
 

 

Abstract—Genetic Algorithm (GA) is a popular stochastic 

optimization technique, often used to solve complex large scale 

optimization problems in many fields. Enhancing the search 

capability of GA is always desirable. In this paper, an 

innovative GA, called adaptive restarting GA, is developed to 

improve the global search capability of the algorithm. With an 

adaptive restarting procedure and elite chromosome strategy, 

the proposed GA is capable of jumping out of the local optima 

and finding the global optimum with very high success 

probability. Two benchmark functions are used to demonstrate 

the outperformance of the proposed GA, in comparison with 

five other algorithms available in global optimization literature, 

including the traditional GA.  

 
Index Terms—Genetic algorithm, adaptive restarting 

procedure, elite chromosome, global optimization 

I. INTRODUCTION 

LOBAL optimization, referred as finding the best 

solution to an optimization problem which may have 

multiple local optima, is desirable in many fields such as 

engineering design, computer science, operations research, 

biomedicine, computational chemistry, etc. [1-3]. Generally, 

there are two classes of global optimization methods, 

namely, deterministic methods and stochastic methods [4]. 

Each class has strengths and weaknesses. Deterministic 

methods can guarantee the global optimal solutions for 

certain problems; however, they may fail when coping with 

black-box and large scale problems. Stochastic methods, on 

the other hand, are capable of working with any kind of 

problem but they have weak theoretical guarantee of global 

solutions. Stochastic methods only provide the global 

optimal solutions with guarantee in probability which will 

approach 1 in infinite time [5, 6]. Nevertheless, there is no 

algorithm capable of solving general global optimization 

problem with certainty in finite time [7]. 

Genetic Algorithm (GA) is a popular stochastic 

optimization method, often used to solve complex large 

scale problems [8]. GA has several advantages such as 

capability of handling large search space, ability to work 

with both continuous and discrete variables, flexibility in 

defining  quality  measures  and   constraints,   capability   of 
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providing multiple optimal/good solutions, and  great 

potential for applying parallel computing techniques to 

shorten the processing time [9]. However, like the other 

stochastic optimization techniques, GA provides a weak 

guarantee of the global optimal solution; this guarantee is in 

probabilistic form only and it will decrease when the 

problem size increases [10]. Having a GA capable of finding 

the global optimal solution with high success probability is 

always desirable. In this paper, an innovative algorithm 

structure allowing GA to restart the searching process if it is 

stuck in local optima is proposed to improve the success 

probability of achieving the global optimal solution. 

II. LITERATURE REVIEW 

GA is a bio-inspired optimization technique, first 

introduced by Holland [11]. GA has five main components, 

namely, chromosome encoding, crossover, mutation, 

evaluation and selection. Traditional structure of GA is 

shown in Fig. 1 and it is generally described as follows: 

“Genetic algorithm … starts with an initial set of random 

solutions called population. Each individual in the 

population is called a chromosome representing a solution 

to the problem at hand… The chromosomes evolve through 

successive iterations, called generations. During each 

generation, the chromosomes are evaluated using some 

measures of fitness. To create the next generation, new 

chromosome, called offspring, are formed by either (a) 

merging two chromosomes from current generation using a 

crossover operator or (b) modifying a chromosome using a 

mutation operator. A new generation is formed by (a) 

selecting, according to the fitness values, some of the parents 

and offspring and (b) rejecting others so as to keep the 

population size constant. Fitter chromosomes have higher 

probabilities of being selected. After several generations, the 

algorithms converge to the best chromosome, which 

hopefully represents the optimum or suboptimal solution to 

the problem” [12]. 

Since being introduced in 1975, a lot of developments in 

the five components of GA have been made, for example, 

real encoding [13], variable length chromosome [14], multi-

point crossover [15], adaptive directed mutation [16], 

uniform/non-uniform mutation [17], multi-objective 

evaluation [18], tournament selection [19], dynamic ranking 

selection [20], etc. In addition, the traditional structure of GA 

has been improved to so called hybrid GA in some research, 

where other heuristic algorithms such as Hill Climbing, 

Simulated Annealing, Ant Colony Optimization, Particle 

Swarm Optimization, etc. were integrated into the GA [21-
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24]. However, implementing the hybrid GA is quite 

complicated while its capability to explore the search space 

is still limited because the evolutionary process of the 

obtained solution starts from only one set of initial random 

solutions. 

 

 
Fig. 1: Traditional structure of GA (adopted from [12]) 

 

One simple but effective way to enhance the exploration of 

metaheuristics in general and GA in particular is a procedure 

called multi-start [25, 26]. A basic multi-start procedure is 

simply to run the algorithm multiple times and then pick the 

best solution among those found over all runs [25, 27]. 

Certainly, this procedure can help GA improve the 

probability of jumping out of the local optima and finding the 

global optimal solution. However, this traditional multi-start 

GA is not very efficient, especially when dealing with large 

scale optimization problems which usually require a great 

amount of computing time. A more advanced multi-start GA 

has been developed by Beasley, Bull & Martin [28], in which 

the GA was sequentially run for a number of times and each 

run would terminate if either no improvement in average 

fitness value is made after a certain number of generations or 

the maximum number of generations is reached. 

Nevertheless, the effect of elite chromosomes which are 

guaranteed to pass from one generation to the next was not 

addressed there yet.   

To overcome the above limitations, this paper proposes a 

so called adaptive restarting GA which is not only capable of 

restarting the search process if being trapped in local optima 

but also taking advantage of the elite chromosomes to 

enhance the probability of finding the global optimal 

solution. Detail of the proposed adaptive restarting GA will 

be explained in the next Section. 

III. PROPOSED GENETIC ALGORITHM 

This paper mainly focuses on developing an innovative 

structure for GA. Therefore, the traditional binary 

chromosome encoding, crossover, mutation and selection as 

illustrated in Fig. 1 are adopted herein. It should be noted 

that there have been so many types of chromosome 

encoding, crossover, mutation as well as selection developed 

so far in the GA literature, and choosing the most 

appropriate type is normally a problem-dependent issue. In 

contrast, the proposed GA structure as shown in Fig. 2 is a 

general structure applicable to any problem. 
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Fig. 2: Structure of the proposed GA 

 

As can be seen from Fig. 2, there are two loops in the 

proposed adaptive restarting GA. The smaller loop is in 

essense a traditional GA, which involves genetic operators: 

crossover, mutation, evaluation and selection. It is noted that 

the value i in Fig. 2 represents the current number of 

generations of the GA in the smaller loop, within which the 

best solution obtained is not improved; while the value j is 

the current generation of the proposed adaptive restarting 

GA. In the bigger loop, the GA in the smaller loop is 

restarted with some top quality chromosomes achieved so 

far. The two loops are controlled by two termination criteria 

a and g which represent the adaptive restarting condition and 

the maximum number of generations of the proposed GA, 

respectively. 

It should be noted that the traditional roulette wheel 

selection with a small modification is used herein, in which 

one chromosome in each generation is selected, at most one 

time, for the next generation to diversify the population. The 

exploration and exploitation of the proposed adaptive 

restarting GA can be balanced by appropriate parameters 

selected by users like population size (p), crossover rate (c), 

mutation rate (m), adaptive restarting considtion (r) and elite 

chromosomes which are guaranteed to pass to the next 

generation (e). It is noted that the parameters c and m in this 

paper are in terms of the number of chromosomes going 

through the crossover and mutation operations, respectively.  

The robustness of the proposed adaptive restarting GA 

will be demonstrated in the next Section. 
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No. Function Dimension Global minimum No.of.obj.fun. 

evaluations

Accuracy SDA [29] BFA [29] HSDBC-R [29] HSDBC-S [29] Traditional GA Proposed GA

1 Hump (F1) 2 -1.03 80000 Best 0.00 0.00 0.00 0.00 -1.03 -1.03

Mean 0.00 0.00 0.00 0.00 -0.99 -1.03

Std.deviation 0.00 0.00 0.00 0.00 0.05 0.00

2 Rastrigin (F2) 15 0.00 80000 Best 22.06 42.49 22.03 14.92 36.66 1.35

Mean 56.23 71.77 44.53 49.85 62.31 6.38

Std.deviation 21.41 10.05 14.00 29.84 14.91 2.42

Table 3: Performance comparison

No. Name Dimension Function Range Global minimum

1 Hump (F1) 2 -1.03

2 Rastrigin (F2) 15 0.00

Table 1: Benchmark functions (adopted from [29])

IV. PERFORMANCE TESTING 

A. Benchmark Functions  

Two benchmark functions with different complexities 

were used to test the performance of the proposed adaptive 

restarting GA. Details of the two benchmark functions 

adopted from Nasir and Tokhi [29] are shown in Table 1. 

Both functions have multiple local optima and proven 

theoretical global optima as shown in Table 1. The first 

function (F1) is a two-dimensional function while the second 

one (F2) is much more complex, with 15 dimensions. 

 

B. Results and Discussions 

The proposed adaptive restarting GA was implemented in 

Matlab to solve the two benchmark functions and its selected 

parameters are given in Table 2. Performances of the 

proposed GA as well as five other algorithms are shown in 

Table 3. It is noted that the performances of four algorithms, 

namely, Spiral Dynamic Algorithm (SDA), Bacterial 

Foraging Algorithm (BFA), Hybrid Spiral-Dynamic 

Bacteria-Chemotaxis algorithm (type R) named HSDBC-R, 

and Hybrid Spiral-Dynamic Bacteria-Chemotaxis algorithm 

(type S) named HSDBC-S, for solving the two benchmark 

functions have been reported in Nasir and Tokhi [29]. 

Therefore, to make a fair comparison, the maximum number 

of objective function evaluations of the proposed GA was 

set exactly the same as in the publication of Nasir and Tokhi 

[29] as indicated in Table 3. In addition, a traditional GA, 

which is exactly the same as the proposed GA except two 

things: (1) no restarting procedure and (2) no guarantee of 

passing elite chromosome(s) from one generation to the 

next, was also used herein to verify the effectiveness of the 

proposed GA. Each algorithm was run for 30 times and their 

performances in terms of best fitness value (called Best), 

average of fitness values (called Mean), and standard 

deviation of fitness values (called Std.deviation) are 

provided in Table 3. 

 

Table 2: Parameters of the proposed GA 

p c m r e

80 90 6 5 7  
 

As can be seen from Table 3, the first four algorithms, i.e. 

SDA, BFA, HSDBC-R and HSDBC-S were always stuck in 

the local optimum when solving the benchmark function 

(F1); while the traditional GA performed much better, with 

average fitness value of -0.99 and achieving the global 

minimum with fitness value of -1.03 most of the times. 

However, the proposed GA could find the global minimum 

with success probability of 100%. 

Regarding the benchmark function (F2) which is much 

more complex than the function (F1), no algorithm could 

find the global minimum, with the total number of objective 

function evaluations of 80000, as indicated in Table 3. 

Nevertheless, the traditional GA provided better solutions 

compared to BFA; while SDA, HSDBC-R and HSDBC-S 

performed better than the traditional GA. More importantly, 

the proposed GA outperformed all of the five algorithms in 

all measures: Best, Mean as well as Std.deviation, as shown 

in Table 3. The best solution obtained by the proposed GA 

in 30 runs has fitness value of 1.35, very close to the global 

minimum of 0.00; while SDA, BFA, HSDBC-R and 

HSDBC-S achieved the best solutions with fitness values of 

22.06, 42.49, 22.03, 14.92 and 36.66, respectively. 

Regarding the average of fitness values obtained, the 

proposed GA performed 88.7,  91.1, 85.7, 87.2 and 89.8% 

better compared to SDA, BFA, HSDBC-R, HSDBC-S and 

traditional GA, respectively. In terms of consistency, the 

proposed GA was also much better compared to the five 

algorithms, indicated by quite small standard deviation of 

the fitness values achieved in 30 runs, as shown in Table 3.  

Based on the results in Table 3, it can be concluded that 

the proposed GA outperforms SDA, BFA, HSDBC-R, 

HSDBC-S and traditional GA. For small scale problems like 

benchmark function (F1), the proposed GA is capable of 

jumping out of the local optima and always finding the 
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global optimum. For large scale and complex problems like 

benchmark function (F2), with 80000 objective-function 

evaluations, all six algorithms including the proposed GA 

could not find the global minimum. However, only the 

proposed GA could achieve solutions which are very close 

to the global optimal solution. It would be interesting to see 

how the proposed GA will perform if the number of 

objective-function evaluations is increased. To answer this 

question, further investigation of the performance of the 

proposed GA for solving the benchmark function (F2) is 

attempted herein; the results are given in Table 4 and Fig. 3. 

Obviously, the proposed GA is capable of finding the global 

minimum if the number of objective function evaluations is 

increased. 

 

Table 4: Global search capability testing 
Test function Dimension Global minimum No.of.obj.fun. 

evaluations

Accuracy Proposed GA

Rastrigin (F2) 15 0.00 160000 Best 0.16

Mean 2.48

Std. deviation 1.42

320000 Best 0.00

Mean 0.51

Std. deviation 0.69

640000 Best 0.00

Mean 0.00

Std. deviation 0.01  
 

 

 
Fig. 3: Visualization of the proposed GA performance (F2) 

V. CONCLUSION 

In this paper, a so called adaptive restarting GA has been 

proposed for the global optimization. With the developed 

adaptive restarting procedure and elite chromosome strategy, 

the proposed GA is capable of jumping out of the local 

optima and finding the global optimum with very high 

success probability.  

The performance of the proposed GA has been tested and 

compared with five other algorithms, namely, SDA, BFA, 

HSDBC-R, HSDBC-S as well as traditional GA for solving 

two global optimization problems. In the first problem, a 

small scale one, the proposed GA always found the global 

optimum with 80000 objective-function evaluations, while 

the five other algorithms could not. In the second problem, a 

large scale one, no algorithm among the six could achieve 

the global optimum, with 80000 objective-function 

evaluations. However, the proposed GA still performed 

88.7, 91.1, 85.7, 87.2 and 89.8% better, in terms of average 

of fitness values obtained in 30 runs, compared to SDA, 

BFA, HSDBC-R, HSDBC-S and traditional GA, 

respectively. In addition, the proposed GA’s capability of 

finding the global solution to this large scale problem, if the 

number of objective function evaluations is increased, has 

been confirmed.  

In future work, the authors would test and evaluate the 

robustness of the proposed GA for solving large-scale 

constrained optimization problems.   
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