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Abstract—In this paper, the finite element method is used to 

analyze the characteristics of the water-lubricated thrust 
bearing. The corresponding finite elements are derived from 
the turbulent Reynolds equation and turbulent energy equation 
by variation method and Litz-Galerkin method respectively. 
Based on the finite element model, the pressure field of the 
lubricating film is obtained. The relationship between the pad 
load capacity and pad tilting angle is analyzed. The temperature 
increment of the lubricating film decreases the load capacity of 
the pad. 
 

Index Terms—Hydrodynamic thrust bearing, 
water-lubricated, turbulent Reynolds equation 
 

I. INTRODUCTION 

Thrust bearing is a key component of every large 
hydrogenerator and can also be found in many other 
rotational machineries like pumps, compressors, engines, 
marine propulsion systems etc [1]. The large-scale thrust 
tilting pad bearing which lubricated by water usually used in 
the canned pump or in the boat. For this kind of thrust 
bearing, the rotor spinning velocity is very high and the water 
viscosity is low. The Reynolds number is very high, 
relatively. The lubricating flow in the large-scale thrust 
bearing is highly turbulent [2][3] . Characterization of the 
tilting pad bearings is vital to successful design of high-speed 
rotating machinery. Theoretical models are particularly 
important at the design stage of modern high-speed rotating 
machinery. These models have evolved from full finite 
element numerical solutions that include analysis of the 
lubricating flow to the energy balance in the lubricant film. 
Ettles developed a TEHD analysis of tilting pad bearings. 
The analysis included a generalized Reynolds equation 
solution using the turbulence model of Constantinescu and 
the local calculated Reynolds number to obtain an effective 
viscosity. Ettles considered the transition region for 
turbulence in the lubricating flow to be in the range of 
1100–1400[4][5][6]. In this paper, the finite element method is 
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used to analysis the characteristics of the water-lubricated 
thrust bearing. The corresponding finite elements are derived 
from the turbulent Reynolds equation and turbulent energy 
equation. Based on the finite element model, the pressure 
field is obtained. The relationship between the pad load 
capacity and pad tilting angle is analyzed. The temperature 
field are calculated, the maximum temperature increment can 
be approximately 20℃. By considering the thermal influence 
on the viscosity of the water, the pressure field of the pad is 
recalculated. The high temperature of the film decreases the 
load capacity of the pad. 

II. BASIC EQUATIONS 

A.  Turbulent Reynolds equations  

Reynolds equation is the control equation for 
hydrodynamic lubrication. For small-scale thrust bearing, the 
laminar flow Reynolds equation is suitable. However, for 
thrust bearing with big size and high spinning velocity, the 
Reynolds number in the dynamic lubricating film is very 
high. Under this condition, the pressure distribution and 
energy consumption in the lubricating film are quite different 
from that in the lubricating film with low Reynolds number. 
The turbulent Reynolds equation need to be used in the 
analysis of the large-scale thrust bearing. The turbulent 
coefficients are added in the laminar flow Reynolds equation 
to describe the turbulent effect in the film. Equation 1 is the 
modified turbulent Reynolds equation. 
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where， h is the film thickness，  is the fluid density，

r ， are polar coordinates， P are the film thickness，

 is the viscosity of the lubrication， (rad/s)is the rotor 

spinning velocity. The boundary condition of the Reynolds 
equation: the pressure on the boundary of the pad is zero. 

0.98 1(12 0.0043*Re )rG   ， 0.9 1(12 0.0136*Re )G
  ，

Re
r h 


 。The critical Reynolds number are Re 1500 。 

B.  Turbulent energy equation  

Equation 2 is the energy equation which are derived 

from the fluid energy conservation law. The temperature 

distribution can be obtained by solving the energy equation. 

Considering the turbulent effect in the lubricating film, the 

turbulent coefficients are added in the energy equation.  
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0.8551 0.0023*Rec   , 0.912 0.0136*Rexk   . c is bigger than 

one, which means the energy generation is higher by 

considering the turbulent effect.  

C. oil viscosity 

The oil viscosity is known at some specified 
temperature. The Lagrange interpolation method is used to 
get the oil viscosity at any temperature.  
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D. film thickness 

The film thickness of one pad is presented by equation 

4.  
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Where, 
ijh is film thickness， 0h is the film thickness in the 

middle of the pad. m is the circumferential tilt angle. 
ijD is 

the displacement induced by the pad deformation due to the 
force load and thermal expansion. 0R is the average radius. 

ijW is the thrust collar displacement. 

III. FINITE ELEMENT MODEL  

A. Interpolating function and coordinate transformation 

Eight nodes isoparametric element is used in the 
analysis. Figure 1 shows the element and the coordinate 
transformation. 

    
Figure 1 Eight nodes isoparametric element 

The parameters at any point in the element can be 
expressed by the parameters at the eight nodes in the element 
and the interpolating function, such as the pressure, 
temperature, viscosity and the film thickness.  
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Where i denotes the i th node. iN is the interpolating 

function, which is the function of  , .  

The transformation of the local coordinates and the global 
coordinates is: 
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Where  J is the JACOB matrix. 

B. Variation of the Reynolds function 

The Reynolds function’s variation is  
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where A is the integration area. In the element, (P)eJ is the 

variation in the element and has the same mathematical form 
with (P)J . According to equation 8, in the element, the 

pressure 8
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 , then equation (P)eJ  can be obtained. 

According to the variation principle, the solution of Reynolds 
equation can make the variation to reach the maximum value. 

(P)eJ is the function of the pressure (i 1,2,...,8)iP  on the 

nodes. When (P) 0eJ  , 
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According to equation 10, eight linear algebraic equations 
can be got which shown as equation 11. 
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  


           

                                   （9） 

Where  ePK is the stiffness matrix, ePQ is the right  

column, P is the pressure on the nodes to be solved.  

For the laminar Reynolds equation, the turbulent coefficients 

rG andG are set to be1 /12 . 

C. Finite element of the energy equation 

The Litz-Galerkin method is used to derive of the finite 

element of the energy equation.  
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The energy equation can be simplified as: 
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According to the Litz-Galerkin method, the inner product of 
the residual R and the potential function in the element must 
be zero.  

RdA=0iN                                                                 
 （12） 

Partial integration can be used to solve the equation 15. Eight 
linear algebraic equations are obtained and are written in 
matrix form. 
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e e
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where eTK is the stiffness matrix, eTF is the right column. 

 T is the temperature on the element nodes, which will be 

determined in the numerical simulation. For laminar 
Reynolds equation, the coefficients 1c  , 12xk  .  

D. Integration of the finite element  

In order to get the value of the stiffness matrix and right 

column, the Gaussian numerical integration are utilized in the 

local coordinates. The integration transfer 

is dA rdrd r J d d    . Gaussian points and the weight 

coefficients for numerical integration is shown in table 1. In 

this paper, 
Gn is chosen to be 3.  

TABLE 1 GAUSSIAN POINTS AND THE WEIGHT COEFFICIENTS 

Gn  
kx  kA  

0 0.0000000 2.0000000 
1  0.5773503 1.0000000 
2  0.7745967

 0.0000000 
0.5555556 
0.8888889 

3  0.8611363
  0.3399810 

0.3478548 
0.6521452 

As the equations within one element are generated by 
Gaussian integral method, the whole matrix of the model can 
be assembled according to the connectivity of the elements.  

     1 1P Pn n n n
K P F

  


                                                
 (14) 
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         mis the number of 

elements, n is the number of nodes.  

Based on the distribution of the pressure in the 

lubricating film which is obtained by the finite element 

method, the temperature distribution can be solved. The 

important parameters of the thrust bearing can be calculated 

by the following equations. 

(a) The pad load: F prdrd                          (15) 

(b) The center of the pad load:  

The moment of the pad load to the origin of global coordinate 
can be evaluated by the following equation:  
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where Pr cose
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
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

   

Then the center of the pad load is 
2 2 /X Yr M M  

，
1

Xtan (M / M )Y                           (17) 

IV. CHARACTERISTICS OF THRUST BEARING LUBRICATED BY 

WATER  

A. Work condition of the thrust bearing  

There are six pads in a thrust bearing. The thrust 
bearing’s characteristics are listed in table 2.  

TABLE 2 THE PARAMETERS ABOUT THE THRUST BEARING 

Number of pads N 6 

Inner radius 1R 0.18m 

Outer radius 2R 0.42m 

Pad angle 50° 
Pad thickness

bZ 45mm 

Initial film center 
thickness 

0h  
40 m  

Lubricant oil 
density    

1000 3/kg m

Water specific heat 
capacity Cv  

4200J/（kg*℃） 

Water viscosity  0.001(Pa*s)（20℃） 

B. The pressure distribution in the pad 

The finite element model are shown in figure 2.  

 
Figure 2 the finite element model of the lubricating film for one pad 

In the model, there are 10 elements along the radial 
direction and 8 elements along the circumferential direction. 
The total number of the elements is 80. For the first step of 
the simulation, the pressure distribution are calculated 
without considering the thermal effect.  

The initial average film thickness at the pad center is set 
to be

0 40h m . The range of m is 0.005 ,0.007  
  . The range 

of rm is 0.008 ,0.007  
  .  At different pad tilt angle, the 

pressure distribution are calculated.  
Figure 3 is the pressure distribution under specified 

condition. For bigger rm , the maximum pressure is bigger, 

too. 
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0.004 , 0.008rm m       

                     
Figure 3 the pressure distribution under specified condition 

The relationship between the pad load and tilt angle is 
shown in figure 4.  

 
Figure 4 the relation between the pad load and tilt angle  

From figure 4, we can concluded that the pad load 
increases as the m  increase. When 0m  , the pressure is 

negative which means the lubricating film does not exist. 
When rm decrease, the pad load increase, due to the inertia 

effect of the film.  
The relationship between the load center and the pad tilt 

angle.  

 

Figure 5 Relationship of the radial coordinate of the load center with the pad 

tilt angle rm , m  

In figure 5, when rm increase, the radial coordinate of 

the load center increases. So when considering the inertia 
force of the film, the increase of the pad supporting point’s 
radial coordinate can improve the pad’s load capacity. 

C. The temperature field of the lubricating film 

The inlet temperature of the water is 25℃。By solving 
the energy equation, the temperature distribution can be 
obtained. The water temperature can change the water 
viscosity and influent the pressure distribution. In this paper, 
for the first iteration, the film temperature is set to be 25℃. 
And the pressure distribution is calculated. The pressure 
distribution is used to calculate the film temperature. Then 
for the second iteration, the temperature distribution are used 
to modify the water viscosity and get the new pressure 
distribution. After four iterations, the pressure distribution 
and temperature distribution are all converged. The 
temperature field in the middle of the pad are shown in figure 
6. The film temperature decrease the load capacity of the pad.  

Considering the film temperature, the pressure field 
changes greatly. The pad load capacity decreases.  

 
Figure 6 the pad temperature field  

( 0.001 , 20 )rm h m    

After several iterations, the temperature converges. As 
shown in figure 6, when 0.001 , 20rm h m   , the 

maximum temperature increment in the film is about 20℃. 

V. CONCLUSION  

In this paper, the finite element method is used to solve the 
turbulent Reynolds equation and the turbulent energy 
equation of the large scale water lubricated tilting pad thrust 
bearing. In the Reynolds equation, the film inertia effect is 
considered. The pad pressure field are obtained. The 
relationship between the pad load capacity and the pad tilting 
angle are analyzed. The temperature field are calculated. 

when 0.001 , 20rm h m   , the maximum temperature 

increment can be approximately 20℃. By considering the 
thermal influence on the viscosity of the water, the pressure 
field of the pad is recalculated. The high temperature of the 
film decreases the load capacity of the pad. 
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