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Abstract—We study a new class of numerical solutions for the
Dirac equation, considering electric potentials depending upon
one spacial variable, based on the numerical approaching of
the Taylor series in formal powers, solutions of a biquaternionic
Vekua equation. Furthermore, employing the solutions of the
Dirac equation, we plot the probability functions that describe
the dynamics of the quantum particles within a circular domain,
enhancing a common pattern detected for all the researched
cases.

Index Terms—Biquaternions, Dirac equation, Vekua equa-
tion.

I. INTRODUCTION

THE study of the massive Dirac equation with different
kinds of potentials is fundamental in many branches

of Theoretical and Experimental Physics, Engineering and
Applied Mathematics. As an example, its foundations allow a
better understanding of many processes in Nuclear Medicine
Radiation Dosimetry, as posed in [9], a branch of science
that virtually employs the convergence of the four areas
mentioned before, among others. This shall illustrate the
importance of new areas of Applied Mathematics that allow
the study of the Dirac equation from novel points of view, as
the modern elements of the pseudoanalytic function theory
do [6].

More precisely, this work recapitulates the results pre-
sented in [10] and [11], where it the massive Dirac equation
was analyzed with an arbitrary electric potential depending
upon one spacial variable. Employing a technique that once
rewritten in biquaternionic form, allowed the decoupling of
the Dirac equation into a pair of partial differential equations.
One of them can be solved immediately, and the other one
is a special kind of a biquaternionic Vekua equation, as
stated in [11], that is indeed an independent rediscovering of
a particular class of the two-dimensional bicomplex Vekua
equations studied for more general cases in [6], and that in
these pages will be researched in more detail by considering
four specific classes of electric potentials.

The main objective is to extend the analysis of the new
classes of solutions, upcoming from the representation of
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the general solution for the biquaternionic Vekua equation in
terms of the so-called Taylor series in formal powers [1], upto
the approaching of the probability functions obtained from
the corresponding solutions for the massive Dirac equation.

Additionally, as the reader will notice, the exact rep-
resentations of these probability functions are in general
inaccessible. Thus we also present a numerical method, based
upon a variation of the techniques exposed in [2], that will
allow the construction of the probability functions, providing
enough material for illustrating a particular behavior detected
in several classes of the employed electric potentials.

The conclusions enhance the necessity of a deeper research
in order to determine if such behavior is inherent to the
massive Dirac equation with electric potentials depending
upon only one spacial variable, or if it is exclusively attached
to those probability functions constructed by means of the
techniques used here.

II. PRELIMINARIES: ELEMENTS OF QUATERNIONIC
ANALYSIS

As explained in [7], we shall consider the set of biquater-
nionic functions H(C), where the elements q ∈ H(C) posses
the form:

q =
3∑

n=0

qnen, (1)

being qn complex-valued functions: qn = Re qn + iIm qn, i
the standard imaginary unit i2 = −1, e0 = 1, and {en}3n=1

the quaternionic units, which fulfill the relations:

e1e2 = −e2e1 = e3,

e2e3 = −e3e2 = e1,

e3e1 = −e1e3 = e2,

e2
1 = e2

2 = e2
3 = −1. (2)

We shall appoint that the imaginary unit i, by definition, will
commute with the quaternionic units: ien = eni. A comple-
mentary representation for the biquaternions q ∈ H(C) that
will be useful in this work is:

q = Sc q + Vec q, (3)

where
Sc q = q0,

whereas

Vec q =
3∑

n=1

qnen.
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Notice relations (2) indicate that, in general, the multi-
plication between two biquaternions p, q ∈ H(C) is not
commutative. Therefore we will introduce a notation for
the multiplication by the right-hand side of q by p in the
following form:

Mpq = q · p.

Besides, we shall consider the partial differential operator
D, known as the Moisil-Theodoresco operator, as well as the
Dirac operator, that is introduced in the form:

D = e1∂1 + e2∂2 + e3∂3.

Here we employ the abbreviated notation ∂n = ∂
∂xn

, for each
n = 1, 2, 3. Notice this operator is defined in the space of at
least once-derivable biquaternions with respect to the spacial
variables x1, x2, and x3.

A. A special class of biquaternionic partial differential equa-
tions.

As it will be established further, the classical Dirac equa-
tion for massive particles under the influence of an arbi-
trary electric potential, depending upon one spatial variable,
is closely related with a partial differential biquaternionic
equation of the form:(

D −Mge1+me2
)
f = 0, (4)

More precisely, m is an purely scalar real constant m =
Sc Re m, whereas g is a purely scalar imaginary function
depending upon the variable x1: g = iSc Im g (x1). In
general, f ∈ H(C) is a full biquaternionic function.

There have been several works dedicated to approximate
exact solutions for this equation, utilizing elements of the
modern pseudoanalytic functions theory (see [6], [8] and
more recently [10] and [11]). Here we will employ a variation
of the techniques presented in the cited works, in order to
obtain different classes of solutions that will be numerically
approached.

Thus, as proposed first in [8], let us consider:

f = αQ, (5)

where α is a purely scalar function α = Sc α, and Q ∈ H(C)
is a full biquaternion, in the sense of the notation (3).
Expanding the differential equation (4) according to the
representation (5) of f , we will have that:

Dα ·Q+ αDQ− αQge1 − αQme2 = 0. (6)

Now, as posed in [11], let us assume that the following
relations hold:

DQ−Qge1 = 0, (7)

Dα ·Q− αQme2 = 0. (8)

If additionally we assume that Q is not a zero divisor (see [7]
for a detailed explanation), this is, that there exist a Q−1 ∈
H(C) such that: Q ·Q−1 = 1, and that:

Q = q1e1 + q3e3, (9)

the equations (7) and (8) will reach a pair of decoupled partial
differential equations:

DQ−Qge1 = 0, (10)

and
∂1α+ gα = 0. (11)

We can immediately verify that:

α = Ke−mx2 , (12)

where K is a real constant, is the general solution of (11). On
the other hand, as it was explained in detail [11], equation
(10) is fully equivalent to a special kind of biquaternionic
Vekua equation [6] with the form:

∂zW −
∂zp

p
W = 0, (13)

where
∂z = ∂1 + e1∂3,

W = q1 − q3e1, W = q1 + q3e1 (14)

and
p = e

R
gdx1 . (15)

The extension of the pseudoanalytic function theory posed
by L. Bers in [1] that allows the construction of the gen-
eral solution for the biquaternionic Vekua equation (13),
named in honor I. Vekua [12], can be found in the work
of V. Kravchenko [6]. Indeed, the equation (13) presented
in [11], constitutes a rediscovering of a special class of
two-dimensional biquaternionic Dirac equations, previously
studied in [6].

In this sense, the contribution of this work is the prelimi-
nary analysis of the probability distributions rising up from
the solutions of the Dirac equation, since, as the reader shall
verify, most part of them are only accessible by means of
the numerical analysis, because the integral expressions that
will be further displayed can not be solved in exact form.
As a matter of fact, these pages intend to start a preliminary
discussion about such probability distributions, for the mains
of most works cited above might not directly allow to discuss
this topic.

Therefore, let us review some of the propositions presented
by V. Kravchenko in [6], adapted by the authors on behalf
of the results that shall be exposed, that will allow the
construction of the general solution of (13) in terms of the
so-called Taylor series in formal powers [1]. The general
solution of (13) accepts the expansion:

W =
∞∑

n=0

Z
(n)
0 (an, z0; z) (16)

where an are biquaternionic constants of the form:

an = a′n + a′′ne1,

being

a′n = Re a′n + i Im a′n; a′′n = Re a′′n + i Im a′′n.

Also, z is a purely real quaternionic variable:

z = x1 + e1x3;

and z0 is a fixed point in the quaternionic plane. Specifically,
for this work we will consider z0 at the origin z0 = 0.

Moreover, according to [1] and [6], each formal power
Z

(n)
0 (an, z0; z) is a solution of (13), and possesses the

property:

Z
(n)
0 (an, z0; z) = a′Z

(n)
0 (1, z0; z) + a′′Z

(n)
0 (e1, z0; z) ,
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among many others. This implies that, for the purpose of
this work, we can center our attention into the construction
of some elements of the set:{

Z
(n)
0 (1, 0; z) , Z(n)

0 (e1, 0; z)
}∞

n=0
(17)

for everyone of them can be related with a solution of
the Dirac equation in classical form, and in consequence,
to provide a probability distribution for a specific massive
quantum particle.

The formal and complete propositions to approach the
formal powers (17) can be found in [6]. Here for the
sake of briefness we shall present only essential elements
without proofs. We will circumscribe our explanations to the
construction of the elements of the subset:{

Z
(n)
0 (1, 0; z)

}∞
n=0

because, in general, the procedures are identical to those for
constructing the rest of the elements of (17).

First, let us introduce the set of functions:

F0 = p−1, G0 = e1p, F1 = p, G1 = e1p
−1, (18)

where p possesses the form indicated in (15). These shall be
grouped in two pairs: (F0, G0) and (F1, G1), and they shall
be named generating pairs [1][6], since they both fulfill the
condition:

Vec
(
FG
)
6= 0,

where F = Sc F − Vec F . Then we can introduce a
complementary set of functions:

F ∗0 = −e1p
−1, G∗0 = p, F ∗1 = −e1p, G

∗
0 = p−1, (19)

where (F ∗0 , G
∗
0) will be called the adjoint pair of (F0, G0),

as well (F ∗1 , G
∗
1) the adjoint of (F1, G1).

Furthermore, the generating pairs (F0, G0) and (F1, G1)
are embedded into a periodic generating sequence (see [1]
and [6]), with period c = 2. On the light of this, the formal
powers can be constructed as follows:

Z
(0)
0 (1, 0; z) = λF0,

where λ is a constant that warrants λF0(0) = 1. The sub-
sequent formal powers will be determined by the recursive
formulae:

Z
(n+1)
j (1, 0; z) = n Fj Sc

∫
Γ

G∗jZ
(n)
k (1, 0; z) dz+

+n Gj Sc
∫

Γ

F ∗j Z
(n)
k (1, 0; z) dz, (20)

where Γ is a rectifiable curve going from 0 till z, and where
k = 0 if j = 1, as well as k = 1 if j = 0.

III. THE DIRAC EQUATION FOR MASSIVE PARTICLES
UNDER THE INFLUENCE OF AN ELECTRIC POTENTIAL

Consider the Dirac equation in classical form as follows:[
γ0∂t −

3∑
n=1

γn∂n + im+ γ0u(x1)

]
Φ(t, x) = 0, (21)

where m is the mass of the quantum particle, u represents an
arbitrary electric potential depending only upon x1, ∂t = ∂

∂t ,

t is the time variable, and γn, n = 0, 1, 2, 3; are the Pauli-
Dirac matrices:

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ,

γ1 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ,

γ2 =


0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

 ,

γ3 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 .

Let us consider the time-harmonic representation of Φ:
Φ(t, x) = eiωtϕ(x), where ω denotes the energy of the
particle. Then the Dirac equation (21) will turn into:[

iωγ0 −
3∑

n=1

γn∂m + im+ γ0u(x1)

]
ϕ(x) = 0, (22)

Beside, we shall employ the pair of matrix operators A
and A−1, presented in [7]:

A =


0 −1 1 0
i 0 0 −i
−1 0 0 −1

0 i i 0

 ,

A−1 =


0 −i −1 0
−1 0 0 −i

1 0 0 −i
0 i −1 0

 , (23)

because by applying them together with the matrices γn to
the differential operator of the Dirac equation (22), according
to the expression:

Aγ1γ2γ3

[
γ0∂t −

3∑
n=1

γn∂n + im+ γ0u(x1)

]
A−1,

we will obtain a biquaternionic Dirac equation precisely of
the form (4): (

D −Mge1+me2
)
f = 0.

Indeed, here g will represent

g = iu(x1) + iω,

and
f = Aϕ(x).

It should be noted that the employment of A and A−1

will provoke the reflection of the x3-axis when applied [7].
This is:

A−1ϕ(x1, x2, x3)→ f(x1, x2,−x3),

as well
Af(x1, x2, x3)→ ϕ(x1, x2,−x3).
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A. Numerical approaching of the solutions for the quater-
nionic Dirac equation.

When we analyze the solutions uprising from the tech-
niques presented in Section II, positively considering the
fact that u is an arbitrary function, it becomes easy to see
that the parametric integrals of the formulae (20) can not
be solved, in general, in exact form. Therefor we shall em-
ploy a numerical approximation to evaluate these integrals,
and in consequence, to analyze the probability distributions
obtained from the solutions of the Dirac equation.

For this purpose, we will focus our attention into four
kinds of electric potentials:

u = B, B ∈ R, (24)

u = B x1, B ∈ R, (25)

u = B eCx1 , B,C ∈ R, (26)

u = B cos (Cx1) , B,C ∈ R, (27)

Notwithstanding the first of these potentials could reach a
moderate amount of exact solutions for the integral expres-
sions (20), on behalf of briefness we will directly study the
corresponding numerical results.

More precisely, we will approach n = 10 formal powers
Z

(n)
0 (1, 0; z) for every case, assuming that the curves Γ of

(20) are straight lines (radii) with length R = 1, converging
at the (x1, x3)-plane origin, and whose slopes are equally
distributed along the angle interval [0, 2π). In other words,
we will approach the formal powers within the unit circle.

Also, we will consider N = 1000 radii, each one sectioned
into 1000 equal segments, producing P = 1001 points over
which the formal powers are to be analyzed.

Beside, in order to approach a set of P = 1001 values
for each radius, r = 0, 1, ..., 1000; corresponding to the nu-
merical formal powers Z(n)

0 (x1 [r] , x3 [r]); we will employ
a variation of the computational method presented in [2],
whose recursive discrete formulae can be summarized as
follows:

Z
(n+1)
0 (x1 [r + 1] , x3 [r + 1]) =

=
1
2
F0 (x1 [r] , x3 [r]) ·

·Sc G∗0 (x1 [r + 1] , x3 [r + 1]) ·

·Z(n)
1 (x1 [r + 1] , x3 [r + 1]) dz [r] +

+
1
2
F0 (x1 [r] , x3 [r]) ·

·Sc G∗0 (x1 [r] , x3 [r])Z(n)
1 (x1 [r] , x3 [r]) dz [r] +

+
1
2
G0 (x1 [r] , x3 [r]) ·

·Sc F ∗0 (x1 [r + 1] , x3 [r + 1]) ·

·Z(n)
1 (x1 [r + 1] , x3 [r + 1]) dz [r] +

+
1
2
G0 (x1 [r] , x3 [r]) ·

·Sc F ∗0 (x1 [r] , x3 [r])Z(n)
1 (x1 [r] , x3 [r]) dz [r] +

+Z(n+1)
0 (x1 [r] , x3 [r]) ;

where we have that:

x1 [r] =
r

P − 1
cos θ [l] ,

x3 [r] =
r

P − 1
sin θ [l] ,

dz [r] = x1 [r + 1] + x3 [r + 1] e1 − x1 [r]− x3 [r] e1,

being
r = 0, 1, ..., P − 1;

whereas
θ [l] =

l · 2π
N

; l = 0, 1, ..., N − 1.

Once the full procedure is performed, we will posses N×
P = 100100 values for every numerically approached formal
power Z(n)

0 (1, 0; z), n = 0, 1, ..., 10.
Evoking now the relation (14):

W = q1 − q3e1,

where W is a solution of the biquaternionic Vekua equation
(13), we can provide solutions for the biquaternionic Dirac
equation (4) according to the expression (5):

f = αQ = Ke−mx2 (q1e1 + q3e3) ,

where K is an arbitrary real constant, as appointed in (12).
Since each formal power is solution of the Vekua equation
(13), the following expression will hold:

f = Ke−mx2 (q1e1 + q3e3) =

= Ke−mx2

(
e1Sc Z(n)

0 (1, 0; z)− e3Vec Z(n)
0 (1, 0; z)

)
.

Hereafter, it only remains the application of the matrix
transformation A−1 described in (23) to the solutions f ,
in order to obtain solutions for the time-harmonic Dirac
equation (22):

ϕ =


−Sc Z(n)

0 (1, 0;x1,−x3)
Vec Z(n)

0 (1, 0;x1,−x3)
Vec Z(n)

0 (1, 0;x1,−x3)
Sc Z(n)

0 (1, 0;x1,−x3)

Ke−mx2 .

Still, we require an additional calculation in order to
clarify the physical meaning of the solutions of the Dirac
equation, for the Cartesian norm of the vector function ϕ
represents a probabilistic function describing the mechanics
of the quantum particle within a domain (see e.g. [5]).

The methods posed along this work can be directly re-
ferred to a cylindrical domain, but since the dependence of
the x2-variable influences the magnitude of the rest of the
solutions in a very clear form, it should be more convenient
to focus our attention into the behaviour of the remaining
functions within the unit circle. Therefore, we shall now
present a set of illustrations that displays the behaviour of
the probabilistic functions P provided by the relations:

P = ‖Sc Z(n)
0 (1, 0;x1,−x3) ‖2+

+‖Vec Z(n)
0 (1, 0;x1,−x3) ‖2,

where:
‖Sc Z(n)

0 (1, 0;x1,−x3) ‖2 =(
Re Sc Z(n)

0 (1, 0;x1,−x3)
)2

+
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+
(
Im Sc Z(n)

0 (1, 0;x1,−x3)
)2

,

as well as

‖Vec Z(n)
0 (1, 0;x1,−x3) ‖2 =(

Re Vec Z(n)
0 (1, 0;x1,−x3)

)2

+

+
(
Im Vec Z(n)

0 (1, 0;x1,−x3)
)2

.

We must clarify that on behalf of the space we have omit-
ted the full procedure of normalization for the probability
functions P , limiting our plots to a simple scale adjustment
to allow a better comparison between the different cases. All
presented plots correspond to the case when K = 1 and
x2 = 0.

Fig. 1: Probability functions P generated by the formal powers Z1
0 ,

Z4
0 , Z7

0 and Z10
0 when u = 5π and w = 5π.

Fig. 2: Probability functions P generated by the formal powers Z1
0 ,

Z4
0 , Z7

0 and Z10
0 when u = 20 x1 and w = 10π.

From the scope of the shown figures, it becomes evident
that only the first formal power of the cases (24), (25), (26)
and (27) reports, in some sense, a more intricate dynamics
of the probability functions P , for the formal powers with
n > 1 already provoke the clustering of the highest values
of P near the boundary and over the x3-axis. As a matter of
fact, this behavior is already observed for the value n = 2,

Fig. 3: Probability functions P generated by the formal powers Z1
0 ,

Z4
0 , Z7

0 and Z10
0 when u = 10 e10 x1 and w = 10π.

Fig. 4: Probability functions P generated by the formal powers Z1
0 ,

Z4
0 , Z7

0 and Z10
0 when u = −100 cos (10π x1) and w = 10π.

yet we selected to present the graphics of the functions P
corresponding to n = 4, 7 and 10 to better illustrate our
observations.

We need to emphasize that a very similar dynamics are
present when analyzing the probability functions P of the
electric potentials (24), (25), (26) and (27), upcoming from
the formal powers Z(n)

0 (e1, 0; z).

IV. CONCLUSIONS

Considering that an important amount of interesting works
have been published within the last decade, dedicated to
numerically approach formal powers to study a wide variety
of problems in Mathematical Physics (see e.g. [3] and [4]),
it is in order to enhance that this work intends to make a
contribution within the numerical analysis by fully consider-
ing a biquaternionic (also named bicomplex) Vekua equation,
whereas another works are developed studying only complex
Vequa equations. It is also important to remark that we try to
justify a further study of the numerical results, by proposing
a preliminary discussion of their physical meanings.

More precisely, we try to contribute to the study of
the Dirac equation by means of the extended principles of
pseudoanalytic function theory posed by V. Kravchenko in
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[6], from the original works of L. Bers [1] and I. Vekua [12],
based onto the fact that, notwithstanding the biquaternionic
Vekua equation presented in [10] and analyzed in the current
pages is an independent rediscovering of the more general
results posed in [6], the concepts along this work can be
easily integrated in the research line traced by Kravchenko
et al.

At this point, we enhance that the research line is dis-
tinguished by the fine mathematical characterization of the
novel results, but by its very nature, the studies precising
the physical implications of the new concepts, considering
more specific information, remained out of the scope of
most works. This pages shall offer a contribution in this
direction, since explicit kinds of electric potentials were
considered, and the probability functions upcoming from the
new solutions of the Dirac equations were shown.

The main annotation that needs to be settled down is the
clear tendency of the higher values of the probabilistic func-
tions P to remain clustered near to the domain boundary, and
around the x3-axis, independently of the electric potential
u (x1) considered into the calculations, and already from the
very second formal power n = 2.

This fact shows that we need to analyze a wider class
of probability functions P , preferentially obtained with
complete different techniques, in order to understand if
this phenomenon is characteristic of the solutions of the
massive Dirac equation when considering electric potentials
depending upon only one spacial variable, or if it is strictly
related to the results obtained by applying this branch of
the generalized pseudoanalytic function theory to the Dirac
equation.

Independently, it might have been shown that the analysis
of the biquaternonic Vekua equation attached to the massive
Dirac equation, can make positive contributions in Relativis-
tic Quantum Mechanics, and that it could well take the new
results closer to be employed in the applied sciences, e.g
as part of the foundations of Nuclear Medicine Radiation
Dosimetry [9].
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