

Abstract— Social Media sites have changed the way people

communicate. They are now the world’s largest virtual
communities. People use social media to make friends,
communicate with each other and express their preferences
and opinions about various things. As such, every day, massive
number of pieces of textual information is gathered into Social
Media, and such information can be leveraged for many uses.
However, the limited character length for these texts has
caused people to communicate unconventionally with a
mixture of formal and slang words. This has created problems
on two levels, The first is that social media text is often
unsuitable as data for Natural Language Processing tasks such
as Machine Translation, Information Retrieval and Opinion
Mining, due to the its unconventionality and the irregularity of
the language featured. The second is that non-native speakers
of English, older Internet users and non-members of the “in-
group” often find such texts difficult to understand. The
normalization of these slang words is by generating plain text
from the slang words. This study therefore develops a system
to normalize social media texts that can be deployed as either a
preprocessing step for Natural Language Processing tasks or to
bridge the generational-gap when handling social media text.
The system is then tested and its performance evaluated.

Index Terms— normalization, social media, twitter, NLP

I. INTRODUCTION

OCIAL media sites, like Twitter, Facebook, Sina or
Weibo (The Chinese equivalent of Twitter), have

become very popular in the last 10 years [6]. They allow
people to make friends, communicate with each other and
express their preferences and opinions about various things.
As such, every day, massive number of pieces of textual
information is gathered into Social Media, and this textual
information has a tremendous value if they can be processed
and structured accordingly. They often contain extremely
current information about world events and are reshaping
the way information is published and analyzed [4].
However, the limited character length in social media e.g.
twitter where users are allowed just 140 characters per tweet

Manuscript received June 11, 2015; revised July 30, 2015. Adedoja

Adedamola is with the Department of Computer Science, Tshwane
University of Technology, Pretoria, South Africa (Phone: +27123829681;
e-mail: damdey@gmail.com).

Abiodun Modupe is with Department of Mathematical Science,
University of Johannnesburg, South Africa (Phone: +27-8034059344, e-
mail: abiodunmodupe@gmail.com).

Johnson Dehinbo is with the Department of Computer Science, Tshwane
University of Technology, Soshanguve, North of Pretoria, South Africa
(Phone: +27123829219; e-mail: jdehinbo@yahoo.com).

have caused people to communicate unconventionally with
a mixture of formal and slang words (e.g How R U?) which
is very unlike the style of communication found in more
traditional ways of communication like e-mails or regular
letters.

An example of the unconventional ways of
communication is lexical variants, when standard words or
phrases are written in a different form. This could be
something as simple as minor spelling errors (e.g.jst is a
variant of just), to abbreviations (e.g.tmi, which stands for
too much information and wanna which means want to), or
also jargon (e.g.bday, which is an African-American slang
word for birthday). Some are also developed from phonetic
attributes of words, such 4eva (forever) and 2mao
(tomorrow) [6]. Twitter for example has become one of the
most important social media site since its inception in 2006.
It is a micro blogging service that allows users to post
messages up to 140 characters in length. Once a message or
tweet is posted, any twitter user in the world can see it,
repost/retweet it, and reply to it. Users can search for
messages based on topic or person of interest. Users can
also “follow” other users which will cause all of the
messages posted by a user that is being followed to be
displayed on the follower’s Twitter timeline. Twitter
generates a lot of data, with over 200 million active users
who collectively tweet over 500 million messages per day or
roughly 5,800 tweets per second [14] which is way beyond
what human beings can handle even with crowdsourcing.
The ability to glean information off data from social media,
especially from twitter is proving to be very important
especially for many natural language processing (NLP)
tasks, such as sentiment analysis, information extraction,
summarization, information retrieval, text-to-speech etc. [7].
The remainder of this paper is organized as follows: Section
II describes the issues that are intended to be addressed by
the research project. Section III identifies the research
questions posed by this research project. Then, Section IV
enumerates the research objectives of the study. Section V
briefly presents previous works done on the subject of
normalization. The system design and methodology to be
employed in this research project is explored in Section VI.
And the architecture employed by this research study is
explained in detail in section VII. Section VIII presents the
results and evaluation of the experiments performed on the
normalization system. Section IX includes list of ways in
which the study can be extended in the future. Finally,
Section X concludes this paper with a brief summary of the

Development and Evaluation of a System for
Normalizing Internet Slangs in Social Media

Texts

Adedoja A. Adedamola, Abiodun Modupe, and Olumuyiwa J. Dehinbo

S

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

work done so far.

II. THE CONTEXT OF THE RESEARCH PROBLEM

The limited character length typical in social media sites
like twitter have caused people to communicate
unconventionally with a mixture of formal and slang words.
Such has created problems on two levels.

Firstly, traditional NLP tools often face problems,
because they are developed with Conventional domains(e.g.
news, reports) in mind, which often make strong
assumptions about the type of the language we are
processing is of orthographic homogeneity (i.e., that there is
just one way to spell you as against you/U) [6]. Slang words
have the ability to interrupt and falsify Natural Language
Processing tasks done on social media text accordingly [3].
Data gathered off social media, presents a different variety
in the type of content in messages. Unlike more
professional/traditional domains such as news and where the
authors write in a professional and standardized format, in
social media, users write in a much more casual
environment. This does not mean that there is no formal
data in microblogs, but Informal data exist and constitute a
sizable portion of the data in this domain, and means that
some form of pre-processing is required before NLP tasks
can be carried out on the data [6]. Current tools, while
practical on news articles and similar types of well written
documents, perform quite poorly for Part-of-Speech (POS)
tagging and Named Entity Recognition (NER) when applied
to tweets. The accuracy of tools falls from 97% accuracy for
news articles to about 80% for tweets [6].

Secondly, non-native speakers of the English Language,
older Internet users and non-members of the “in-group”
often find such means of communication difficult to
understand.

Following the problems stated above, this research
project aims to develop a system that normalizes internet
slangs and then test for the applications usability and
efficiency. The overall research question is:
How can we develop a system to normalize internet slangs
in Social media text using a research compatible approach?

A. Sub Questions

• How can we effectively detect slang words in a stream of
text?
• How can we effectively translate detected slang words to
their lexical equivalent?
• How accurate is the normalized text?

B. The Research Objectives and Sub Objectives

To answer the research questions enumerated above, we
must clearly formulate the objectives of the research project.
The objectives are therefore given below:
• To develop a web application capable of accepting a
stream of text and detecting the slang words contained in the
text
• To develop a web application capable of translating slang
words to its lexical equivalent.
• To test for the lexical accuracy of the translated text.

III. LITERATURE REVIEW

This research project focuses on the general area of
normalizing non-standard words in the English vocabulary.
There are many other sub-areas like spelling correction,
sense disambiguation, text to speech synthesis and text
conditioning under the concern of normalizing non-standard
words [15]. However, this research project is interested in
Normalizing slang words from social media. A lot of
research work has gone into the normalization process, from
the earlier times of normalizing short messages service
(SMS) messages to modern time social media. However, no
matter how different the normalization processes may be
from each other, they all follow basically the same
workflow process.

As seen in Figure 1, pre-processing is usually done first.
It is usually some forms of tokenization, removal of stop
words etc. This is then followed by the detection of
Slang/Out-Of-Vocabulary (OOV) Words. Then the system
normalizes the OOV words to their Lexical equivalent and it
concatenates it back to the normalized form of the initial
post.
Eranga Mapa [3] worked on Slang normalization in Social
Media. An approach based on spell correction and
dictionary lookup was employed to resolve tweets
containing slang words to the formal version. Python was
used for the development of the system by leveraging the
NLTK library. A Regex based cleaner was used to eliminate
unnecessary entities like URLs, emoticons, hash tags and at
signs from the tweet to be normalized. Using spaces and
ignoring punctuation symbols, tokenization was used on the
tweets to break the stream of text into tokens. The tokens
are then tagged with POS tags and then are moved to a
comparator where a comparison of token with a non-hit list,
the pyEnchant dictionary and the Names dictionary takes
place. A spell checker is now used to check for spelling
errors. An analyzer takes over and now checks for possible
slang candidates for slang words. The analyzer then
accesses N-gram model and select the most suitable slang
candidate depending on context. Han & Baldwin [4]
proposed a system where the lexical normalization of tweets
is used as a preprocessing step for NLP tasks like POS
tagging. The strategy employed for normalization involves
three steps: (1) the generation of a confusion set, which are
normalization candidates are generated for a given word; (2)
the identification of ill-formed words and (3) the selection
of candidates, with a standard form for tokens that have
been identified as ill formed. Of all Out-Of-Vocabulary
words that are said to be ill formed, the best candidate is
selected from the confusion set as the basis of
normalization.

Fig. 1. Generic Normalization Model.

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

Munoz-Garcıa et al. [10] used Freeling [11] for
microposts tokenization. Its specific tokenization rules and
its user map module were adapted for dealing with smileys
and particular elements typically used in Twitter, such as
hash-tags, RTs, and user IDs. Then for the identification of
Twitter meta-language elements (i.e. Hash-tags, user IDs,
RTs and URLs) regular expressions was used (e.g., if a
token starts by the symbol \#", then it is a hash-tag). Then
using a dictionary words are then classified as OOV or IV.
OOV words that are classified as slang words are
normalized and those OOV words that are classified as
spelling errors are then corrected. The resulting normalized
form of each token is concatenated, and the micro-post is
amended to its normalized form.

Some researches go the machine learning route like a
system which worked on the identification and transcription
of slang language in twitter by crowd sourcing [9]. With the
use of a twitter corpus, slang candidates were identified.
Then a comparison of the twitter corpus against the English
Wikipedia corpus is used to filter out-of-vocabulary (OOV)
words. The words are now manually categorized by
crowdsourcing as abbreviations, slangs, different language,
proper names, or interjections etc. For the categorization to
be automated, the study then trained a machine learning
algorithm using these manually classified OOV terms. With
the aid of the MaxEnt Classifier with context tweets, a fair
amount of accuracy for classification task with high
probabilistic scores was attained.

IV. SYSTEM DESIGN AND METHODOLOGY

A. Research Strategy

 The research project follows a positivist research
design model but will involve some elements of interpretive
descriptive studies. The positivist research design employed
involves methodologies like prototyping that will be used in
the development phase and experimentation used in the
evaluation phase.

B. Methodology

A Suitable methodology for this research project is the
Design Science methodology. Author [2] recommends
design science as a suitable methodology for research
involving software development. This is in line with [16:19]
because design science involves the creation of new
knowledge through the design of innovative artifacts and
analysis/evaluation of the performance of such artifacts. As
observed by [2], a typical design science research effort as
illustrated in figure 2 follows the phases/steps below:
Awareness of a problem: Previous work done in the
research area is essential to the awareness of a problem.
This results in the thorough understanding of the problem
and the putting together of a formal or informal new
research effort.
Suggestion: An understanding of the problem is going to
the lead to a design that contains the new functionality
envisioned. This could be in the form of the design of a
prototype.

Fig. 2. Design Science Process model adopted

Development: This stage entails creative development and
implementation of the proposed design. The development of
the artifact takes place in this stage. It could be in the form
of algorithm construction, expert system development using
a high-level tool, etc. In the event of setbacks or errors,
circumscription involves looping back into suggestion
phase.
Evaluation: For every developed artifact, evaluation is
necessary. It could be either quantitative or qualitative. The
results of the evaluation and other information that was
made available while constructing and implementing the
software or artifact are then fed back to another round of
“suggestion” through circumscription.
Conclusion: This phase is the final stage of the research
project, where the results of the evaluation performed on the
artifact developed are adjudged to be “good enough” despite
possible minor deviations. Such deviations may be
recommended as areas for further research.

V. SYSTEM ARCHITECTURE

A. Tokenizer

This component of the normalizer receives the string of
text to be normalized from a textbox and breaks this string
into words/tokens, twitter meta-language elements (e.g.,
hash-tags, user IDs), emoticons, URLs etc. The output (i.e.
the list of tokens) is sent to the Token Classifier component.

This is done with the aid of a regex pattern that accepts a
string and outputs out the tokens:

/([#@]?\\w+[']?\\w*|\\pP+|\\p{Sc}+|\\S~u)/u
The regex pattern tokenizer tokenizes using the php

preg_match_all function which matches all occurrences of
patterns in string. It accepts a string and pattern as input and
outputs outs the tokens in array. The tokenizer regex is
given the following rules:

• match any single character present
• match any word character
• match any kind of punctuation character
• match any currency sign
• match characters "@", "#", and with " ' "
So, the output from this tokenizer process is sent to the

token classifier component.

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

Fig. 3. System Flow Chart

B. Token Classifier

After, the tokenizer has broken down the string of text
into tokens, the tokens generated are sent here to the token
classifier. It now classifies each of these tokens into one of
the following categories:

• Meta-elements Category: Such elements are detected
by matching regular expressions against the token (e.g., if a
token starts by the symbol \#", then it is a hash-tag). Each
token classified in this category are saved in an array
alongside their original index number so as to be rearranged
later, and they are sent to the meta-elements component of
the normalizer. The meta-elements include the followings:
 Hash-tags: Examples are #Yo, #Happy, and the regular

expression used is:
/#([A-Za-z0-9\/\.]*)/

 Mentions and user IDs: Examples are @lebo @jees1,
and the regular expression used is:

/@([A-Za-z0-9\/\.]*)/
 Retweets (RTs): The regular expression used is:

/RT([A-Za-z0-9\/\.]*)/
 Punctuations: Here regular expressions are used to

check if the token are punctuations e.g. the period(.),
the comma (,) etc. The regular expression used is:

/\W+$/
• In Vocabulary category (IV) –In Vocabulary Word

are words in the standard English dictionary: To make this
work, tokens are checked a dictionary to see if it’s an IV
(in-vocabulary) word, and tokens found in the dictionary.
The GNU aspell dictionary is the best option, Aspell uses a
combinatorial approach of both edit distance and soundex
techniques. Basically, it finds all words that have a sounds-
like within one or two edit distances from the original word
sounds-like [1]. The aspell dictionary accepts a token and
then returns a list of possible substitutes. However, the last
time a windows port for aspell was released was December
22, 2002. So the alternative is the Enchant library, which
aims to provide uniformity and conformity on top of all
spelling libraries, and implement certain features that may
be lacking in any individual provider library. Enchant
supports the following backends:

 Aspell/Pspell (intends to replace Ispell) [13].
 An enchant function is used to check if each token/word

is contained in the dictionary, and enchant_dict_check
checks whether a word is correctly spelled or not:

If the word is correctly spelled, the function returns
TRUE, otherwise returns FALSE [13]. All words/tokens
that return TRUE are classified as correct and then saved in
an array alongside their original index number so as to be
rearranged later and they are sent to the IV Word
Component.

• OOV Word Category – Out Of Vocabulary Word-
Words not in the Standard English dictionary: These are
going to be misspelt, slangs words etc., basically all words
that are not in the dictionary. Words/tokens to be in this
category are words/tokens that return FALSE in the above
process. They are then saved in an array alongside their
original index number so as to be rearranged later and they
are sent to the OOV Word Classifier Component.

C. OOV Word Classifier Component

This component is to receive the tokens that were
previously classified as OOV Word (i.e. words not in the
Standard English dictionary) by the Token Classifier
Component. The component is to determine whether the
OOV word/token is to be classified a slang word or if it was
simply misspelt. The following processes occur here:

• First, the tokens are looked up in an array of slang
words to check if they are contained in the array. The search
disregards both case and accents. Tokens that return true
and are found to be contained in the array of slang words
are classified to be slang words and are sent to the slang
corrector component.

• The tokens left from the process above are classified to
be misspelt words and are sent to the spell corrector
component.

D. Slang Corrector Component

Tokens sent to this component are tokens that have gone
through the OOV word classifier component and were
classified as slangs. These token are now passed through the
slang array and this time, the slang words are substituted for

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

their regular equivalent. The words substituted are now
classified as correct.

E. Spell Corrector Component

Tokens sent to this component are tokens that have gone
through the OOV Word classifier component and were
classified as misspelt. The aim of this component is to
correct misspelt words. It contains the following processes:

1) IV Candidate Generation
For every misspelt word, there is a number of words that

can be used to substitute it. To generate the IV candidates,
which is a list of possible word substitutes, the PHP enchant
library is used, which as explained earlier utilizes the
Aspell/Pspell library using a combinatorial approach of both
edit distance and soundex techniques to find suitable
matches for misspelt words. This is done with the use of the
php enchant_dict_suggest function –which returns an array
of suggestions of the misspelt word.

array enchant_dict_suggest (resource
$dict , string $word)

where:
• Dict - Dictionary resource
• Word - The word to check [13].
The output is an array of possible word substitutes for the

OOV Word – also called the IV Candidates.
2) IV Candidate Selection

Here, a candidate will be selected from a list of possible
candidates/matches, and this will be done with the use of a
number of functions:

• The Levenshtein Function
Used to Calculate Levenshtein distance between two

strings [13]:
int Levenshtein (str1, str2).

where str1 and str2 are the strings being evaluated for
Levenshtein distance.

The levenshtein() function takes two parameters, these

are the two strings to be compared. If the two strings are the
same then the distance is zero. The higher this value is, the
more distance there is between two strings. Examples are:

echo levenshtein('word','word'); // 0
echo levenshtein('stone','magnet'); // 4
echo levenshtein('wibble','wobble'); // 1
echo levenshtein('test','toast'); // 2
The similar the words, the lesser the levenshtein distance.

For each word/token, the function is now applied to IV
candidates and the misspelt word. Words with levenshtein
score greater than 1 are very dissimilar and as such are
classified as unknown and are sent to the normalized token
concatenator. For those with scores of 1, if the candidates
are still more than one, further processing takes place.

• Longest Common Substring (LCS)
The LCS is the longest string (or strings) that is a

substring (or are substrings) of two or more strings. The
more similar two words are, the more the strings they will
have in common. For example, the longest common
substring of the strings "ababc", "babca","abcba" is string
"abc" of length 3.

This is applied to the remaining IV candidates and
compared. The IV candidate with the longest common string
as the misspelt word is classified as correct. And if it still
cannot choose a candidate at this point, the candidate is
labelled as unknown and sent to the normalized token
concatenator that way.

F. Normalized Token Concatenator

This component gets all tokens from
• The metaelement component
• The IV Word Component
• The slang corrector component
• The spell corrector component
• Tokens classified as unknown
This component concatenates all the processed tokens

according to their IDs, thereby outputting a normalized
version of the initial string put into the system.

VI. EXPERIMENTAL RESULTS AND EVALUATION

A. Data Set Used

Experiments were performed on a datasets of microblogs
which contained 10 tweets with 135 tokens. The purpose of
this dataset is testing the framework in the detection and
translation (normalization) of Slang words and testing the
performance. The dataset was collected by randomly
sampling tweets that includes slang words gotten from
Twitter streaming API.

B. Experimental Results Evaluation

The metric to be used to evaluate the results is the
BiLingual Evaluation Understudy (BLEU) score. The
BLEU algorithm was developed by [12]. The BLEU score is
used for the evaluation of translation accuracy from one
language to another. It is used to rank systems according to
their performance in translating texts from one language to
another. What the algorithm does is to look for n-gram
coincidences between a candidate text (translation produced
by the system) and a set of reference texts (the translation by
a human being). The BLEU score needs a gold standard,
which basically is the translation done by a human being.
This file is compared against the translated version and is
assigned a score between 0 and 1 [5]. This score shows the
similarity between the candidate text and reference text.
Basically, the closer the value is to 1, the more similar the
texts are.

To calculate the BLEU score, this study used iBLEU,
which is an interactive web version of BLEU. iBLEU was
developed to allow users to visually examine BLEU scores
of candidate translations. It allows for the comparison of
two different translations in an interactive manner. iBLEU is
a pure Javascript implementation of the BLEU metric, and it
is based on the NIST mteval script [8]. The structure of a
regular tweet with slang words is different from the
structure of a normalized tweet. This tool gives correct
indication of the performance of the normalized system.

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

TABLE I:
BLEU SCORE OF TWEETS BEFORE & AFTER NORMALIZATIONS.

 BLEU SCORE
BEFORE NORMALIZATION 0.46
AFTER NORMALIZATION 0.83

TABLE II:
BLEU SCORE COMPARISON OF DIFFERENT NORMALIZATIONS

 BLEU SCORE
NORMALIZATION SYSTEM 0.83
tranl8it 0.48
lingo2word 0.52

Table I shows the BLEU scores of tweets before and after
normalization. The normalization process had a significant
effect on BLEU scores, increasing the score significantly.
The normalization process adopted by this research project
was also compared with other systems performing similar
functions (tranl8it which is available online at
http://transl8it.com/ and lingo2word which is available at
http://www.lingo2word.com/translate.php). Table II
contains their BLEU scores. This shows off the efficiency of
the proposed system, as it outperforms similar systems.
Below is an example of the translations generated by the
normalization system as compared to other systems.
Regular Tweet: The things people do for some retweets lol
smh
Normalized Form: The things people do for some retweets
laughing out loud shaking my head
Lingo2Word: The things people do for some retweets lots
of laughs signal message handling
tranl8it: The things people do for some retweets lots of luck
smh

C. Experimental Results Conclusion

Experiments were performed on microblogs data which is
the rich source for analysis of slangs, acronyms and
emoticons. From the sample tweets above, it is obvious that
the Token Classifier Component works as intended and can
distinguish between OOV tokens/IV tokens/MetaElements.
The system is successful in translating the Slang OOV
tokens into their English equivalent. The normalized system
produces a result with a 37% increase in the BLEU score as
compared with the un-normalized data.

However, there are some problems with the status of
contractions (e.g. I'm or Don’t) as either words to be
normalized or not. The aspell dictionary which the system
depends on for spell correction does not recognize
contractions as out of vocabulary words. And this
significantly reduces the BLEU score.

Also, the ability of the system is limited by its slang
repository, as it cannot detect a slang that is not present in
its repository. So, as such the new system does not possess
the ability to learn. Further, there are problems with the
spell corrector component in the normalization system. The
component gets more than one suggestion/candidate for
each wrong spelling, making it difficult for the system to
choose which the right spelling is. The checks put in place
by the system to make sure it chooses the right candidate
(LCS and Levenshtein distance) sometimes do fail.

VII. CONCLUSION

In this study, a system that normalizes internet slang in
microblog text through direct substitution of internet slangs
with their lexical English equivalent was developed. After
investigating the different methods employed by other
researches while normalizing words, this research project
developed a system that normalizes slang words.

An experiment was then conducted on a dataset of slang
words thereby showing that the methods described in this
study achieve state-of-the-art lexical normalization on
internet slags words. And the performance of the
normalization system was also compared with other
previously developed normalization software, thereby
suggesting that our results are definitely competitive.
Possible improvements in the future could make it better
e.g. applying it to other languages.

REFERENCES
[1] K. Atkinson, Aspell User Manual [Online]. Available:

http://aspell.net/ [Accessed April 4 2015].
[2] J. Dehinbo, “Teaching Students on How Software Development

Project can be turned into a Research Project”, Proceedings of the
Society for Information Technology & Teacher Education Conference
(SITE 2014), Jacksonville, Florida. USA. 17-21 March 2014. Online.
Available from http://www.editlib.org/p/131099

[3] L. W. Eranga-Mapa, C. Chathuranga, S. Dassanayake, N. De Silva, U.
Kohomban, D. Maldeniya 2012. “Text Normalization in Social Media
by using Spell Correction and Dictionary Based Approach”. Systems
learning, Vol. 1. pp. 1-6.

[4] B. Han, and T. Baldwin, “Lexical normalisation of short text
messages: Makn sens a# twitter”. Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human
Language Technologies-Vol. 1, 2011. Association for Computational
Linguistics, pp. 368-378.

[5] M. Kaufmann, and J. Kalita, “Syntactic normalization of twitter
messages”. International conference on natural language
processing, Kharagpur, India, 2010.

[6] W. Ling, and L. C. Ist, “Machine Translation in Microblogs”. System
cybernetics, Vol. 1. 2013.

[7] D. Lopresti, S. Roy, K. Schulz, and L. V. Subramaniam, Special issue
on noisy text analytics. International Journal on Document Analysis
and Recognition, Vol. 12, 2009, pp.139-140.

[8] N. Madnani, “iBLEU: Interactively debugging and scoring statistical
machine translation systems”, Semantic Computing (ICSC), 2011
Fifth IEEE International Conference on, 2011. IEEE, pp. 213-214.
Stanford University.

[9] B. Milde, “Crowdsourcing slang identification and transcription in
twitter language.” Gesellschaft für Informatik eV. 2013. pp. 51.

[10] O. Munoz-Garcıa, S. Vazquez, and N. Bel, “Exploiting web-based
collective knowledge for micropost normalization”, System
cybernetics, Vol. 1. 2013.

[11] L. Padró, and E. Stanilovsky, “Freeling 3.0: Towards wider
multilinguality”, System in action, Vol. 1. 2013

[12] K. Papineni, S. Roukos, T. Ward, and W. J. Zhu, “BLEU: a method
for automatic evaluation of machine translation”, Proceedings of the
40th annual meeting on association for computational linguistics,
2002. Association for Computational Linguistics, pp. 311-318.

[13] PHP. “PHP Function Reference”, [Online]. Available:
http://php.net/manual/en/ref.enchant.php [Accessed May 1 2015].

[14] V. Prabhu, T. Lee, S. Loeb, J. H. Holmes, H. T., Gold, H. Lepor, D. F.
Penson, and D. V. Makarov, “Twitter response to the United States
Preventive Services Task Force recommendations against screening
with prostate specific antigen”. BJU international, 2013.

[15] R. Sproat, A. W. Black, S. Chen, S. Kumar, M. Ostendorf, and C.
Richards, “Normalization of non-standard words”, Computer Speech
& Language, Vol. 15, pp. 287-333.

[16] V. K. Vaishnavi, and W. Kuechler, Design Science Research Methods
and Patterns, 2008, Boca Raton, USA: Auerbach Publications.

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

