
  

Intelligent Water Drops (IWD) Algorithm for 

COCOMO II and COQUAMO Optimization 
 

Abdulelah G. Saif, Safia Abbas, and Zaki Fayed, Member, IAENG 

 
 

Abstract—Software effort, time and quality estimation is an 

important aspect in software projects. Accurate estimates are 

required for efficiently developing software systems. Many 

estimation methods have been proposed during the last 30 

years. Among those methods, COCOMO II , the most widely 

used model due to its simplicity for estimating the effort in 

person-month and the time in months for a software project at 

different stages, and COQUAMO, the model used to estimate 

the quality of the software project in defects/KSLOC (or some 

other unit of size). Nowadays, estimation models are based on 

neural network, the fuzzy logic modeling etc. for finding the 

accurate estimation for software development effort, time and 

quality. Because there is no clear guideline for designing neural 

networks and also fuzzy logic approach is hard to use. A meta-

heuristic, Intelligent Water Drops (IWD) algorithm, can offer 

some improvements in accuracy for software effort, time and 

quality estimation. This work introduces an optimized cost-

quality model by adapting the IWD algorithm for optimizing 

the current coefficients of COCOMO II model to achieve more 

accurate estimation of software development effort and time. 

The next work applies the same thing for COQUAMO. The 

experiment has been conducted on NASA 93 software projects. 

Index Terms—COCOMO II, IWD algorithm, Software cost 
and quality estimation 

I. INTRODUCTION 

A successful software project must be completed on time, 

within budget, and deliver a quality product that satisfies 

users and meets requirements. Unfortunately, many software 

projects fail. A report by the Standish Group noted that only 

a third of all software development projects were successful, 

in terms of they met budget, schedule, and quality targets 

[1]. Software projects usually don’t fail during the 

implementation and most project fails are related to the 

planning and estimation steps.  During the last decade 

several studies have been done in term of finding the reason 

of the software projects failure. Galorath et al. performed an 

intensive search between 2100 internet sites and found 5000 

reasons for the software project failures. Among the found 

reasons, insufficient requirements engineering, poor 

planning the project, suddenly decisions at the early stages 

of the project and inaccurate estimations were the most 

important reasons [2]. So accurate software cost, time and 

quality estimation is necessary and is critical to both 

                                                 
 Manuscript submitted July 10, 2015; revised July 23, 2015. The authors 

gratefully acknowledge the support of Ain Shams University and Yemen 

government in supporting them. 

Abdulelah Ghaleb Farhan Saif is Ph.D student at Ain Shams University, 
Egypt (phone: 00201154415035; abdulelah.saif1980@gmail.com).  

Safia Abbas Mahmoed Abbas is lecturer at Ain Shams University, Egypt ( 

Safia_abbas@yahoo.com). 
Zaki Taha Ahmed Fayed is Emeritus Professor at Ain Shams University, 

Egypt ( ZFayed@hotmail.com). 

 

developers and customers. Software cost estimation is 

related to how long and how many people are required to 

complete a software project. Software cost estimation starts 

at the proposal state and continues throughout the life time 

of a project [3].The major part of cost of software 

development is the human-effort and most cost estimation 

methods focus on this aspect and give estimates in terms of 

person-month [4]. In spite of accurate planning, well 

documentation and proper process control during software 

development, occurrences of certain defects are inevitable. 

These software defects may lead to degradation of the 

quality which might be the underlying cause of failure [18]. 

Therefore, in order to manage budget, schedule and quality 

of software projects, various software estimation methods 

have been developed.  Among those methods, COCOMO II 

is the most widely used model due to its simplicity for 

estimating the effort in person-month and the time in months 

for a software project at different stages, and COQUAMO is 

the model used to estimate the quality of the software 

project in terms of defects/KSLOC (or some other unit of 

size). Today's models are based on neural network, genetic 

algorithm, the fuzzy logic modeling etc [4]. In this paper, 

the meta-heuristic, Intelligent Water Drops (IWD), is 

adapted for optimizing the current coefficients of COCOMO 

II model that estimates the effort and time required for 

developing the software project. 

 The rest of the paper is organized as follows: in section II 

architecture of the proposed model, section III COCOMO 

model, section IV related work, section V dataset 

description, section VI IWD algorithm, section VII 

assumption and representation, section VIII the proposed 

IWD algorithm, section IX results analysis and section X 

discusses and concludes the paper 

II. ARCHITECTURE of THE PROPOSED MODEL 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.  Architecture of the proposed model. 

 

This model combine COCOMO II model with 

COQUAMO Dataset 

IWD1, IWD2 

Effort Quality 

Project 

factors 

Product 

factors 
Platform 

factors 
Personnel 

factors 

COCOMOII 

Development time 

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I 
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

mailto:abdulelah.saif1980@gmail.com
mailto:%20Safia_abbas@yahoo.com
mailto:%20Safia_abbas@yahoo.com
mailto:%20ZFayed@hotmail.com


  

COQUAMO model to estimate cost, time and quality and 

allows making tradeoff between cost, time and quality, if 

needed.  

The arrows with red color show the work which is done 

in this paper; IWD1 optimizes COCOMO II coefficients, 

whereas IWD2 optimizes COQUAMO coefficients which 

will be done in the next work. 

III. COCOMO MODEL 

Constructive Cost Model (COCOMO) is one of the best-

known and best-documented software effort and time 

estimation methods [4]. It was proposed by Boehm in 1981 

and it has the following hierarchy-  

1. Model 1 (Basic COCOMO Model):- The basic 

COCOMO model computes software development 

effort and cost as a function of program size expressed 

in estimated lines of code (LOC).  

2. Model 2 (Intermediate COCOMO Model):-  

Intermediate COCOMO model computes software 

development effort as a function of program size and 

set of 15 cost drivers that include subjective assessment 

of the products, hardware, personnel and project 

attributes.  

3. Model 3 (Detailed COCOMO Model):- The detailed 

COCOMO model incorporates all characteristics of the 

intermediate version with an assessment of the cost 

driver‘s impact on each step (analysis, design, etc) of 

the software engineering process [3].   

The underlying software lifecycle is the waterfall 

lifecycle. It has been experiencing difficulties in estimating 

the cost of software developed to new life cycle processes 

and capabilities including rapid-development process model, 

reuse-driven approaches and object-oriented approaches. 

For these reasons the newest version COCOMO ІІ was 

developed. 

4. COCOMO II model:- The capabilities of COCOMO II 

are size measurement in KLOC, Function Points, or 

Object Points. COCOMO II adjusts for software reuse 

and reengineering. This new model served as a 

framework for an extensive current data collection and 

analysis effort to further refine and calibrate the model's 

estimation capabilities. This model has three sub-

models defined below [4]: 

(i) Application Composition Model: involves 

prototyping efforts to resolve potential high-risk issues 

like user interfaces, software/system interaction, 

performance, or technology maturity. It uses object 

points for sizing.  

(ii) Early Design Model: involves exploration of 

alternative software/system architectures. It involves 

use of function points for sizing and a small number of 

additional cost drivers.  

(iii) Post-Architecture (PA) Model: involves actual 

development and maintenance of a software product. It 

uses source instructions and/or function points for 

sizing, with modifiers for reuse and software breakage. 

Unfortunately not all of the extensions of COCOMO II 

are already calibrated and therefore still they are 

experimental. Only Post Architecture model is 

implemented in a calibrated software tool. COCOMO II 

describes 17 Effort Multipliers (EMs) that are used in 

the Post-Architecture model. For more information 

about COCOMO II see [4] and [17]. 

COCOMO II post architecture method calculates the 

software development effort (in person months) by using the 

following equation:  

Effort = A × (SIZE)E × 


17

1i

 EMi.      (1)  

A- multiplicative constant with value 2.94 that scales the 

effort according to specific project conditions. Size - 

Estimated size of a project in Kilo Source Lines of Code or 

Unadjusted Function Points. E - An exponential factor that 

accounts for the relative economies or diseconomies of scale 

encountered as a software project increases its size. EMi - 

Effort Multipliers. The coefficient E is determined by 

weighing the predefined scale factors (SFi) and summing 

them using following equation: 

 E = B + 0.01×  


5

1i

SFi                      (2)  

The development time (TDEV) is derived from the effort 

according to the following equation: 

 TDEV = C × (Effort)F                            (3)  

Latest calibration of the method shows that the multiplier 

C is equal to 3.67 and the coefficient F is determined is a 

similar way as the scale exponent by using following 

equation: 

F = D + 0.002 × 


5

1i

SFi                      (4)  

B=0.91,D=0.28. 

When all the factors and multipliers are taken with their 

nominal values, then the equations for effort and schedule 

are given as follows: 

Effort = 2.94 × (Size)1.1 [9]                        (5) 

Duration: TDEV = 3.67 × (Effort)3.18        (6)  

COCOMO II is clear and effective calibration process by 

combining Delphi technique with algorithmic cost 

estimation techniques. It is tool supportive and objective. 

This model is repeatable, versatile. But its limitation is that 

most of extensions are still experimental and not fully 

calibrated till now [4]. The values of effort multipliers and 

scale factors used in the implementation are taken from [4]. 

IV. RELATED WORK 

Lately many researchers have been focused on cost 

estimation field for the software projects using the AI 

techniques. But it is not possible to say that AI is 100% 

percent to estimate the costs accurately, however  the studies 

showed that the AI techniques have been more efficient in 

comparison to the algorithmic techniques. COCOMO is a 

model for cost and time estimation of the software projects 

among the algorithmic methods [14].  

Authors in [8] present study aimed at investigating the 

estimation accuracy of four widely used parametric software 

estimation models, namely COCOMO II, SEER-SEM, 

SLIM, and TruePlanning by comparing their performances 

on 51 software development projects residing in the ISBSG 

project repository. The results with regard to effort 

estimation were the accuracy levels of TruePlanning, SEER-

SEM and SLIM are alike, whereas COCOMO II scored the 

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I 
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015



  

lowest in terms of effort estimation accuracy. The 

COCOMO II follows a pessimistic approach, while the 

approach followed by the other three is optimistic. The 

results with regard to duration estimation, SEER-SEM had 

the lowest MMRE value, whereas all four methods are 

pessimistic in estimating duration. COCOMO II performed 

better in estimating the project duration than the effort. 

SEER-SEM was (relatively) successful in both effort and 

duration estimation. TruePlanning performed better in 

estimating effort than duration. The major limitation for 

their study is the partial project information in the ISBSG 

project repository. This study suggests that these models 

need improvements regarding prediction accuracy.  

In [2], authors discuss popular software cost estimation 

techniques including expert-judgment, analogy-based, 

function points, COCOMO II, neural networks and fussy 

logic and also in [9] authors discuss, in addition to previous 

methods in [2], PSO and GP in terms of their capabilities, 

strengths and weaknesses in order to project manager 

choose the best estimation method according to the 

information and data available about project to avoid project 

failures.  

In [3], authors present the strength and weakness of 

various software cost estimation methods which include 

algorithmic methods such as function points, COCOMO 81, 

COCOMO II, SLIM ,SEL, Doty, Walston-Felix, Bailey-

Basil and Halstead models and non-algorithmic methods  

such as expert-judgment, analogy-based, Top-Down, 

Bottom-up, Parkinson’s Law and Price-to-win  and perform 

a comparative analysis using COCOMO dataset among 

algorithmic models and the performance is analyzed and 

compared in terms of MMRE (Mean Magnitude of Relative 

Error) and PRED (Prediction). They also focus on some of 

the relevant reasons that cause inaccurate estimation. At the 

end, authors conclude that all estimation methods are 

specific for some specific type of projects. It is very difficult 

to decide which method is better than all other methods 

because every method or model has an own significance or 

importance. To understand their advantages and 

disadvantages is very important when we want to estimate 

our projects.  

One of the problems with using COCOMO today is that it 

does not match the development environment of recent 

times, so authors, in [10] and [11], presented a detailed 

study on the use of binary genetic algorithm as an 

optimization algorithm which provided solution to adjust the 

uncertain and vague properties of software effort drivers by 

tuning Constructive Cost Model (COCOMO) parameters in 

order to get better effort estimate. The performance of the 

developed models, in [10] and [11], was tested on NASA 

software project dataset and the developed model in [10] 

compared to the pre-existed model. The developed model in 

[10] was able to provide better estimation capabilities. 

 As today's project evaluation based on old coefficients of 

COCOMO II Post Architecture (PA) model may not match 

the required accuracy, authors in [4], use the concept of 

genetic algorithm to optimize the COCOMO II PA model 

coefficients to achieve accurate software effort estimation 

and reduce the uncertainty of COCOMO II post architecture 

model coefficients i.e. A, B, C and D. Experiments have 

been conducted on Turkish and Industry dataset and the 

results are compared between original COCOMO II PA and 

optimized COCOMO II PA . Optimized COCOMO II PA 

was better.  

In [12], author proposed a new model by combining 15 

cost drivers of intermediate COCOMO model with Walston-

Felix model to get optimum effort value and in [13], authors 

modified intermediate COCOMO model by introducing 

some more parameters to predict the software development 

effort more precisely using GA for PROMISE project 

dataset.  

In [14], authors have proposed a hybrid model based on 

GA and ACO for optimization of the effective factors’ 

weight in NASA dataset software projects. The results of the 

experiments show that the proposed model is more efficient 

than COCOMO model in software projects cost estimation 

and holds less Magnitude of Relative Error (MRE) in 

comparison to COCOMO model.  

In [15], authors have   investigate the role of fuzzy logic 

technique in improving the effort estimation accuracy using 

COCOMO II by characterizing inputs parameters using 

Gaussian, Trapezoidal and Triangular membership functions 

and comparing their results. NASA (93) dataset is used in 

the evaluation of the proposed Fuzzy Logic COCOMO II. 

After analyzing the results, it had been found that effort 

estimation using Gaussian member function yields better 

results for maximum criterions when compared with the 

other methods. 

V. DATASET DESCRIPTION  

Experiments have been conducted on NASA 93 data set 

found in [5] to optimize effort and time. The dataset consist 

of 93 completed projects with its size in kilo line of code 

(KLOC) and actual effort in person-month and development 

time in months. Effort multipliers and scale factors rating 

from Very Low to Extra High are also given in this dataset.  

VI. INTELLIGENT WATER DROPS (IWD) 

ALGORITHM 

IWD is swarm-based optimization algorithm which has 

been inspired from natural rivers that find optimal/nearly 

optimal paths to their destination. IWD finds optimal/ nearly 

optimal solutions for optimization problems, by simulating 

the mechanisms that happen in the natural river system and 

implementing them in the form of algorithm [6]. It depends 

on both static and dynamic parameters, such as, iteration 

number, water drops number, number of nodes, initial soil, 

initial velocity, soil updating parameters, velocity updating 

parameters, local and global soil updating parameters, soil 

of edge, visited node list and IWD velocity. IWD represents 

the problem in the form of a graph G = (V, E), with the set 

of nodes V, and the set of edges E [6, 7].  

VII.  ASSUMPTION and REPRESENTATION 

IWD is first invented for combinatorial optimization 

problems, and there is only one paper [16] modifies it to be 

used for continues optimization problems with binary 

coding of edges. In order to use IWD for continues 

optimization problems such as optimizing the COCOMO II 

Post Architecture model and maintaining the original 

structure of IWD, the coefficients of COCOMO II PA 

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I 
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015



  

soil soil soil soil soil soil soil soil 

.. 

l 

 .. 

 

 

 

.. 

 

 

 

... 

 

 

model, A, B, C and D, are assumed to be represented by the 

following graph via adding virtual nodes numbered from 0 

to 9 and connecting those nodes to each coefficient as in 

figure 2.  

Each of the four coefficients is expressed by 4 digits 

which are chosen among 10 digits by IWD algorithm 

according to minimum probabilities; First digit is integral 

part of a coefficient and the remaining 3 are fractions part.  

The soils are placed on the virtual edges between 

coefficients and digits as in figure 2. 

  

 

 

 

 

 

 
Fig. 2.  Coefficients representation. 

VIII. THE PROPOSED IWD ALGORITHM: 

To optimize the COCOMO II PA model coefficients, The 

main steps of proposed  IWD algorithm are in figure 3. 

IX. RESULT ANALYSIS 

IWD parameters initial values:  Number of IWDs=5, 

Initial Soil=10000 , velocity=100, local and global soil 

updating parameters=0.9,  av = 1,bv = 0.01, cv = 1,as = 1,bs 

= 0.01 and cs = 1.  

The best result is achieved using 10000 iterations and a 

solution set is received from which the best solution is 

chosen i.e. a solution with the best fitness function values 

(FitnessEffort, FitnessTime). The final best solution 

obtained for coefficients is: 3 7 6 2 | 1 0 0 5 | 4 4 8 4 | 0 2 8 8 

According to this solution, the resulting optimized 

COCOMO II PA model coefficients are the following: 

A=3.762, B=1.005, C=4.484 and D=0.288. Current 

COCOMO II PA model coefficients are the following: 

A=2.94; B=0.91; C=3.67; D=0.28. 

Tables, table I and table II, show the comparison among 

the actual, effort and time, values and estimated, effort 

(person month) and time (months), values for the first ten 

project dataset using IWD algorithm optimized and current 

COCOMO II PA model coefficients with their estimated 

project size. 

 

1. Set parameters and determine dataset  

2. Initialize the soils of virtual edges between coefficients 

and their digits.  

3. While (termination condition not met) do  

4. IWDs are placed on the first node i.e. coefficient A 

and move to the next until it reaches node D.  

5. IWDs choose 4 digits among 10 digits as values for 

coefficients according to minimum probabilities and 

add the digits to their visited lists. If there is no 

improvement in one of the fitness functions 

(FitnessEffort) in step 10, IWDs choose 4 digits for 

each coefficient randomly. 

6. IWDs update their velocity. 

7. IWDs update soils on edges between coefficients and 

chosen digits and load some soils according to IWD 

algorithm equation 4 in [6]. 

8. Calculate estimated development effort and time for 

each project j in the dataset using the values of 

coefficients chosen by IWDs. 

9. Each IWD i calculates Magnitude of Relative Error 

(MRE) for each project j, the equations used for 

effort and time, respectively are: 

FitnessEij=|ActualEj– EstimatedEij | / ActualEj   (7) 

            FitnessTij=|ActualTj– EstimatedTij | / ActualTj   (8). 

            i - the IWD number, 

            j – the project number, 

           ActualEj – the actual software project effort,  

           EstimatedEij -  the estimated software project effort  

           using IWD i,   

           ActualTj - the actual software project time and  

           EstimatedTij - the estimated software project time. 

10. The fitness functions ( Mean Magnitude of Relative 

Error MMRE) for effort and time are calculated as 

the average value of all projects specific fitness 

values calculated during steps 8 and 9 which depends 

on the difference between real and estimated effort 

and time. So, the fitness functions values should be 

minimized.  

            FitnessEffort= 1/n * 


n

j 1

 FitnessEij                  (9)  

            FitnessTime = 1/n * 


n

j 1

 FitnessTij                  (10) 

11. Find the iteration best solution.  

12. Update the soils of virtual edges that form current 

best solution according to IWD equation 6 in [6]. 

13. End while. 

14. Return the values of coefficients and the estimated 

effort and time. 

Fig. 3.  Proposed IWD algorithm. 

 

The graphical comparison among effort values and 

among time values described in table I and table II, 

respectively is shown in figure 4 and figure 5, respectively. 

 

 

 

 

 

A B 
 

C 
 

D 

9 0 9 0 9 0 9 0 

TABLE I:  ESTIMATED DEVELOPMENT EFFORT VALUES 

Pr 

.No 

Project 

 Size  
(KLOC) 

 

Actual  

Effort  
(PM) 

Calculated 

Effort (PM)  
using coefficients 

optimized by IWD  

 

Calculated  

Effort (PM) using 
COCOMO II PA  

Model current  

coefficients  
 

1 25.9 117.6 103.5313 59.39319 

2 24.6 117.6 98.30942 56.67413 

3 7.7 31.2 30.59345 19.6943 

4 8.2 36 32.59029 20.85473 

5 9.7 25.2 38.58433 24.29943 

6 2.2 8.4 8.686406 6.29852 

7 3.5 10.8 13.8514 9.610275 

8 66.6 352.8 267.4835 140.2799 

9 7.5 72 36.84718 23.77946 

10 20 72 33.31659 19.58805 

 

 

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I 
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015



  

 

Comparison among actual, optimizd and COCOMO II 

model effort values vs estimated project size in KLOC

0

50

100

150

200

250

300

350

400

25.9 24.6 7.7 8.2 9.7 2.2 3.5 66.6 7.5 20

Progect Size (KLOC)

E
ff

o
rt

 (
P

M
)

Actual Effort

Optimized Effort(IWD)

COCOMO II Model

Effort

 
Fig. 4.   Comparison among Effort values vs. Size. 

 

Comparison among actual, optimizd and COCOMO II 

model time values vs estimated project size in KLOC

0

5

10

15

20

25

25.9 24.6 7.7 8.2 9.7 2.2 3.5 66.6 7.5 20

Progect Size (KLOC)

T
im

e
 (

M
o

n
th

s
)

Actual Time

Optimized Time(IWD)

COCOMO II Model

Time

                  
Fig. 5.  Comparison among Time values vs. Size. 
 

Table III and figure 6 compare the MMRE (Mean 

Magnitude of Relative Error) and PRED (.25) which show 

the performance of IWD and COCOMO II in estimating the 

effort and time for the whole dataset. 

MMRE =
n

1
 * 



n

j 1 j

jj

 Actual

 | Estimated - Actual| 
         (11) 

MREj =
Actualj

|Estimatedj-Actualj|
                             (12) 

 

PRED (p) = k / n                                                          (13) 

 k is the number of projects where MRE  is less than or 

equal to p, and n is the total number of projects. 

 

 

 

 

 

Performance Comparison

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MMRE_Efoort MMRE_Time PRED

(0.25)_Effort

PRED

(0.25)_Time

IWD

COCOMO

I I

 
Fig. 6.  Performance measure comparison. 

 

From table III and figure 6, the MMRE of IWD for effort 

and time is lower than that of COCOMO II and PRED(0.25) 

of IWD for effort and time is larger than that of COCOMO 

II. 

It shows clearly that optimized coefficients by IWD 

algorithm produces more accurate results than the old 

coefficients. So, IWD algorithm can offer some significant 

improvements in accuracy and has the potential to be a valid 

additional tool for the software effort and time estimation. 

X. DISCUSSION and CONCLUSION 

This paper adapts IWD algorithm for optimizing 

COCOMO II coefficients. The proposed algorithm is tested 

on NASA 93 dataset and the obtained results are compared 

with the ones obtained using the current COCOMO II PA 

model coefficients. The proposed model is able to provide 

good estimation capabilities. It is concluded that  

 By having the appropriate statistical data describing 

the software development projects, IWD based 

coefficients can be used to produces better results in 

comparison with the results obtained using the 

current COCOMO II PA model coefficients.  

 The results show that, in the sample projects taken 

from the dataset, the results obtained using the 

coefficients optimized with the proposed algorithm 

are better than the ones obtained using the current 

coefficients.  

 The results also shows that in the sample projects 

taken from the dataset, the results obtained using the 

coefficients optimized with the proposed algorithm 

are close to the real effort and time values.  

 The results also shows that in the whole dataset, the 

MMRE of  IWD is less than that of COCOMO II and 

PRED(0.25) is larger than that of COCOMO II.  

In the future work or the next paper, we adapt IWD 

algorithm for optimizing the coefficients of COQUAMO 

model to complete the implementation of the proposed 

model.  

TABLE II:  ESTIMATED DEVELOPMENT  TIME  VALUES 

Pr. 

No 

Project  

Size 

(KLOC) 
 

Actual  

Time 

(Months) 

Calculated  

Time  

(Months)  
Using coefficients  

Optimized by IWD  

 

Calculated 

Time 

(Months)  
using  

COCOMO II PA 

model current  
coefficients  

 

1 25.9 15.3 17.06107 10.5749 

2 24.6 15 16.80866 10.43705 

3 7.7 10.1 12.00955 7.76328 

4 8.2 10.4 12.23024 7.888731 

5 9.7 11 12.83961 8.233734 

6 2.2 6.6 8.357022 5.641787 

7 3.5 7.8 9.559073 6.350325 

8 66.6 21 22.42472 13.45205 

9 7.5 13.6 12.67039 8.184016 

10 20 14.4 12.30812 7.75153 

 

 

TABLE III:  PERFORMANCE MEASURE COMPARISON 

Results IWD COCOMO II 

MMRE for Effort 0.47 0.6 

MMRE for Time 0.09 0.43 

PRED (.25) for Effort 0.42 0.09 

PRED (.25) for Time 0.95 0.06 

 

 

 

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I 
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015



  

REFERENCES 

[1] Gary B. Shelly, Harry J. Rosenblatt, “Systems Analysis and Design 
Ninth Edition”, Shelly Cashman Series®, 2012. 

[2] Vahid Khatibi, Dayang N. A. Jawawi, “Software Cost Estimation 

Methods: A Review ”, Volume 2 No. 1, Journal of Emerging Trends 
in Computing and Information Sciences, 2011. 

[3] Sweta Kumari , Shashank Pushkar, “Performance Analysis of the 

Software Cost Estimation Methods: A Review ”, International Journal 
of Advanced Research in Computer Science and Software 

Engineering, Volume 3, Issue 7, July 2013. 

[4] Astha Dhiman, Chander Diwaker, “Optimization of COCOMO II 
Effort Estimation using Genetic Algorithm”, American International 

Journal of Research in Science, Technology, Engineering & 
Mathematics, 2013. 

[5] Nasa 93 dataset  contains effort and defect information available at 

http://promisedata.googlecode.com/svn/trunk/effort/nasa93-
dem/nasa93-dem.arff. 

[6] Hamed Shah-Hosseini, “The intelligent water drops algorithm: a 

nature-inspired swarm-based optimization algorithm”, Int. J. Bio-
Inspired Computation, Vol. 1, Nos. 1/2, 2009. 

[7] Priti Aggarwal,  Jaspreet Kaur Sidhu,  Harish Kundra, “applications 

of intelligent water drops” , IISRO, Multi-Conference, Bangkok, 
2013. 

[8] Derya Toka, Oktay Turetken, “Accuracy of Contemporary Parametric 

Software Estimation Models: A Comparative Analysis”, 2013 39th 
Euromicro Conference Series on Software Engineering and Advanced 

Applications. 

[9] K.Ramesh and P.Karunanidhi, “Literature Survey on Algorithmic and 
Non- Algorithmic Models for Software Development Effort 

Estimation”, International Journal of Engineering and Computer 

Science ISSN: 2319-7242, Volume 2, Issue 3, March 2013, Page No. 
623-632. 

[10] Brajesh Kumar Singh, A. K. Misra, “ Software Effort Estimation by 

Genetic Algorithm Tuned Parameters of Modified Constructive Cost 
Model for NASA Software Projects”, International Journal of 

Computer Applications (0975 – 8887), Volume 59– No.9, December 

2012. 
[11] Alaa F. Sheta, “Estimation of the COCOMO Model Parameters Using 

Genetic Algorithms for NASA Software Projects”, Journal of 

Computer Science 2 (2): 118-123, 2006. 
[12] Kavita Choudhary, “GA Based Optimization of Software 

Development Effort Estimation”, IJCST Vol. 1, Issue 1, September 

2010. 
[13] Chandra Shekhar, Yadav, Raghuraj Singh, “Tuning of COCOMO II 

Model Parameters for Estimating Software Development Effort using 

GA for PROMISE Project Data Set”,  International Journal of 
Computer Applications (0975 – 8887) Volume 90 – No 1, March 

2014. 

[14] Isa Maleki, Ali Ghaffari, and Mohammad Masdari, “A New 
Approach for Software Cost Estimation with Hybrid Genetic 

Algorithm and Ant Colony Optimization”, International Journal of 

Innovation and Applied Studies ISSN 2028-9324 Vol. 5 No. 1 Jan. 
2014, pp. 72-81. 

[15] Ashita Malik, Varun Pandey, Anupama Kaushik,  “An Analysis of 

Fuzzy Approaches for COCOMO II”,  I.J. Intelligent Systems and 
Applications, 2013, 05, 68-75 Published Online April 2013 in MECS 

(http://www.mecs-press.org/). 

[16] Hamed Shah-Hosseini, “An approach to continuous optimization by 
the Intelligent Water Drops algorithm, 4th International Conference of 

Cognitive Science (ICCS 2011). 

[17] “COCOMO II Model definition manual, version 2.1”, 1995 – 2000 
Center for Software Engineering, USC. 

[18] Mrinal Singh Rawat, Sanjay Kumar Dubey, “Software Defect 

Prediction Models for Quality Improvement: A Literature Study”, 
IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 

5, No 2, September 2012.  

 

 

 

 

 

 

 

 

 

 

 

 

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol I 
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-19253-6-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

http://promisedata.googlecode.com/svn/trunk/effort/nasa93-dem/nasa93-dem.arff
http://promisedata.googlecode.com/svn/trunk/effort/nasa93-dem/nasa93-dem.arff



