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Abstract—The extended cumulative exposure model (ECEM)
includes features of the cumulative exposure model (CEM) and
the memoryless model (MM). These often used to express the
failure probability model in step-stress accelerated life test
(SSALT). The CEM is widely accepted in reliability fields
because accumulation of fatigue is considered to be reason-
able. The MM is also used in electrical engineering because
accumulation of fatigue is not observed in some cases. The
ECEM includes features of both models. However, this model
is sometimes difficult to estimate their parameters. We propose
here a modulated ECEM model based on the time-scale. A
simulation study supports the applicability of the proposed
model.

Index Terms—step-stress accelerated life test, cumulative
exposure model, memoryless model, extended cumulative ex-
posure model, time-scale.

I. INTRODUCTION

IN past decades, accelerated life testing (ALT) is one of
the most useful methods to find the lifetime of industrial

materials (e.g., electrical insulation) in short time [1]. Using
failure data from ALT, we can estimate reliability of items
such as mean lifetime and some quantile of the lifetime
distribution at the service stress. For example, when the
major factor of the deterioration of the insulation is the
electrical stress, the power law,

meantime = K(v − vth)
−n (1)

has been empirically used to estimate the lifetime of the
insulation at the service stress, as shown in Figure 1. Here,
K is a constant parameter, n is the degradation rate, v is the
electrical stress, and vth is the threshold stress below which
the failures will not occur [2].

0

30000

60000

90000

7.5 10.0 12.5 15.0
voltage

lif
et
im
e

Fig. 1. The Power Law
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A Weibull distribution is often used for the reliability
distribution in the power law model. Then, a Weibull power
law [1] with the threshold stress can be assumed [3]:

F (t; vi) = 1− exp
{
−
(
K−1(vi − vth)

nt
)β}

. (2)

Here, t is the time to failure, vi is the applied stress at level
i, and β is the shape parameter in the Weibull distribution.
We can obtain these parameters using maximum likelihood
estimation method. If the failure data from ALT is the type
II censored data, the likelihood function is expressed as,

L =
∏

i,j

f(ti(j); vi)
δi(j) ×

{
1− F (ti(j); vi)

}1−δi(j)
, (3)

where, f is a pdf of F , i(j) denotes that sample j is broken
at level i, and δi(j) is a indicator function.

To accelerate ALT much faster, step-stress accelerated life
testing (SSALT) is considered to be a special case of ALT. In
SSALT, the stress levels are increased during the test period
in a specified discrete sequence [4], i.e. the step-stress test
as shown in Figure 2.

The first report to use the maximum likelihood estimation
method to SSALT combined with the Weibull power law
was made Nelson [5], where the cumulative exposure model
(CEM) is also proposed. The CEM is often used to express
the failure probability models and is widely accepted in
reliability fields because accumulation of fatigue to each
stress level is considered to be reasonable.

In electrical insulation tests, however, another model is
sometimes referred to. That is, the accumulation of fatigue
is assumed to vanish each time the applied stress is reduced
to zero. This indicates that the insulation materials possess
a self-restoring feature when a rest time is given between
the consecutive stress imposed. This model is called the
memoryless model (MM) [6].

Hirose and Sakumura [6] proposed the extended cumu-
lative exposure model (ECEM), which includes features
of the CEM and the MM simultaneously. When there is
accumulation of fatigue, the weight on the CEM may be
large; however, when no accumulation of fatigue occurs, the
weight on the MM may be large.

The fact that the ECEM includes the CEM and the MM
deserves special emphasis, but this model is difficult for
estimating for parameters owing to recursive calculations.
Thus, we proposed an another modulated ECEM model. We
assume vanishing of the fatigue accumulation as returning
the imposed time.

II. STEP-STRESS TEST

The step-stress test, also called the step-up voltage test, is
discribed as follows. 1) A stress v1 = ∆v is imposed on the
insulation for time t1. 2) If the insulation is not broken during
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Fig. 2. Step-Stress Test

that period, then v2 = v1+∆v is loaded. 3) This procedure is
repeated until the insulation is broken, as shown in Figure 2.
4) The resultant breakdown voltage is recorded as vi when it
fails, during that stress loading period between vi and vi+1.

III. PROPOSED MODULATED EXTENDED CUMULATIVE
EXPOSURE MODEL BASED ON TIME-SCALE CHANGING

We briefly review the cumulative exposure model (CEM),
the memoryless model (MM), and the extended cumulative
exposure model (ECEM). Then, we propose an another
modulated ECEM that would be resulted in time reducing.
In this section, we assume the power law under the stress
level vi be expressed as Equation (1).

A. Cumulative Exposure Model, CEM

The CEM [5] connects the cumulative distribution func-
tions by transforming the stress loading durations recursively.
For example, at the very first step, we assume,

F2(s1) = F1(t1). (4)

This means that the fatigue accumulation, F1(t1), succeeds
the next stress imposed. Then, s1 is determined by

s1 = (t1 − t0)

(
v1 − vth
v2 − vth

)n

. (5)

In general, Fi(si−1) and si−1 are

Fi(si−1) = Fi−1(∆ti−1 + si−2), (6)

si−1 = ( ∆ti−1 + si−2)

(
vi−1 − vth
vi − vth

)n

, (7)

where, ∆ti expresses the time duration ti − ti−1 at a
constant stress application vi. Thus, a consistent continuous
cumulative distribution function (CDF) is defined as,

G(t) = 1− exp
{
−ε(t)β

}
, (8)

ε(t) = K−1
[
(vi − vth)

n(t− ti−1) +
i−1∑

j=1

{(vj − vth)
n∆tj}

]
. (9)

This probability model will be shown in Figure 3.

B. Memoryless Model (MM)
We assume that all the fatigue accumulations vanish ev-

erytime the applied stress is reduced to zero. This indicates
that the insulation materials reveal a self-restoring feature
when a rest time is given between the consecutive stress
imposed. This is called the memoryless model (MM) here.
Considering that all the fatigue accumulations vanish when
the applied stress is reduced to zero, the memoryless model
is exactly the same model as that presented in Equation (2)
after all.

C. Extended Cumulative Exposure Model (ECEM)
The extended cumulative exposure model (ECEM) is

assumed partial fatigue accumulation instead of full fatigue
accumulation as shown in Equation (10); the rate α expresses
the fatigue accumulation rate. For example, at the first step,

F2(s1) = αF1(t1), (0 ≤ α ≤ 1). (10)

This means that some fraction, (1 − α)F1(t1), will vanish,
and that the remaining fatigue accumulation, αF1(t1), will
succeed the next stress imposed. Then, s1 is determined by

s1 = K
[− log{1− αF1(t1)}]1/β

(v2 − vth)n
. (11)

In general, Fi(si−1) and si−1 become

Fi(si−1) = αFi−1(∆ti−1 + si−2), (12)

si−1 = K
[− log{1− αFi−1(∆ti−1 + si−2)}]

1
β

(vi − vth)n
,(13)

and the corresponding continuous CDF is calculated recur-
sively,

G(t) = 1− exp(−ε(t)β), (14)
ε(t) = [K−1(vi − vth)

n(t− ti−1) +

(− log{1− αFi−1(∆ti−1 + si−2)})
1
β ]. (15)

This probability model will be shown in Figure 4.
We can see that this model is an extension of the CEM

and the MM. When α = 0, the model is reduced to the
MM. When α = 1, the model is reduced to the CEM. Thus,
this model includes the CEM and the MM together. When
0 < α < 1, we can control the partial fatigue accumulation
by a constant α.

D. Modulated Extended Cumulative Exposure Model
Here, we propose the modulated ECEM based on time

scale changing. We consider that vanishings of the fatigue
accumulations are defined as the imposed time reversing. The
rate γ expresses the imposed time rate. For example, at the
very first step, we assume,

F2(s1) = F1(γt1), (0 ≤ γ ≤ 1). (16)

The above Equation (16) means that the imposed time will
be t1 − (1− γ)t1 back to the time points (1− γ)t1 and that
the fatigue accumulation corresponding to the imposed time
F1(γt1) is taken over to the next stress imposed. Then, s1
is determined by

s1 = γt1

(
v1 − vth
v2 − vth

)n

, (17)
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Fig. 3. Cumulative exposure model (CEM); left is PDF F (t) and right is CDF G(t)
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Fig. 4. Extended Cumulative Exposure Model (ECEM) at α = 0.8; left is PDF F (t) and right is CDF G(t)

and the corresponding continuous CDF becomes

G(t) = F2(t− t1 + s1)

= 1− exp
[
−
{
K−1

[
(v2 − vth)

n(t− t1) +

γ(v1 − vth)
n∆t1

]}β]
, (18)

where, ∆ti expresses the time duration ti−ti−1 at a constant
stress application vi. In general, Fi(si−1), and si−1 become

Fi(si−1) = Fi−1(γ(∆ti−1 + si−2)), (19)

si−1 =
i−1∑

j=1

γj∆ti−j

(
vi−j − vth
vi − vth

)n

. (20)

The corresponding continuous CDF is

G(t) = Fi(t− ti−1 + si−1)

= 1− exp[−ε(t)β ] (21)

ε(t) = K−1

[
(vi − vth)

n(t− ti−1) +

i−1∑

j=1

γj(vi−j − vth)
n∆ti−j

]
. (22)

Here, for numerical stability in computation, we transformed
K−1 = kn. Then Equation (22) becomes

ε(t) =

[
{k(vi − vth)}n(t− ti−1) +

i−1∑

j=1

γj{k(vi−j − vth)}n∆ti−j

]
. (23)

This probability model will be shown in Figure 5.
We can see that this model is another extension of the

CEM and the MM as the ECEM is. When γ = 0, the model is
equivalent to the MM, that is, Weibull distribution with power
law, Equation (2). When γ = 1, the model is equivalent to
the CEM. It is clear from the Equation (2), (8), (9) (21)
and (22). Thus, this model includes the CEM and the MM
together like the ECEM.

IV. SIMULATION STUDY

To check if we can estimate the parameters well, we
perform a simulation study. The simulation condition is
vth = 0, n = 10, K = 1/(0.632122 × 2010), and
β = 0.5, 1, 1.5, which is a mimicked case in typical solid
electrical insulation [7]. The starting stress is 0 and the stress
time duration to each stress is 1 (unit time). We set three
cases γ = 0, 0.5, 1. The number of items, N , is 200 which
is sufficiently large enough for estimation. The number of
replications in simulation is 10,000 for each case.

The basic statistics (mean, standard deviation and the root
mean square error (RMSE)) for the estimated parameters are
shown in Table 1.

As a typical case, we present Figure 6 which shows the
estimated parameter frequency distributions for γ̂, n̂, and k̂,
and β̂ when γ = 0.5, n = 10, k = K−1/n = 0.05234677,
β = 1.0. From Table 1 and Figure 6, we can see that the
parameters are well estimated.
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Fig. 5. Modulated Extended Cumulative Exposure Model Based On Time Scale Changing at γ = 0.8; left is PDF F (t) and right is CDF G(t)
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Fig. 6. Frequency distributions for estimated parameters in a simulation study. γ = 0.5, n = 10, k = 0.05234677,β = 1.0.

V. DISCUSSION

Our proposed model, called the modulated ECEM, is
similar to the ECEM, but our model has the good property
that the Jacobian and Hessian Matrices can be obtained,
thus, we can use the Newton-Raphson Method for estimating
parameters. Therefore, the calculation speed is much faster.

In this section, we discuss about the relationship to the
fatigue accumulation rate α and the imposed time rate γ.
Now, we assume that Equation (10) and Equation (16) is
equal, that is,

αF (t1) = F (γt1)

= 1− exp[−{(k(v1 − vth))
nγt1}β ]

= 1− exp[−{(k(v1 − vth))
nt1}βγβ ]

= 1− {1− F (t1)}γ
β

.

Therefore,

α = F (t1)
−1
[
1− {1− F (t1)}γ

β
]
. (24)

Otherwise,

γ =

[
log(1− αF (t1))

log(1− F (t1))

]1/β
(25)

We can confirm from Equation (24) and (25); if γ = 1, then
α = 1 and if γ = 0, then α = 0.

VI. CONCLUSION

Failure data obtained from ALT are used to estimate
reliability of items. In this paper, we have dealt with the
case where the stress is discretely (stepwise) increases, i.e.,
the step-stress test. The cumulative exposure model (CEM)
is often used to express the failure probability model in step-
up accelerated life test. Contrary to this, the memoryless
model (MM) is also used in electrical engineering because
accumulation of fatigue is not observed in some cases. In
general, the extended cumulative exposure model (ECEM)
includes features of both models. The CDF of ECEM is
defined recursively, thus, parameter estimation is difficult.

In this paper, we have proposed a new model, the another
modulated extended cumulative exposure model based on
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TABLE I
BASIC STATISTICS FOR THE ESTIMATED PARAMETERS IN SIMULATION

STUDY.

β γ γ̂ n̂ k̂ β̂
1 0 mean 1.06e-05 10.1 0.0524 0.997

sd 3.64e-07 0.521 0.000442 0.0557
rmse 7.18e-07 0.525 0.000445 0.0558

0.5 mean 0.529 10 0.0522 0.989
sd 0.0195 0.41 0.000338 0.045

rmse 0.0352 0.413 0.000373 0.0463
1 mean 0.949 10.1 0.0554 0.949

sd 0.0296 0.264 0.00128 0.0474
rmse 0.0587 0.286 0.00335 0.0694

0.5 0 mean 1.06e-05 9.94 0.0525 0.505
sd 3.53e-07 0.547 0.000893 0.0265

rmse 7.35e-07 0.55 0.000903 0.0271
0.5 mean 0.549 9.92 0.0522 0.5

sd 0.0441 0.48 0.000993 0.0235
rmse 0.066 0.487 0.001 0.0235

1 mean 0.964 10 0.0551 0.504
sd 0.0259 0.307 0.00114 0.0264

rmse 0.0445 0.307 0.00302 0.0266
1.5 0 mean 1.06e-05 10.1 0.0524 1.49

sd 4.01e-07 0.501 0.000284 0.0828
rmse 7.09e-07 0.509 0.000285 0.0834

0.5 mean 0.521 10.1 0.0522 1.47
sd 0.0178 0.324 0.000225 0.0688

rmse 0.0279 0.341 0.000249 0.074
1 mean 0.944 10.2 0.0557 1.36

sd 0.0303 0.257 0.00123 0.0662
rmse 0.0634 0.3 0.00353 0.156

The upper values are presented as mean, the middle as standard
deviation, and the lower as root mean squared error (RMSE).

time scale changing. This model is similar to the ECEM, but
we can obtain Jacobian and Hessian matrices for parameter
estimation easily. To investigate whether we can estimate the
parameters well, we have conducted a simulation study, and
we have successfully obtained the reasonable parameters. A
simulation study supports the validity of the proposed model.

APPENDIX
PARAMETER ESTIMATION

Figure 7 shows a profile log-likelihood parameterized by
four parameter in the modulated ECEM. By the figure, the
optimum point can be found. In searching for the optimum
point of the log-likelihood function, it is necessary to use
iterative methods because of its nonlinearity. Optimization
schemes without derivatives are many proposed, but the
Newton-Raphson method is finally indispensable for prob-
lems appeared in this paper. Because, the likelihood function
is extraordinary flat.

A. Likelihood Function

Here, N is the sample size, and i(j) denotes that sample
j is broken at level i. To obtain the parameters, we pursue
the maximizer of the parameters in the likelihood function,

L =
N∏

j=1

g(ti(j))
δi(j) × {1−G(tT )}1−δi(j) , (26)

when time of breakdown is continuously observed or unob-
served by censoring to the right (type II); in the latter case, tT
is the truncation time. When we only observe the number of
failures at each stress level, the likelihood function becomes

−38
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Fig. 7. Profile log-likelihood function for the modulated ECEM; model
parameters are γ = 0.8, n = 10, k = 0.05234677, and β = 1, the
sample size N = 50, and condition values ∆t = 1, ∆v = 0.05, and
vth = 0

to

L =
N∏

j=1

[
G(ti(j))−G(ti(j)−1)

]
, (27)

which provides the case for grouped data. Furthermore, if
the truncation time tT (j) is provided with r failures, the
likelihood function is

L =
N∏

j=1

[
G(ti(j))−G(ti(j)−1)

]
/G(tT (j)), (28)

In this paper, we deal with data from step-stress test for
Equation (27).

B. The 1st and 2nd Derivatives

We denote Equation (27) as follows,

L =
N∏

j=1

[
G(ti(j))−G(ti(j)−1)

]

=
N∏

j=1

[
exp{−ε(ti(j)−1)

β}− exp{−ε(ti(j))
β}
]

=
N∏

j=1

xj , (29)

then the derivatives of the log-likelihood function are,

∂ logL

∂θ1
=

N∑

j=1

1

xj

∂xj

∂θ1
, (30)

where, θ1 denotes γ, n, k, and β. Note that k = K−1/n.
And,

∂xj

∂θ1
= exp(−εβi(j)−1)

(
−
∂εβi(j)−1

∂θ1

)

− exp(−εβi(j))

(
−
∂εβi(j)
∂θ1

)
, (31)
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where, εi(j) = ε(ti(j)). The second derivatives are,

∂2 logL

∂θ1∂θ2
=

N∑

j=1

∂

∂θ1

(
1

xj

∂xj

∂θ2

)

=
N∑

j=1

{
− 1

x2
j

∂xj

∂θ1

∂xj

∂θ2
+

1

xj

∂2xj

∂θ1∂θ2

}
,(32)

where,

∂2xj

∂θ1∂θ2
= exp(εβi(j)−1)

×
{(

−
∂εβi(j)−1

∂θ1

)(
−
∂εβi(j)−1

∂θ2

)
+

(
−
∂2εβi(j)−1

∂θ1∂θ2

)}

− exp(εβi(j))

×
{(

−
∂εβi(j)
∂θ1

)(
−
∂εβi(j)
∂θ2

)
+

(
−
∂2εβi(j)
∂θ1∂θ2

)}
. (33)

Here, we express εβi(j) and εβi(j)−1 as εβ for simplicity and
its derivatives for parameter θ as follows;

εθ1 =
∂ε

∂θ1
,

εθ1θ2 =
∂2ε

∂θ1∂θ2
,

then, the 1st derivatives are

∂εβ

∂γ
= βεβ−1εγ , (34)

∂εβ

∂n
= βεβ−1εn, (35)

∂εβ

∂k
= βεβ−1εk, (36)

∂εβ

∂β
= εβ log ε, (37)

and the 2nd derivatives are

∂2εβ

∂γ2
= β(β − 1)εβ−2ε2γ + βεβ−1εγγ , (38)

∂2εβ

∂n2
= β(β − 1)εβ−2ε2n + βεβ−1εnn, (39)

∂2εβ

∂k2
= β(β − 1)εβ−2ε2k + βεβ−1εkk, (40)

∂2εβ

∂β2
= εβ {log ε}2 , (41)

∂2εβ

∂γ∂n
= β(β − 1)εβ−2εγεn + βεβ−1εγn, (42)

∂2εβ

∂γ∂k
= β(β − 1)εβ−2εγεk + βεβ−1εγk, (43)

∂2εβ

∂n∂k
= β(β − 1)εβ−2εnεk + βεβ−1εnk, (44)

∂2εβ

∂γ∂β
= εβ−1εγ {1 + β log ε} , (45)

∂2εβ

∂n∂β
= εβ−1εn {1 + β log ε} , (46)

∂2εβ

∂k∂β
= εβ−1εk {1 + β log ε} , (47)

Now, ξij = k(vi−j − vth) and Equation (23), then

ε(ti) =
i−1∑

j=0

[
γjξnij∆ti−j

]
. (48)

Finally, we can obtain the 1st and 2nd derivatives as follows;

εγ =
i−1∑

j=0

[
jγj−1ξnij∆ti−j

]
, (49)

εn =
i−1∑

j=0

[
γjξnij(log ξij)∆ti−j

]
, (50)

εk =
i−1∑

j=0

[
γjnkn−1ξnij∆ti−j

]
, (51)

εγγ =
i−1∑

j=0

[
j(j − 1)γj−2ξnij∆ti−j

]
, (52)

εnn =
i−1∑

j=0

[
γjξnij(log ξij)

2∆ti−j

]
, (53)

εkk =
i−1∑

j=0

[
γjn(n− 1)kn−2ξnij∆ti−j

]
, (54)

εγn =
i−1∑

j=0

[
jγj−1ξnij(log ξij)∆ti−j

]
, (55)

εγk =
i−1∑

j=0

[
jγj−1nkn−1ξnij∆ti−j

]
, (56)

εnk =
i−1∑

j=0

[
γjnkn−1ξnij(log ξij)∆ti−j

+ γjk−1ξnij∆ti−j

]
. (57)

We can obtain the Jacobian and Hessian metrices from
Equation (30)-(57).
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