the new patterns implementation meets the needs of the
application.

IV. SHARED COMPONENT AND CLOUD

DEPLOYMENT PATTERNS

The multi-tenancy pattern describes how SaaS application
component can be shared between different tenants, the
challenges of sharing same instance of software and the
solution to these challenges [11] [24]. It is one of the five
essential cloud properties [11] [24] that supports resource
sharing in cloud deployed SaaS application. Shared
component, tenant-isolated component and dedicated
component are the three levels of multi-tenancy patterns
captured by [11]. In this paper, we focus on the shared
component pattern, the first level of the multi-tenancy

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

pattern. It is the basic minimum requirement for resource
sharing in a SaaS application. It minimizes resource usage
however; this is at the risk of data and processes isolation
[11][6].It is used to provide functionality to different tenants
without maintaining a notion of tenants itself, hence, tenants
can influence each other while this functionality is being
accessed [11].

When developing a cloud native application, it is
important to consider components of the applications, and
cloud infrastructure that can and will be shared with other
applications or other cloud instances. To make the software
robust and reusable, it is expedient that right design patterns
be employed. However, a precise description of this is
needed to make an efficient use of it. It is in response to this
that we have proposed an enhanced shared component
pattern.

V. ENHANCED SHARED COMPONENT PATTERN

Our research observed gaps in the description of cloud

deployment pattern by [11]. To address this, we enhanced the
shared component pattern to conform to consistent and
widely accepted design pattern format. This improvement is
based on what we have learnt from revised literatures, our
proposed template and best practices in cataloguing a pattern.
Table 1 shows the existing cloud deployment pattern
headings, the object oriented pattern headings, the gaps we
need to fill and the proposed template.

Table I. PATTERN HEADINGS COMPARISON AND

TEMPLATE
Cloud

Patterns
OOP Patterns Restructured

Pattern
- Intent Intent
- Alias Motivation
- Motivation Applicability
- Applicability Structure
- Structure Participants
- Participants Collaboration

s
- Collaborations Consequences
- Consequences Implementati

on
- Implementation Sample Code
- Sample Code Known Uses
Known uses Known uses
Related

patterns
Related patterns (

This does not apply to
all patterns)

Related
patterns

Context
Solution
Result
Variations

(This does not
apply to all
patterns)

Driving
question

The enhanced shared component pattern now includes
intent, motivation, applicability, structure, participants,
collaborations, consequences, implementation and sample
code. However, some contents of these headings can be
found in the original cloud computing patterns definition by
[11] but because they are not distinctly spelled out, users can
not follow them precisely. The newly enhanced pattern
description for Shared Component and its detailed content
are elaborately described in appendix 1. The enhanced shared
component pattern benefits from a standardized and formal
approach of describing patterns; this will then help upcoming
developers to efficiently use this pattern and also
communicate using well-known names for software
interactions.

In the next section, we apply the shared component pattern
to a case study application. This is to validate its applicability
in cloud deployed applications.

VI. CASE STUDY

The case study application is a business process

management (BPM) system that runs on a desktop
application intended to be migrated to the cloud. Because it
is a desktop application, it cannot be migrated to the cloud
as it is, so a web based prototype application of the software
was built and deployed on Amazon Web Services (AWS).
This effectively turns the application into a SaaS. The goal
of this design is to allow the key features of a cloud native
application such as maintainability, data accessibility,
scalability, multi-tenancy, and interoperability [11].

Appropriate design principles have been used in-line with
quality concerns such as performance, modifiability, and
usability of the system [25]. Amongst these are loose
coupling, modularization, separation of concerns and
abstraction [25]. These principles are implemented via these
patterns: Model-View-Controller (MVC), Service-Oriented
Architecture (SOA), Representational State Transfer
(REST), and cloud deployment patterns. MVC was used to
decompose this system into three components: data storage,
application server, and user interface component. SOA was
used to present its data logic and application server
component as set of services. REST was used to deliver
these services so as to promote interoperability. Shared
component pattern and scalability were used to improve
resource sharing and user’s accessibility to the system. The
web application architecture is shown in Fig.1.

Fig. 1. Web Application Architecture

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

The web application architecture functions thus: A load

balancer intercepts all incoming requests from thin clients
and distributes them to an appropriate VM instance. These
clients communicate with the web server via HTTP
protocol. The VM contains both the application server and
the web-server. The web server handles the HTTP protocol,
passes request to an appropriate program that is able to
handle the request and in response sends a dynamic HTML
page for viewing in the web browser. The application server
provides access to business logic for use by the client
application programs. A load balancer then distributes data
that needs to be stored to available data storage. These
storage spaces are replicated geographically to avoid
problems caused by failure of the storage space.

A no-SQL storage device – SimpleDB by Amazon, which
is accessed via a RESTful API [26] is used as the storage
space, thus promoting SOA and REST architectures. The
different web services runs on a virtual machine (VM) and
the VM are easily replicated on demand, thus promoting
scalability. Scalability is also improved because the
application can run at least in part or parallel and in effect
allows resources to be shared efficiently, which is a key
feature of SaaS application [24]. This loosely coupled
architecture makes the system flexible enough to run
different components on different cloud vendors.

VII. DISCUSSION

The shared component pattern was implemented in the

data storage component of the case study application. The
data storage component was designed to allow multiple
customers access a single instance of SimpleDB; however
this is at the cost of no isolation of data and processes. It
was implemented as follows: A single domain was used to
store all companies’ data. However each item in a domain is
uniquely identified by the company’s id. This means
different companies share the same domain. This approach
offers the highest degree of sharing, but at the risk of data
privacy and security. The code snippet below show how this
is implemented.

Fig. 2. Code snippet to implement Shared Component

pattern

The shared component pattern has been validated because

we are able to successfully implement it in our case study
application.

VIII. CONCLUSIONS AND FUTURE WORK

Choosing the right cloud deployment pattern is a key
determinant in building a reusable and compliant SaaS
system in software engineering. To aid this process, we
presented an enhanced template for describing the shared
component pattern, and we also improved the clarity and
organization of the shared component pattern in line with
design pattern best practice. The shared component pattern
has been enhanced to include an elaborate and systematic
description of the pattern. This includes Logical headings
and detailed expression of each heading.

The Shared Component pattern minimizes resource
overheads by making efficient use of critical components.
Tenants are each allocated a quota of the shared resource.
However, sharing components could compromise privacy,
performance and security. This is an area stakeholder and
developers need to agree on before commencing to use this
pattern.

We argue that our enhanced shared component pattern
will help those learning to implement this pattern by
reducing the length of time [13] it takes them to understand
the implications of using it. It will also provide a common
language where they can communicate using well
understood names for software interactions.

We also demonstrated the applicability of the shared
component pattern as a resource sharing architectural
property of a SaaS application in our case study. A
successful implementation of it validates this.

The next stage of our study is to apply the proposed
template to improve the tenant-isolated and dedicated
component pattern catalogue. The Dedicated Component
pattern provides exclusive access to application components
that provide critical functionality; this is at a higher cost in
terms of resource overhead and monetary cost. The Tenant-
isolated component pattern represents a compromised
implementation between the Shared Component and
Dedicated Component approaches. It involves some sharing
of resources with intermediate levels of performance,
security, privacy and resource overheads.

APPENDIX

A. Intent
Allow multiple tenants to access a component of the

application and leverage economies of scale [11]
B. Motivation
To address a large number of customers and in turn

leverage economies of scale [11]
C. Applicability
Use shared components when:
Web services are used for authentication and user rights

management that are within the scope of one company [11]
D. Structure
The database is created once because tenant shares the

database. Tenants also share the table and each row is
identified by the tenant and row id because there will be
many tables and rows in this database. This does not
guarantee security and privacy of data, but it utilizes
resources efficiently and reduced cost of database
connections. This is shown in figure 3.

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

Fig. 3. UML diagram for Shared Component pattern

E. Participants
This defines a database and lets user add tables and rows.

Multiple user data can be represented in different row of a
table.

F. Collaborations
Key value storage pattern [11]
G. Consequences
The functionality provided by a shared component is

unaware of the actual tenant for which request is being
executed. Hence, the behavior of one tenant may affect other
tenants. Also instances of a shared component can be scaled
out depending on the overall workload and the set limit.
This in turns reduces the commissioning and
decommissioning process [11]

H. Implementation
This allows components to be shared by multiple tenants

without much restriction on identifying the tenant. The
following issues should be considered when there is a need
to use a shared component pattern [7]:

1) Tenant Influence: Influences between tenants that
may occur when sharing components have to be avoided.

2) Tenant Requirements: other requirements of
tenants that disallows sharing of resources

I. Sample Code

Fig. 4. Sample Code for Shared Component DB Creation

J. Known Uses
National Weather Service provided by the National

Oceanic and Atmospheric Administration (NOAA). This
provides a web service as a shared component interface that
can be integrated in applications [11]

K. Related Patterns
Tenant-isolated and dedicated patterns are related patterns

that can be used if sharing of application component is
unsuitable for tenants. However if shared component pattern
is used, the following patterns may be relevant: management
configuration, periodic workload, private clouds and
hypervisor [11]

ACKNOWLEDGMENT

We acknowledge the owners of the case study software
application. A.A. Adewojo is grateful to S.A. Arekete for the
feedbacks while writing this paper.

REFERENCES

[1] C. Ebert, Global Software and IT: A Guide to Distributed

Development, Projects, and Outsourcing. Hoboken, N.J.: Wiley-
Blackwell, 2011.

[2] M. Y. Vardi, "Globalization and Offshoring of Software Revisited,"
Commun ACM, vol. 53, pp. 5-5, may, 2010.

[3] J. D. Herbsleb and D. Moitra, "Global software development,"
Software, IEEE, vol. 18, pp. 16-20, 2001.

[4] R. Moreno-Vozmediano, R. S. Montero and I. M. Llorente, "Key
Challenges in Cloud Computing: Enabling the Future Internet of
Services," Internet Computing, IEEE, vol. 17, pp. 18-25, 2013.

[5] S. Zhang, H. Yan and X. Chen, "Research on Key Technologies of
Cloud Computing," Physics Procedia, vol. 33, pp. 1791-1797, 2012.

[6] P. Mell and T. Grance, "The NIST definition of cloud computing
(draft)," NIST Special Publication, vol. 800, pp. 145, 2011.

[7] R. Dargha, "Cloud computing: From hype to reality: Fast tracking
cloud adoption." in Icacci, 2012, pp. 440-445.

[8] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A.
Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica and M.
Zaharia, "Above the clouds: A berkeley view of cloud computing,"
EECS Department, University of California, Berkeley, Feb. 2010.

[9] G. Cretella and B. Di Martino, "An Overview of Approaches for the
Migration of Applications to the Cloud," vol. 7, pp. 67-75, 2014.

[10] P. Jamshidi, A. Ahmad and C. Pahl, "Cloud Migration Research: A
Systematic Review," Cloud Computing, IEEE Transactions on, vol. 1,
pp. 142-157, 2013.

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

[11] C. Fehling, F. Leymann, R. Retter, W. Schupeck and P. Arbitter, Cloud
Computing Patterns
Fundamentals to Deisign, Build, and Manage Cloud Applications.
London: Springer, 2014.

[12] F. Palma, H. Farzin, Y. Gueheneuc and N. Moha, "Recommendation
system for design patterns in software development: An DPR
overview," in Recommendation Systems for Software Engineering
(RSSE), 2012 Third International Workshop on, 2012, pp. 1-5.

[13] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:
Element of Reusable Object-Oriented Software. Holland: Addison-
Wesley, 1995.

[14] P. Coad, "Object-oriented Patterns," Commun ACM, vol. 35, pp. 152-
159, sep, 1992.

[15] R. C. Martin, "Design principles and design patterns," .
[16] M. T. Khorshed, A. B. M. S. Ali and S. A. Wasimi, "Monitoring

insiders activities in cloud computing using rule based learning," in
Trust, Security and Privacy in Computing and Communications
(TrustCom), 2011 IEEE 10th International Conference on, 2011, pp.
757-764.

[17] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin and I. Stoica, "A view of
cloud computing," Commun ACM, vol. 53, pp. 50-58, 2010.

[18] B. Wilder, Cloud Architecture Patterns. O'Reilly, 2012.
[19] J. W. Creswell, Research Design: Qualitative, Quantitative, and Mixed

Methods Approaches. London: Sage, 2002.
[20] R. K. Yin, Applications of Case Study Research. Thousand Oaks, CA:

Sage, 2003.
[21] C. Cassell and G. Symon, Essential Guide to Qualitative Methods in

Organizational Research. Sage, 2004.
[22] S. Sarker and A. S. Lee, "Using a positivist case research methodology

to test a theory about IT-enabled business process redesign," in
Proceedings of the International Conference on Information Systems,
Helsinki, Finland, 1998, pp. 237-252.

[23] (12/02/2015). LoadUI - The Home of Load Testing | Open Source
Load Testing Tool [Web testing, Server monitoring]. Available:
http://www.loadui.org/

[24] C. Bezemer and A. Zaidman, "Challenges of reengineering into multi-
tenant SaaS applications," Delft University of Technology, Software
Engineering Research Group, 2010.

[25] L. Bass, P. Clements and R. Kazman, Software Architecture in
Practice. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc, 2013.

[26] Amazon Web Services, Cloud Computing: Compute, Storage,
Database Available: http://aws.amazon.com/

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

