
 

 
Abstract—Recently, the increase of the transistor density in 

Multiprocessor system-on-chips (MPSoCs) and the constant 
rise of the operating frequency of the processor result in high 
on-chip temperature. The stability and reliability of MPSoCs 
inevitably have been seriously affected. Most thermal 
managements need regional temperature sensing to provide 
judgement, so temperature prediction adopting the thermal 
resistance and thermal capacitance (Thermal RC) model 
becomes an ideal solution to obtain the regional temperature 
conveniently and accurately. In this paper, we proposed a 
predictive thermal model based on the Thermal RC model 
combined with second derivative, which can increase the 
prediction time length to reduce the number of times that the 
module is invoked, and achieve the goal of reducing extra 
overhead. The experiment results demonstrated that, with the 
same margin of prediction error which is 0.6% (about 0.7ºC), 
the proposed predictive thermal model can increase the 
prediction length from 1s to 2.6s. Even during the period of 
0s-1s, the maximum deviation of the relative prediction error 
between the proposed model and the contrastive model is 0.13% 
(about 0.16ºC). 
 

Index Terms—Multiprocessor system-on-chips (MPSoCs), 
Temperature, Predictive Thermal Model. 
 

I. INTRODUCTION 

N recent years, Multiprocessor system-on-chips (MPSoCs) 
have already been employed as the main design of the next 

generation of single-chip processors with the development of 
integrated circuit technology [1]. As a result of the 
insufficiency of the traditional global interconnection, the 
design of MPSoCs using Network-on-Chip (NoC) structure 
has emerged for its capability to provide larger 
interconnection bandwidth to achieve higher performance, 
lower network power consumption and higher transistor 
density than the traditional design [2-3]. 

  However, the higher transistor density and the increase 
operating frequency of the processors have caused high 
power consumption, which results in a higher power density 
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in the chip [4-5], which leads Processors to be overheated 
obviously. In addition, leakage power is escalated due to the 
exponential increase of subthreshold current with 
temperature, which in turn increases the temperature [6]. 
High temperature leads to several thermal issues. Increasing 
power density and temperature affect circuit reliability (via 
negative bias temperature instability, electro-migration, 
thermal cycling, etc), futher more, interconnect delay 
increases by about 5% for every 10ºC rise in temperature [7], 
power and energy consumption (via increased leakage 
power), and system cost (via increased cooling and 
packaging cost) [8]. In extreme cases, routing units may 
cause functionality and reliability errors, and lead to system 
failure. In addition, the imbalance of heat distribution which 
is caused by different workloads between areas of the chip 
can result in unsynchronized data transmission speed 
between resource nodes, leading to instantaneous errors. 
Finally, the longevity of the device is shortened gradually 
with the increase of temperature. Thus, it is important to 
model processor temperature in an accurate way, so as to deal 
with thermal issues. 

  Several methods from different perspectives have been 
proposed to realize effective optimization of heat dissipation 
management (via the optimal floor planning [9-10], 
thermal-aware task allocation [11-12], thermal-aware task 
scheduling [13-14] and the optimal thermal management 
polices [15], etc). However, these thermal managements have 
to be based on the regional temperature sensing. There are 
two main methods to obtain the regional temperature, such as 
the factual measurement and temperature prediction. Since 
the slow time-varying characteristic of temperature and the 
hysteresis of the factual measurements, the system cannot 
transfer a lot of heat in a short time period when the 
measurement exceeds the security threshold. Thus, high 
temperature will rise for a substantial period of time [16]. In 
contrast, the prediction for regional temperature is necessary, 
because it can predict the time point at high temperature, 
thereby the managements can make corresponding strategies 
to decrease the temperature in advance. 

  There have two main methods on temperature prediction 
to achieve the temperature accurately, i.e., software 
methodologies and hardware methodologies. Software 
methodologies using neural network algorithm establish the 
models, which can predict accurately the temperature trends 
[17-19]. However, the forecast accuracy of these models can 
be improved by the repeated training, leading to high 
complexity of the calculation and analysis. It cannot adapt to 
the demands for quickly and accurately predicting the 
temperature with the least time and cost. On the other hand, 
the existing hardware methodologies are mainly based on the 
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compact thermal model (CTM) to establish predictive 
thermal models [20-21], the parameters in actual operation, 
such as power, time and temperature, can be tied together to 
calculate the prediction temperature. Therefore, the 
temperature can be predicted accurately with lower 
complexity. However, the deviation between the prediction 
and actual temperatures will increase with time increasing. 
As a result, the prediction accuracy is seriously affected when 
the prediction length exceeds the limit. Early studies focus on 
the short-term forecast accuracy, ignoring the tradeoff 
between the prediction time length and the prediction 
accuracy. 

  Because of the shortcomings of the above methods, a 
predictive thermal model based on the thermal resistance and 
thermal capacitance (Thermal RC) model combined with 
second derivative is proposed in this paper. The proposed 
model can increase the prediction time length, and reduce 
extra overhead, because the number of times that the module 
is invoked decreases, meanwhile, the computation 
complexity of the proposed model remains O(1). Our 
experiment results show that, compared with the model using 
first derivative, the proposed method can increase the 
prediction time length from 1s to 2.6s when it keeps certain 
synchronization accuracy, i.e., the margin of error between 
the prediction and actual temperatures is 0.6% (about 0.7ºC). 
Moreover, during the maximum allowable predicted range 
for the model using first derivative, i.e., 0s-1s, the accuracy 
of the proposed model is mostly identical to the other one, 
because of the the maximum error rate between the two 
models is 0.0013 (about 0.16ºC)). 
  The rest of this paper is organized as follows. Section II 
discusses previous related works. Section III expounds the 
motivation of our works. Section IV presents the proposed 
prediction thermal model. In Section V, the modules of the 
temperature prediction unit hardware design are shown. In 
Section VI, the implementation and experimental results are 
shown and discussed. The conclusions are provided in 
Section VII. 

II. MOTIVATION 

Prior works focus on the accuracy of the prediction within 
small which will increase the number of times that the 
predictive model is invoked. Therefore, rapid increase of the 
extra overhead will be seen because the prediction is 
generally computed by the hardware resources. Under the 
promise of high precision, to seek a model with broader 
prediction range is an interesting topic. 

The rise in temperature of the integrated circuit is closely 
related to the regional power density and the transistor 
density. Fourier's Law of heat conduction states that the rate 
of cooling is proportional to the difference temperature 
between the object and the environment [22].Let T0 and T 
denote the initial temperature and the steady state 
temperature, respectively, and [t0-t] as the predicted time 
period. Then, the relationship between T(t) and P(t) can be 
computed as 

  0
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  In this paper, we assume that processors are running with 

average power in a period of time, i.e., P(t)=Pc, where Pc is a 
constant. Therefore, one can have 
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where b=1/RC, it is a processor-specific constant which 
can obtained through the evaluation of the HotSpot software 
in this paper. Detailed descriptions of the temperature 
formula can be found in the literature [22]. 

Since first derivative used in prior work makes the variable 
of the adjacent points as a linear variable which ignores the 
nonlinear characteristics of temperature, the error between 
the prediction and actual value will increase significantly as 
the time increases. Assuming the temperature variables 
during  Δ t, which is the minimum prediction interval 
calculated from first derivative and second derivative, then 
they can  be given as follows, respectively. 
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  It can be observed that the variableΔTFirst(t +Δt) and 
the first terms of the right hand in (4),   are both linear 
functions. However, due to the adjustments made by 

 2
2

2

d T t t
t

dt

 
  ,   ΔTSecond(t +Δt) is non-linear which is 

more accordant with the actual one thanΔTFirst(t +Δt) 
deduced by first derivative in wide intervals. In addition, the 
deviation between the prediction and actual temperatures will 
rise with cumulative numbers of increasing. For comparison 
fairness, the corresponding prediction errors for different 
intervals are shown in Fig.1 with the same prediction time 
length. 

 

Fig. 1 The error curves with three time intervals. 

  In Fig. 1, the prediction errors of the method using 
second derivative are only higher than the corresponding 
errors of the other method, when the prediction time length is 
less than or equal to 3s andΔ t=0.05s, moreover, the 
maximum difference is only 0.0004. With the relatively large 
interval,  eg. Δt=0.1s, orΔt=1s, the prediction errors of the 
method using second derivative are almost the same with 
time increasing, which are close to the minimum that 
achieved by the other method. In contrast, the prediction 
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error of the method using first derivative increasing 
significantly with time increasing in the same period of time 
and the maximum of all the differences between the errors of 
these two methods is 0.015, which is 37.5 times as many as 
0.0004. From consideration, the method combined with 
second derivative can increase the length of the predicted 
time with holding the high accuracy. Therefore, the number 
of times of the predictive thermal module invoked will 
decrease, then, the goal of reducing extra overhead can be 
achieved. Motivated by this observation, we can make 
improvements by using second derivative instead of first 
derivative to deduce the formulas for prediction. The rest of 
this paper introduces this proposed model and confirms its 
validity. 

III. THE PROPOSED PREDICTIVE MODEL 

  In the normal operation, i.e., the operation period when the 
dynamic thermal management (DTM) is not triggered, the 
change of temperature is usually an exhaustive increasing 
trend [21]. We adopt second derivative to deduce the 
relationship between prediction temperature T(t) and time t. 
First, we should get the first derivative of (1), it can be shown 
as 

0( )
0

( )
( ( ) ) .b t tcPdT t

b T t e
dt b

                              (5) 

Then, the second derivative of equation (1) can be 
expressed as 
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which reflects the changing speed of the temperature at the 
current time t that relative to the one at the previous time (t-
Δt). Thereby, the second derivative at time (t+Δt) that is 
relative to the one at the corresponding previous time t can be 
derived from (6) as 
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  Therefore, together with the temperature variable at 
previous time t and the changing speed of the temperature at 
the current time (t+Δt), the temperature variable at time  (t+

Δt) can be expressed as 
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Now, the temperature variable at time  (t+ kΔt) can be 
obtained as 
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where k is a constant represents the thermal prediction 
number of minimum interval. The variables at all time points 
are accumulated to get the total predictive change of the 
temperature between the current time and the prediction time,  
It can be shown as 
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Finally, the temperature at the prediction time  (t+ kΔt) 

can be computed as: 
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(12) 

  It should be noted that when k is determined, the 
computation complexity of (12) is still O(1). Fig. 2 shows the 
prediction temperature results from Eq. 12 with time 
increasing, that interval is 0.01s. Since second derivative can 
describe the variation tendency of the temperature, the range 
of coefficient k can be widened compared with the method 
using first derivative and the predictive value will be more 
accurate in a wide range of time. 

 

Fig. 2 Temperature prediction results from Eq. 12. 

IV.  HARDWARE IMPLEMENTATION 

     To realize temperature prediction units, hardware is 
adopted by using modular programming, which can avoid 
the effect of the predictive temperature computation on the 
application workload. The relation between the task 
workload, time, the flow and the predictive temperature 
can be analyzed in detail through these hardware modules. 
These modules are embedded in the routing unit of each 
NoC node. Main components of the prediction 
temperature unit as shown in Fig. 3. 

   The Data flow enter into the routing unit through router 
ports or local ports, at the same time, the data traffic v can be 
counted for calculating the power consumption of the 
routing, i.e., Prouter, and the performance data which is usually 
measured by the processor's internal performance counter 
can be extracted for computing the processor's power  
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Fig. 3 The temperature prediction unit structural sketch map. 

 

consumption, i.e., Pprocessor. The power consumption of each 
node is associated with above two parameters. Therefore, in 
the power consumption detection module, the power 
consumption of the routing can be expressed as: 

  ,horizontal router
router bit bitP P d P v                      (13) 

where horizontal
bitP  represents the power consumption of the 

link between horizontally adjacent routers when 
transmitting one bit, and d is the length of the link between 

adjacent routers, while router
bitP  denotes the power 

consumption of the router when transmitting one bit. 
Finally, the current power consumption can be computed as: 

  
0( ) .processor routerP t P P                                        (14) 

  The temperature monitoring module is used for sensing the 
temperature of the current nodes, i.e., T(t0). Through (12) in 
Section III, these above information of power and 
temperature can be used in temperature prediction 
computation module to derive the predictive temperature. 

  According to the prediction temperature, routing controller 
can select an optimal transmission path, and then cross 
switch will send data to the selected output port. 

V.  EXPERIMENTS RESULTS 

A. Experimental Environment  

  In this experiment, we conduct our experiments by using 
HotSpot 5.0 to demonstrate the effectiveness of our 
inference. HotSpot makes use of the duality that exists 
between the electrical and thermal properties of materials to 
model processor temperature, which is close to the actual 
value [23]. Therefore, the temperature achieved by HotSpot 
5.0 is regarded as the actual temperature in this experiment. 
In order to compare the simulated results and the predictive 
temperature for simplicity, we divide the plane into 16 
blocks averagely, i.e., 4 4  2D Mesh, and make the 
assumption that power of all the blocks are equal. As the 
symmetry of the floorplan layout and the consistency of the 
power, these blocks have three symmetrical sections, as 
shown in Fig. 4. Therefore, only three blocks are chosen for 
the experiment, i.e., L2, L2-left and Bpred0. Various blocks 
are in different places, so the parameter b in (13) is different 

for each block which is chosen above [6]. By analyzing the 
actual data from HotSpot 5.0, in this work, we choose 
different b for above three blocks, i.e., bL2=0.21, bL2-left=0.18 
and bBpred0=0.25. 

 

Fig. 4 4 4  2D Mesh Floorplan layout. 

B. Experimental Results and Discussion 

  1) Prediction Window Length: We set the time interval 
as 0.1s and relax the time width to 3s. In addition, to 
discover the trends of temperature rise clearly and show 
the consistency of the trends, we intentionally select 
larger power levels which are 45W, 55W, 60W and 75W, 
respectively. Fig. 5 shows the temperature curves of the 
three blocks with these four different power levels. We 
also rebuilt the model deduced by first derivative [21] in 
this work to make comparison. The curves of each blocks 
in Fig. 5 are achieved by three different models, i.e., the 
model deduced by first derivative, the proposed model 
deduced by second derivative and the HotSpot software. 
And the curves can be simplified as FCurve, SCurve and 
ACurve which is achieved from the HotSpot for the 
above models, respectively. It can be seen from the figure 
that the deviation between the SCurve and the ACure is 
much smaller compared with the FCure with time 
increasing, which is due to the model deduced by second 
derivation takes nonlinear characteristic of temperature 
into consideration. 

To find the optimal scopes for the FCurve and the 
SCurve, we calculate the prediction errors between the 
prediction and actual temperature, and set a  
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(a) P=45W                                     (b) P=55W 

 

(c) P=60W                                     (d) P=75W 

Fig. 5 Temperature prediction results achieved by three different methods with four power levels and the time intervals are 0.1s 

 

(a) P=45W                                      (b) P=55W 

 

(c) P=60W                                    (d) P=75W 

Fig. 6 Temperature prediction results achieved by three different methods with four power levels and the time intervals are 0.01s. 

. 
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distinguishing value, i.e., 0.6% (about 0.7ºC). Moreover, 
all errors of each block are less than 0.6% in the optimal 
scope with the same power gradient. Then, we average these 
two sets of data respectively to achieve the final prediction 
windows, i.e., the prediction window of the model deduced 
by first derivative is [0s-1s], and that of the proposed model 
is [0s-2.6s]. It is obvious that the proposed model can 
increase the prediction time length at the same precision. 

2) Prediction Accuracy: To further validate the accuracy 
of the proposed model in this paper, we modify the time 
interval to 0.01s and reduce the time length to 1s which is the 
prediction window length for the model deduced by first 
derivative. Fig. 6 shows the temperature curves of the three 
blocks within 1s, in which have 100 data points. The curves 
of each block are achieved by three different models as 
mentioned in Fig. 5. It can be seen from the figure that all the 
curves of the prediction temperature coincide well with the 
actual results. 

In order to show the differences between these two 
models clearly, we also compare the errors between the 
prediction and actual temperatures of the FCurve with the 
errors of the SCurve. The results obtained through two 
models have few discrepancies within 1s, and the maximum 
difference of the error between these two models is about 
0.0013 (about 0.16 ºC) at the same conditions, which is 
small enough to be negligible. Therefore, it can be 
concluded that, the accuracy of the proposed model keeps 
consistent with that of the model deduced by first derivative 
during this period. 

VI. CONCLUSION 

  In this paper, from broadening the prediction time 
length prospective, we proposed a predictive thermal model 
based on the Thermal RC model combined with second 
derivative, which can describe the variation tendency of the 
temperature more clearly. We demonstrated that the 
proposed predictive thermal model provides good 
performance, which can increase the prediction range 
obviously with holding high accuracy. The strategy of 
information sharing based on multicast transmission will be 
investigated in our future work to realize the temperature 
information highly effective transmission. 
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