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Abstract—It is estimated that more than 60% of the infectious
diseases in humans can be passed from animals. But, research
in the past few decades had been focused on human-to-
human disease transmission. Wide range of mathematical and
epidemiological models have been developed. However, despite
the development of these computational models in the area of
infectious diseases research, modeling for understanding and
controlling animal-to-human or animal-to-animal (of different
species) disease transmission is lacking. Here, we propose
a multicompartment model, which takes human and animal
or different species of animals interactions into account. We
further formulate compartment model with clustering—this
can be used in a large population with diverse geographical
locations—to obtain an optimal parameter estimations with
less computational complexity. We also develop a multivarate
state-space model, which enables us to capture features of
data such as diseases variability, meteorological conditions, time
variations, and measurement errors. Our approaches can be
used for various types of transmitted diseases including Ebola,
MERS-Coronavirus, Bird flu, tuberculosis and other zoonotic
diseases.

Index Terms—Animal-to-Human, multicompartment model,
disease transmissions, state-space model.

I. INTRODUCTION

IT is estimated that more than 60% of the infectious
diseases in humans can be passed from animals. Recent

research findings on MERS-Coronavirus and Ebola virus,
for example, show that the viruses appear to pass from
animal to human. The largest Ebola virus outbreak in West
Africa can be transmitted through direct animal-to-human
contacts (e.g., from bats, apes, monkeys, etc.). Similarly,
MERS-Coronavirus can be transmitted from camel to human.
The widespread of Bird flu, tuberculosis and other zoonotic
diseases can be passed between animals and humans.

Worldwide effort has been done to combat the global
spread of infectious diseases. To better understand the dy-
namics of epidemics, it is important to study potential
transmission routes. Wide range of computational models,
which provide analytical framework for quantifying and
understanding infectious diseases outbreaks [1], have been
developed. Modern and traditional computational methods,
ranging from basic to advanced mathematical and epidemi-
ological approaches[2], [12], have been used to modeling
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Fig. 1. Basic epidemic models

human-to-human disease transmission dynamics. Compart-
ments for discrete Tuberculosis model have been developed
[19].

However, despite the development of these computational
modeling in the area of infectious diseases research, mod-
eling for understanding and controlling animal-to-human or
animal-to-animal (of different species) disease transmissions
is lacking. Here, we propose a multicompartment model,
which takes human and animal or different species of animals
into account [3], [9].

We formulate compartment models with clustering for pa-
rameterizing and characterizing transmission rates in a pop-
ulation with diverse geographical locations—to determine
an optimal parameter estimations with less computational
complexity.

Features of data such as behavioral processes, meteoro-
logical conditions, demographics, irregular time variation,
disease variability, and measurement error variations make
modeling complex and uncertain [5], [6], [7], [8], [17], [18].
We propose a multivarate state-space modeling approach to
account these variations—State-space modeling is a powerful
and flexible approach that incorporates and captures multi-
sourced features of data [11], [12], [13].

II. BACKGROUND

We first describe the basic epidemic models and univariate
state-space frameworks and their assumptions. Next we ex-
tend these approaches and formulate multicompartment and
multivariate state space models.

A. Basic Epidemic Models

We describe and present the standard epidemic mod-
els, Susceptible-Infective-Susceptible (SIS), Susceptible-
Infective-Recovery (SIR), and Susceptible-Expose-Infective-
Recovery (SEIR), as Fig. 1.

• Susceptible: individual/host is susceptible to infection:
no pathogen is present.

• Exposed: the host may or may not exhibit obvious signs
of infection.
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TABLE I
SUMMARY OF NOTATIONS

Parameter Description

β Transmission rate between susceptible and infectious
γ Recovery rate

SA(0) Initial number of susceptible animals
IA(0) Initial number of infectious animal
SH(0) Initial number of infectious human

• Infectious: Host encounters infectious individual and
becomes infected.

• Recovered: The host is either no longer infectious or
removed/ dead. [14]

SIS, SIR, and SEIR models, which are commonly used to
model human-to-human diseases transmission, have similar
differential equation expressions. In this paper we use the
SIR model as a background to our approaches. The basic
equations of SIR models are as follows:

dS

dt
= −β IS

N
(1)

dI

dt
= β

IS

N
− γI (2)

dR

dt
= γI (3)

here St = S, It = I , and Rt = R represent for the
numbers of susceptible, infection, and recovery. The SIR
model can also be used for modeling animal-to-animal of
a single-species.

We introduce some assumptions: We assume that the
human-to-human transmission and contact rates change with
time in large population size. Weekly or monthly time
dependent rate in small communities is assumed (i.e. daily
contact rate in small areas such regions, cities, rural and
urban may not change).

B. Dynamical Systems and Univarate State-Space Models

Dynamical systems are systems that change over time
such that their current states are some how dependent upon
their previous states. The term state-space model corre-
sponds to a general way of representing dynamic relations
of unobserved/latent state processes and observations of
these relations, which are often made at different points in
time. Hidden markov model, State-space model with discrete
state variable, has been used to detect prospective diseases
outbreaks [15].

State-space models help to estimate and predict optimal
control strategies with flexible frameworks. It can be used to
model univariate or multivariate dynamic systems.

• xt Measurements or unobserved/latent state process,
which can incorporate measurement errors (wt) in a
model.

• yt: Observations, which is conditionally independent of
the past given xt. It assumes Gaussian noise, vt

The standard equations of univarate state-space models are
described as follows:

xt = f(xt−1, wt) (4)
yt = g(xt, vt) (5)

Fig. 2. Hidden Markov Chain: State-space model with discrete state
variable framework

Fig. 3. Possible population interactions and transmission routes.

where f(.) and g(.) can be linear or nonlinear functions.
wt and vt follow Gaussian univarate normal(N) distribution,
with mean zero and constant variance,

wt ≈ N(0, d)

vt ≈ N(0, r)

x0 ≈ N(λ, θ).

x0 is the univarate initial state distribution. d, r, λ, and θ
are parameters. Three sub-models of a univariate state-space
models have been proposed, namely:

• Gauss-linear forward and observation model: when both
f(.) and g(.) are linear.

• Nonlinear forward and Gausslinear observation model:
when f(.) is nonlinear and g(.) is linear.

• Nonlinear forward and observation model: when both
f(.) and g(.) are nonlinear [16].

III. MULTICOMPARTMENT MODELING

The SIR models can be redefine to implement animal-to-
human and animal-to-animal of different species.

A. Epidemic models for Animal-to-Human: Eboal as cases
study

Consider a susceptible bushmen who travel regularly to a
particular forest, which are widely available in West Afirca.
Assume there are a large number of Ebola infected animals
such as bats or apes or monkey or others living in the
forest. Then the possible transmission model for single-
specie animals (A) to the bushmen (H) (SH , SA and IA
labeled as the number of susceptible bushmen, number of
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Fig. 4. Possible population interactions and transmission routes.

single-specie susceptible and infected animals respectively)
would be as follows

d(SH + SA)

dt
= −β (SH + SA)IA

NA +NH
(6)

dIA
dt

= β
(SH + SA)IA
NA +NH

− γIA. (7)

The SIR models can be redefine to implement animal-to-
animal of multiple species (E.g., for transmission from bats-
to-apes or from apes-to-monkeys or from bates-to-monkeys
or multiple interactions etc.).

B. Epidemic Models with Clustering

dSi

dt
= −

∑
βi
SiIi
Ni

(8)

dIi
dt

=
∑

βi
SiIi
Ni

− γiIi (9)

dRi

dt
= γiIi (10)

Where the notations are similar with that of in equations (1)-
(3). We simple split one large population into subpopulation/
clusters, labeled as cluster i. The clustering approach enables
us to find an optimal transmission and recovery parameters.

Our approach can be also used to estimate parameters in
case of transmission variations (e.g., during school period
and summer breaks, during some events such weeding,
church days, shopping days, when a large group of people
meet).

IV. MULTIVARIATE STATE-SPACE MODELING

We formulate a multivariate state-space model of SIR,
which takes the form

Xt = (S, I,R)t (11)
Xt = f(Xt−1,Wt) (12)
Yt = g(Xt, Vt). (13)

Where f(.) and g(.) can be linear or nonlinear forms. Wt

and Vt are measurement and observation errors, which follow

Fig. 5. Highlight of selected terms and features of infectious diseases

multivarate normal (MVN) distribution,

Wt ≈ MVN(0, D)

Vt ≈ MVN(0, R)

X0 ≈ MVN(Λ,Θ).

X0 is the multivarate initial state distribution. D, R, Λ, and
Θ are matrix/ vector parameters.

V. CONCLUSION AND DISCUSSIONS

We proposed a multicompartment modeling with cluster-
ing of diverse geographical locations, such as cities, rural,
and urban areas, which helps to obtain an optimal parameter
estimation of the transmissions dynamics. The methods can
also be used to characterize the transmission rates in places
where a large number of people meet, such as hospitals,
schools, bus-station, churches, rural and urban markets, and
related. We showed how the basic epidemic model can be
extended in animal-to-human, animal-to-animal of different
species, and the compartment model with clustering.

We proposed a multivarate state-space model to estimate
and predict an optimal control measure strategies. We con-
sider various major model uncertainty factors in our model.
We also highlight some basic factors that could help to
improve the estimations of transmission and contact rates
[11] (e.g., vary during school period and summer breaks,
during some events such weeding, churches, shopping days,
where a large group of people meet, can bring a significant
variation in estimating transmission and contact rates).

Our approach can be implemented for various transmission
diseases, including Ebola, foot-and-mouth disease, MERS,
West Nile virus, and influenza, and Malaria. Needless to say,
there is always room to improve in the algebraic, approaches,
formulations and assumptions.
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