
 

 
Abstract— Social Media sites have changed the way people 

communicate. They are now the world’s largest virtual 
communities. People use social media to make friends, 
communicate with each other and express their preferences 
and opinions about various things. As such, every day, massive 
number of pieces of textual information is gathered into Social 
Media, and such information can be leveraged for many uses.  
However, the limited character length for these texts has 
caused people to communicate unconventionally with a 
mixture of formal and slang words. This has created problems 
on two levels, The first is that social media text is often 
unsuitable as data for Natural Language Processing tasks such 
as Machine Translation, Information Retrieval and Opinion 
Mining, due to the its unconventionality and the irregularity of 
the language featured. The second is that non-native speakers 
of English, older Internet users and non-members of the “in-
group” often find such texts difficult to understand. The 
normalization of these slang words is by generating plain text 
from the slang words. This study therefore develops a system 
to normalize social media texts that can be deployed as either a 
preprocessing step for Natural Language Processing tasks or to 
bridge the generational-gap when handling social media text. 
The system is then tested and its performance evaluated. 
 

Index Terms— normalization, social media, twitter, NLP 
 

I. INTRODUCTION 

OCIAL media sites, like Twitter, Facebook, Sina or 
Weibo (The Chinese equivalent of Twitter), have 

become very popular in the last 10 years [6]. They allow 
people to make friends, communicate with each other and 
express their preferences and opinions about various things. 
As such, every day, massive number of pieces of textual 
information is gathered into Social Media, and this textual 
information has a tremendous value if they can be processed 
and structured accordingly. They often contain extremely 
current information about world events and are reshaping 
the way information is published and analyzed [4]. 
However, the limited character length in social media e.g. 
twitter where users are allowed just 140 characters per tweet 
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have caused people to communicate unconventionally with 
a mixture of formal and slang words (e.g How R U?) which 
is very unlike the style of communication found in more 
traditional ways of communication like e-mails or regular 
letters.  

An example of the unconventional ways of 
communication is lexical variants, when standard words or 
phrases are written in a different form. This could be 
something as simple as minor spelling errors (e.g.jst is a 
variant of just), to abbreviations (e.g.tmi, which stands for 
too much information and wanna which means want to), or 
also jargon (e.g.bday, which is an African-American slang 
word for birthday). Some are also developed from phonetic 
attributes of words, such 4eva (forever) and 2mao 
(tomorrow) [6]. Twitter for example has become one of the 
most important social media site since its inception in 2006. 
It is a micro blogging service that allows users to post 
messages up to 140 characters in length. Once a message or 
tweet is posted, any twitter user in the world can see it, 
repost/retweet it, and reply to it. Users can search for 
messages based on topic or person of interest. Users can 
also “follow” other users which will cause all of the 
messages posted by a user that is being followed to be 
displayed on the follower’s Twitter timeline. Twitter 
generates a lot of data, with over 200 million active users 
who collectively tweet over 500 million messages per day or 
roughly 5,800 tweets per second [14] which is way beyond 
what human beings can handle even with crowdsourcing. 
The ability to glean information off data from social media, 
especially from twitter is proving to be very important 
especially for many natural language processing (NLP) 
tasks, such as sentiment analysis, information extraction, 
summarization, information retrieval, text-to-speech etc. [7]. 
The remainder of this paper is organized as follows: Section 
II describes the issues that are intended to be addressed by 
the research project. Section III identifies the research 
questions posed by this research project. Then, Section IV 
enumerates the research objectives of the study. Section V 
briefly presents previous works done on the subject of 
normalization. The system design and methodology to be 
employed in this research project is explored in Section VI. 
And the architecture employed by this research study is 
explained in detail in section VII. Section VIII presents the 
results and evaluation of the experiments performed on the 
normalization system. Section IX includes list of ways in 
which the study can be extended in the future. Finally, 
Section X concludes this paper with a brief summary of the 
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work done so far. 

II. THE CONTEXT OF THE RESEARCH PROBLEM 

The limited character length typical in social media sites 
like twitter have caused people to communicate 
unconventionally with a mixture of formal and slang words. 
Such has created problems on two levels. 

Firstly, traditional NLP tools often face problems, 
because they are developed with Conventional domains(e.g. 
news, reports) in mind, which often make strong 
assumptions about the type of the language we are 
processing is of orthographic homogeneity (i.e., that there is 
just one way to spell you as against you/U) [6]. Slang words 
have the ability to interrupt and falsify Natural Language 
Processing tasks done on social media text accordingly [3]. 
Data gathered off social media, presents a different variety 
in the type of content in messages. Unlike more 
professional/traditional domains such as news and where the 
authors write in a professional and standardized format, in 
social media, users write in a much more casual 
environment. This does not mean that there is no formal 
data in microblogs, but Informal data exist and constitute a 
sizable portion of the data in this domain, and means that 
some form of pre-processing is required before NLP tasks 
can be carried out on the data [6]. Current tools, while 
practical on news articles and similar types of well written 
documents, perform quite poorly for Part-of-Speech (POS) 
tagging and Named Entity Recognition (NER) when applied 
to tweets. The accuracy of tools falls from 97% accuracy for 
news articles to about 80% for tweets [6]. 

Secondly, non-native speakers of the English Language, 
older Internet users and non-members of the “in-group” 
often find such means of communication difficult to 
understand. 

Following the problems stated above, this research 
project aims to develop a system that normalizes internet 
slangs and then test for the applications usability and 
efficiency. The overall research question is: 
How can we develop a system to normalize internet slangs 
in Social media text using a research compatible approach? 

A.  Sub Questions 

• How can we effectively detect slang words in a stream of 
text? 
• How can we effectively translate detected slang words to 
their lexical equivalent? 
• How accurate is the normalized text?  
 

B. The Research Objectives and Sub Objectives 

To answer the research questions enumerated above, we 
must clearly formulate the objectives of the research project. 
The objectives are therefore given below: 
• To develop a web application capable of accepting a 
stream of text and detecting the slang words contained in the 
text  
• To develop a web application capable of translating slang 
words to its lexical equivalent. 
• To test for the lexical accuracy of the translated text. 

III. LITERATURE REVIEW 

This research project focuses on the general area of 
normalizing non-standard words in the English vocabulary. 
There are many other sub-areas like spelling correction, 
sense disambiguation, text to speech synthesis and text 
conditioning under the concern of normalizing non-standard 
words [15].  However, this research project is interested in 
Normalizing slang words from social media. A lot of 
research work has gone into the normalization process, from 
the earlier times of normalizing short messages service 
(SMS) messages to modern time social media. However, no 
matter how different the normalization processes may be 
from each other, they all follow basically the same 
workflow process. 

As seen in Figure 1, pre-processing is usually done first. 
It is usually some forms of tokenization, removal of stop 
words etc. This is then followed by the detection of 
Slang/Out-Of-Vocabulary (OOV) Words. Then the system 
normalizes the OOV words to their Lexical equivalent and it 
concatenates it back to the normalized form of the initial 
post. 
Eranga Mapa [3] worked on Slang normalization in Social 
Media. An approach based on spell correction and 
dictionary lookup was employed to resolve tweets 
containing slang words to the formal version. Python was 
used for the development of the system by leveraging the 
NLTK library. A Regex based cleaner was used to eliminate 
unnecessary entities like URLs, emoticons, hash tags and at 
signs from the tweet to be normalized. Using spaces and 
ignoring punctuation symbols, tokenization was used on the 
tweets to break the stream of text into tokens. The tokens 
are then tagged with POS tags and then are moved to a 
comparator where a comparison of token with a non-hit list, 
the pyEnchant dictionary and the Names dictionary takes 
place. A spell checker is now used to check for spelling 
errors. An analyzer takes over and now checks for possible 
slang candidates for slang words. The analyzer then 
accesses N-gram model and select the most suitable slang 
candidate depending on context. Han & Baldwin [4] 
proposed a system where the lexical normalization of tweets 
is used as a preprocessing step for NLP tasks like POS 
tagging. The strategy employed for normalization involves 
three steps: (1) the generation of a confusion set, which are 
normalization candidates are generated for a given word; (2) 
the identification of ill-formed words and (3) the selection 
of candidates, with a standard form for tokens that have 
been identified as ill formed. Of all Out-Of-Vocabulary 
words that are said to be ill formed, the best candidate is 
selected from the confusion set as the basis of 
normalization. 

 
Fig. 1. Generic Normalization Model. 
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Munoz-Garcıa et al. [10] used Freeling [11] for 
microposts tokenization. Its specific tokenization rules and 
its user map module were adapted for dealing with smileys 
and particular elements typically used in Twitter, such as 
hash-tags, RTs, and user IDs. Then for the identification of 
Twitter meta-language elements (i.e. Hash-tags, user IDs, 
RTs and URLs) regular expressions was used (e.g., if a 
token starts by the symbol \#", then it is a hash-tag). Then 
using a dictionary words are then classified as OOV or IV. 
OOV words that are classified as slang words are 
normalized and those OOV words that are classified as 
spelling errors are then corrected. The resulting normalized 
form of each token is concatenated, and the micro-post is 
amended to its normalized form. 

Some researches go the machine learning route like a 
system which worked on the identification and transcription 
of slang language in twitter by crowd sourcing [9]. With the 
use of a twitter corpus, slang candidates were identified. 
Then a comparison of the twitter corpus against the English 
Wikipedia corpus is used to filter out-of-vocabulary (OOV) 
words. The words are now manually categorized by 
crowdsourcing as abbreviations, slangs, different language, 
proper names, or interjections etc. For the categorization to 
be automated, the study then trained a machine learning 
algorithm using these manually classified OOV terms. With 
the aid of the MaxEnt Classifier with context tweets, a fair 
amount of accuracy for classification task with high 
probabilistic scores was attained. 

 

IV. SYSTEM DESIGN AND METHODOLOGY 

A. Research Strategy  

         The research project follows a positivist research 
design model but will involve some elements of interpretive 
descriptive studies. The positivist research design employed 
involves methodologies like prototyping that will be used in 
the development phase and experimentation used in the 
evaluation phase. 
 

B. Methodology 

A Suitable methodology for this research project is the 
Design Science methodology. Author [2] recommends 
design science as a suitable methodology for research 
involving software development. This is in line with [16:19] 
because design science involves the creation of new 
knowledge through the design of innovative artifacts and 
analysis/evaluation of the performance of such artifacts. As 
observed by [2], a typical design science research effort as 
illustrated in figure 2 follows the phases/steps below: 
Awareness of a problem: Previous work done in the 
research area is essential to the awareness of a problem. 
This results in the thorough understanding of the problem 
and the putting together of a formal or informal new 
research effort. 
Suggestion: An understanding of the problem is going to 
the lead to a design that contains the new functionality 
envisioned. This could be in the form of the design of a 
prototype. 

 
Fig. 2. Design Science Process model adopted 

 
Development: This stage entails creative development and 
implementation of the proposed design. The development of 
the artifact takes place in this stage. It could be in the form 
of algorithm construction, expert system development using 
a high-level tool, etc. In the event of setbacks or errors, 
circumscription involves looping back into suggestion 
phase. 
Evaluation: For every developed artifact, evaluation is 
necessary. It could be either quantitative or qualitative. The 
results of the evaluation and other information that was 
made available while constructing and implementing the 
software or artifact are then fed back to another round of 
“suggestion” through circumscription. 
Conclusion: This phase is the final stage of the research 
project, where the results of the evaluation performed on the 
artifact developed are adjudged to be “good enough” despite 
possible minor deviations. Such deviations may be 
recommended as areas for further research. 

V. SYSTEM ARCHITECTURE 

A. Tokenizer 

This component of the normalizer receives the string of 
text to be normalized from a textbox and breaks this string 
into words/tokens, twitter meta-language elements (e.g., 
hash-tags, user IDs), emoticons, URLs etc. The output (i.e. 
the list of tokens) is sent to the Token Classifier component. 

This is done with the aid of a regex pattern that accepts a 
string and outputs out the tokens: 

/([#@]?\\w+[']?\\w*|\\pP+|\\p{Sc}+|\\S~u)/u 
The regex pattern tokenizer tokenizes using the php 

preg_match_all function which matches all occurrences of 
patterns in string. It accepts a string and pattern as input and 
outputs outs the tokens in array. The tokenizer regex is 
given the following rules: 

• match any single character present 
• match any word character 
• match any kind of punctuation character 
• match any currency sign 
• match characters "@", "#", and with " ' " 
So, the output from this tokenizer process is sent to the 

token classifier component. 
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Fig. 3.  System Flow Chart 

B. Token Classifier 

After, the tokenizer has broken down the string of text 
into tokens, the tokens generated are sent here to the token 
classifier. It now classifies each of these tokens into one of 
the following categories: 

• Meta-elements Category: Such elements are detected 
by matching regular expressions against the token (e.g., if a 
token starts by the symbol \#", then it is a hash-tag). Each 
token classified in this category are saved in an array 
alongside their original index number so as to be rearranged 
later, and they are sent to the meta-elements component of 
the normalizer. The meta-elements include the followings:  
 Hash-tags: Examples are #Yo, #Happy, and the regular 

expression used is: 
/#([A-Za-z0-9\/\.]*)/ 

 Mentions and user IDs: Examples are @lebo @jees1, 
and the regular expression used is: 

/@([A-Za-z0-9\/\.]*)/ 
 Retweets (RTs): The regular expression used is: 

/RT([A-Za-z0-9\/\.]*)/  
 Punctuations: Here regular expressions are used to 

check if the token are punctuations e.g. the period(.), 
the comma (,) etc. The regular expression used is: 

/\W+$/ 
•  In Vocabulary category (IV) –In Vocabulary Word 

are words in the standard English dictionary: To make this 
work, tokens are checked a dictionary to see if it’s an IV 
(in-vocabulary) word, and tokens found in the dictionary. 
The GNU aspell dictionary is the best option, Aspell uses a 
combinatorial approach of both edit distance and soundex 
techniques. Basically, it finds all words that have a sounds-
like within one or two edit distances from the original word 
sounds-like [1]. The aspell dictionary accepts a token and 
then returns a list of possible substitutes. However, the last 
time a windows port for aspell was released was December 
22, 2002. So the alternative is the Enchant library, which 
aims to provide uniformity and conformity on top of all 
spelling libraries, and implement certain features that may 
be lacking in any individual provider library. Enchant 
supports the following backends: 

 Aspell/Pspell (intends to replace Ispell) [13]. 
 An enchant function is used to check if each token/word 

is contained in the dictionary, and enchant_dict_check 
checks whether a word is correctly spelled or not: 

If the word is correctly spelled, the function returns 
TRUE, otherwise returns FALSE [13]. All words/tokens 
that return TRUE are classified as correct and then saved in 
an array alongside their original index number so as to be 
rearranged later and they are sent to the IV Word 
Component. 

• OOV Word Category – Out Of Vocabulary Word- 
Words not in the Standard English dictionary: These are 
going to be misspelt, slangs words etc., basically all words 
that are not in the dictionary. Words/tokens to be in this 
category are words/tokens that return FALSE in the above 
process. They are then saved in an array alongside their 
original index number so as to be rearranged later and they 
are sent to the OOV Word Classifier Component. 

C. OOV Word Classifier Component 

This component is to receive the tokens that were 
previously classified as OOV Word (i.e. words not in the 
Standard English dictionary) by the Token Classifier 
Component. The component is to determine whether the 
OOV word/token is to be classified a slang word or if it was 
simply misspelt. The following processes occur here: 

• First, the tokens are looked up in an array of slang 
words to check if they are contained in the array. The search 
disregards both case and accents. Tokens that return true 
and are found to be contained in the array of slang words 
are classified to be slang words and are sent to the slang 
corrector component.  

• The tokens left from the process above are classified to 
be misspelt words and are sent to the spell corrector 
component. 

D. Slang Corrector Component 

Tokens sent to this component are tokens that have gone 
through the OOV word classifier component and were 
classified as slangs. These token are now passed through the 
slang array and this time, the slang words are substituted for 
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their regular equivalent. The words substituted are now 
classified as correct. 

E. Spell Corrector Component 

Tokens sent to this component are tokens that have gone 
through the OOV Word classifier component and were 
classified as misspelt. The aim of this component is to 
correct misspelt words. It contains the following processes: 

1)  IV Candidate Generation 
For every misspelt word, there is a number of words that 

can be used to substitute it. To generate the IV candidates, 
which is a list of possible word substitutes, the PHP enchant 
library is used, which as explained earlier utilizes the 
Aspell/Pspell library using a combinatorial approach of both 
edit distance and soundex techniques to find suitable 
matches for misspelt words. This is done with the use of the 
php enchant_dict_suggest function –which returns an array 
of suggestions of the misspelt word. 

array enchant_dict_suggest ( resource 
$dict , string $word ) 

where: 
• Dict - Dictionary resource  
• Word - The word to check [13]. 
The output is an array of possible word substitutes for the 

OOV Word – also called the IV Candidates. 
2)  IV Candidate Selection 

Here, a candidate will be selected from a list of possible 
candidates/matches, and this will be done with the use of a 
number of functions: 

• The Levenshtein Function  
Used to Calculate Levenshtein distance between two 

strings [13]:  
int Levenshtein (str1, str2).  

where  str1 and str2 are the strings being evaluated for 
Levenshtein distance. 

 
The levenshtein() function takes two parameters, these 

are the two strings to be compared. If the two strings are the 
same then the distance is zero. The higher this value is, the 
more distance there is between two strings. Examples are:  

echo levenshtein('word','word'); // 0 
echo levenshtein('stone','magnet'); // 4 
echo levenshtein('wibble','wobble'); // 1 
echo levenshtein('test','toast'); // 2 
The similar the words, the lesser the levenshtein distance. 

For each word/token, the function is now applied to IV 
candidates and the misspelt word. Words with levenshtein 
score greater than 1 are very dissimilar and as such are 
classified as unknown and are sent to the normalized token 
concatenator. For those with scores of 1, if the candidates 
are still more than one, further processing takes place. 

 
• Longest Common Substring (LCS)   
The LCS is the longest string (or strings) that is a 

substring (or are substrings) of two or more strings. The 
more similar two words are, the more the strings they will 
have in common. For example, the longest common 
substring of the strings "ababc", "babca","abcba" is string 
"abc" of length 3. 

This is applied to the remaining IV candidates and 
compared. The IV candidate with the longest common string 
as the misspelt word is classified as correct. And if it still 
cannot choose a candidate at this point, the candidate is 
labelled as unknown and sent to the normalized token 
concatenator that way. 

 

F. Normalized Token Concatenator 

This component gets all tokens from  
• The metaelement component  
• The IV Word Component 
• The slang corrector component 
• The spell corrector component 
• Tokens classified as unknown 
This component concatenates all the processed tokens 

according to their IDs, thereby outputting a normalized 
version of the initial string put into the system. 
 

VI. EXPERIMENTAL RESULTS AND EVALUATION 

A. Data Set Used 

Experiments were performed on a datasets of microblogs 
which contained 10 tweets with 135 tokens. The purpose of 
this dataset is testing the framework in the detection and 
translation (normalization) of Slang words and testing the 
performance. The dataset was collected by randomly 
sampling tweets that includes slang words gotten from 
Twitter streaming API. 
 

B. Experimental Results Evaluation 

The metric to be used to evaluate the results is the 
BiLingual Evaluation Understudy (BLEU) score. The 
BLEU algorithm was developed by [12]. The BLEU score is 
used for the evaluation of translation accuracy from one 
language to another. It is used to rank systems according to 
their performance in translating texts from one language to 
another. What the algorithm does is to look for n-gram 
coincidences between a candidate text (translation produced 
by the system) and a set of reference texts (the translation by 
a human being). The BLEU score needs a gold standard, 
which basically is the translation done by a human being. 
This file is compared against the translated version and is 
assigned a score between 0 and 1 [5]. This score shows the 
similarity between the candidate text and reference text. 
Basically, the closer the value is to 1, the more similar the 
texts are. 

To calculate the BLEU score, this study used iBLEU, 
which is an interactive web version of BLEU. iBLEU was 
developed to allow users to visually examine BLEU scores 
of candidate translations. It allows for the comparison of 
two different translations in an interactive manner. iBLEU is 
a pure Javascript implementation of the BLEU metric, and it 
is based on the NIST mteval script [8]. The structure of a 
regular tweet with slang words is different from the 
structure of a normalized tweet. This tool gives correct 
indication of the performance of the normalized system. 
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TABLE I: 
BLEU SCORE OF TWEETS BEFORE & AFTER NORMALIZATIONS. 

 BLEU SCORE 
BEFORE NORMALIZATION 0.46 
AFTER NORMALIZATION 0.83 
 

TABLE II: 
BLEU SCORE COMPARISON OF DIFFERENT NORMALIZATIONS 

 BLEU SCORE 
NORMALIZATION SYSTEM 0.83 
tranl8it 0.48 
lingo2word 0.52 
 

Table I shows the BLEU scores of tweets before and after 
normalization. The normalization process had a significant 
effect on BLEU scores, increasing the score significantly. 
The normalization process adopted by this research project 
was also compared with other systems performing similar 
functions (tranl8it which is available online at 
http://transl8it.com/ and lingo2word which is available at 
http://www.lingo2word.com/translate.php). Table II 
contains their BLEU scores. This shows off the efficiency of 
the proposed system, as it outperforms similar systems. 
Below is an example of the translations generated by the 
normalization system as compared to other systems.  
Regular Tweet: The things people do for some retweets lol 
smh 
Normalized Form: The things people do for some retweets 
laughing out loud shaking my head 
Lingo2Word: The things people do for some retweets lots 
of laughs signal message handling 
tranl8it: The things people do for some retweets lots of luck 
smh 

C. Experimental Results Conclusion 

Experiments were performed on microblogs data which is 
the rich source for analysis of slangs, acronyms and 
emoticons. From the sample tweets above, it is obvious that 
the Token Classifier Component works as intended and can 
distinguish between OOV tokens/IV tokens/MetaElements. 
The system is successful in translating the Slang OOV 
tokens into their English equivalent. The normalized system 
produces a result with a 37% increase in the BLEU score as 
compared with the un-normalized data.  

However, there are some problems with the status of 
contractions (e.g. I'm or Don’t) as either words to be 
normalized or not. The aspell dictionary which the system 
depends on for spell correction does not recognize 
contractions as out of vocabulary words. And this 
significantly reduces the BLEU score. 

Also, the ability of the system is limited by its slang 
repository, as it cannot detect a slang that is not present in 
its repository. So, as such the new system does not possess 
the ability to learn. Further, there are problems with the 
spell corrector component in the normalization system. The 
component gets more than one suggestion/candidate for 
each wrong spelling, making it difficult for the system to 
choose which the right spelling is. The checks put in place 
by the system to make sure it chooses the right candidate 
(LCS and Levenshtein distance) sometimes do fail. 

VII. CONCLUSION 

In this study, a system that normalizes internet slang in 
microblog text through direct substitution of internet slangs 
with their lexical English equivalent was developed. After 
investigating the different methods employed by other 
researches while normalizing words, this research project 
developed a system that normalizes slang words.  

An experiment was then conducted on a dataset of slang 
words thereby showing that the methods described in this 
study achieve state-of-the-art lexical normalization on 
internet slags words. And the performance of the 
normalization system was also compared with other 
previously developed normalization software, thereby 
suggesting that our results are definitely competitive. 
Possible improvements in the future could make it better 
e.g. applying it to other languages.  
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