
  
Abstract— The large amount of DNA sequences stored in 

databases has led researchers to propose compression algorithms 
for DNA sequences. The properties of the DNA sequences offer 
the opportunity to use a LOSSLESS algorithm. In this paper, we 
will present a two phases algorithm  based on the binary 
representation of DNA sequences. In the first phase, we will 
compress the DNA sequences using the Extended-ASCII 
encoding through which one character encode four nucleotides. 
Thereafter, we will apply the Run Length Encoding technique to 
further enhance the compression of entire genomes. The simple 
way to implement the algorithm and its remarkable compression 
ratio make it interesting to be used. 
 

Index Terms—Extended-ASCII code, DNA compression, 
horizontal compression, vertical compression; 

I. INTRODUCTION 
owadays, with the technological developments, the 
internet and the use of computers and devices connected 
together, the flow of data stored and transmitted between 

the different terminals has significantly increased. This boom 
has now incited researchers to talk about the Internet of 
Things. The IOT can be defined as "things belonging to the 
Internet to supply and access all of real-world information. 
Billions of devices are expected to be associated into the 
system and that shall require of huge distribution networks as 
well as the process of transforming raw data into Meaningful 
inferences”. [1] 
Thus, each day, a phenomenal amount of information is 
created, used, shared and analyzed by the different actors of 
the digital world. We are, now, in the era of the Big Data with 
a data flow that exceeds 8000 Exabytes and will reach around 
40000 Exabytes in 2020. 
This large amount of data requires powerful computers to 
properly analyze them and large databases to store them. 
Consequently, this has arisen two major problems. First, the 
encoding of the data that defines how it is stored and, second, 
the time required to process them. As a result, many data 
 

Manuscript received July 01, 2015; revised July 21, 2015.  
Bacem Saada, Ph.D. Student with Harbin Engineering University, College 

of Computer Science and Technology, Harbin, China, 
(email:basssoum@gmail.com). 

Jing Zhang, Ph.D. Professor with Harbin Engineering University, College 
of Computer Science and Technology, Harbin, China, (email: 
zhangjing@hrbeu.edu.cn). 

 

 
 compression methods emerged to attempt to reduce data 
sizes. Compressors such as JPEG, MPEG and AVI are lossy 
compressors that try to remove some redundant information 
that humans cannot notice in images or in videos. Lossless 
compressors, on the second hand, compress data without loss. 
Therefore, they are used with text files and thus for the DNA 
sequences. 
Technological evolution has led to the birth of the 
bioinformatics discipline which processes and analyzes the 
data of different living beings. The essential element in 
achieving these treatments is the Deoxyribonucleic Acid or 
DNA, which is a biomolecule present in all cells and in many 
viruses. This biomolecule contains all the genetic information 
called genotype that allows the functioning and development 
of all living beings. Each monomer that constitutes it is a 
nucleotide, which is composed of a nitrogenous base; adenine 
(A), cytosine (C), guanine (G) or thymine (T). GenBank is a 
free access database that contains a large amount of DNA 
sequences whose size increases exponentially. This database, 
which is managed by the International Nucleotide Sequence 
Database Collaboration, stores DNA sequences in raw format 
and may contain redundant data. For this reason, it is 
important to propose DNA sequences compression algorithms 
that reduce the size and so thoroughly analyze and choose the 
pertinent data that will be stored there.  
In this article, we will start with a review of DNA sequences 
compression algorithms (Section II). In section III, we will 
present our approach to the compression of DNA sequences 
and explain how it can help to detect similarity regions 
between several sequences. Finally, in section IV, we will 
illustrate the achieved experiments and we will draw a 
comparison between our algorithm and other existing 
algorithms. 

II. DNA SEQUENCES COMPRESSION ALGORITHMS 
The compression of DNA sequences is based on the 
algorithms designed for text compression. The difficulty in 
applying those algorithms on DNA sequences is that first, the 
DNA sequences contain only 4 nucleotide bases {A, C, G, T} 
and second the existing regularity between these nucleotide 
bases in the sequence.  
The researchers proved that conventional text compression 
algorithms are not suitable for DNA sequences compression. 
Based on the standard benchmark data [2] GZIP tool [3] for 

DNA Sequences Compression Algorithm Based 
on Extended-ASCII Representation 

Bacem Saada, Jing Zhang 

N 

 

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II 
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-14047-2-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015



example has a compression ratio of 2.217 BpB. However a 
compression tool can only be considered good if the BpB is 
lower than two as there are only 4 nucleotides [4] and that can 
be represented by two bits. The Hoffman coding [5] is also not 
applicable because it is built on the basis of the probability of 
text language alphabet occurrences probability while the 
probability of nucleotides occurrence is almost identical. 
There are two major classes of DNA sequences compression. 
The algorithms for DNA  compression in horizontal mode and 
the algorithms for DNA Compression in vertical mode. The 
first is based on the compression of a single sequence based 
on its genetic information. For example, Biocompress [6] 
seeks repetitions and palindromes in a sequence. 
BIocompress-2 [7] uses a Markov model of order 2 to 
compress non-repetitive regions of a sequence. By applying 
these algorithms to the standard benchmark data, the 
compression ratio is 1.85 BpB for Biocompress and 1.78 BPB 
for biocompress-2. Therefore, they are better than 
conventional Lossless compression algorithms since the BpB 
rate is below two. 
Some DNA sequences compression algorithms are based on 
the binary representation of the nucleotides (e.g. A = 00, C = 
01, G = 10, T = 11). For example, GENBIT [8] divides 
sequences in a set of 8 bits and subsequently makes a 9th bit. If 
the block is identical to the above, the 9th bit is equal to 1, 
otherwise to 0. The compression ratio reaches then 1.125 
BpB. DNABIT [9] divides the sequence into small blocks and 
compresses them while taking into consideration if they 
existed previously or not. 
The second major class of DNA sequences compression 
algorithms analyzes the information existing in several 
sequences in order that one of these sequences will be 
representative of  the whole set. For instance, DNAZIP 
package [10] has a series of algorithms that divide a genome 
into many blocks and compress them. LZ77 [11] proposes a 
compression technique for several genomes belonging to the 
same genus. 
In other way, Biji, C. L., Madhu, M. K., and Vishnu, V. used 
parallel computing platform to compress large genomic 
datasets [12]. 

III. OUR PROPOSED ALGORITHM 
A. Description of the algorithm 

 

Our algorithm is one of the algorithms that are based on the 
binary representation of nucleotides. It compresses the 
nucleotide bases  in two bits. Thereafter, to reduce the size of 
the sequence, the bits will be converted to Extended ASCII 
coding which have an 8-bit character code. Finally, we will use 
our algorithm to detect regions of similarity between several 
DNA sequences. 

B. Presentation of the algorithm 
 

Through this section and in order to illustrate our 
algorithm’s approach, throughout this section, we will use the 
following sequence as an example: 

AGAA ATGT GACC GACC ATCT AGGC CAAT CGTT 
CACC ATCT 

1. Encoding phase 

a) Conversion to binary digit 

 The four nucleotides {A, C, G, T} will be encoded as 
follows: 

 A=00, C=01, G=10, T=11 

The result of our example encoding will be as follows: 

AGAA ATGT GACC GACC ATCT AGGC CAAT CGTT 
CACC ATCT  

00100000   00111011   10000101  10001010  00110111   
00101001  01000011  01101111  01000101  00110111 
 

b) Conversion to Extended-ASCII code 

In this step, the algorithm converts the series of binary 
numbers to decimal numbers. Thereafter the algorithm codes 
each number into its equivalent in ASCII code as shown in 
this figure (fig 1). 

 

Fig. 1.   Conversion to Extended ASCII code 

Our example will be converted to Extended ASCII-coding as 
follows: 

00100000   00111011   10000101  10001010  00110111   
00101001  01000011  01101111  01000101  00110111 

32   59    133      138     55     41      67     111     69    55 

;…Š7)CoE7 

  

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II 
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-14047-2-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015



2. Decoding phase 

The decoding phase is the inverse of the coding phase. 

From an Extended-ASCII encoding, we will build an integer 
number that will be subsequently translated into a binary 
sequence. This bit stream will allow the building of the DNA 
sequence (Fig. 2). 

 

 
Fig. 2.   Conversion to nucleotide representation 

 
 

3. The Use of the Run–Length Encoding algorithm  
The DNA sequences may have repeated sequences of 
nucleotides. To better compress the sequence, we apply the 
technique of Run-Length Encoding that detects similar 
adjacent regions and keeps only one instance of this block. 
However, an additional data structure is needed to keep the 
occurrence of these characters and the number of its repetition 
(fig.3). 
 

 
Fig. 3.   RLE data structure 

 
4.  Detection of similar blocks between multiple 

sequences 
The strength of the ASCII compression encoding is that one 
character code four nucleotides. By applying a searching 
process for similarities regions in the Extended- ASCII  
encoded DNA sequence, a common character between the 
compressed sequences means the existence of  4 common 

nucleotides (Fig. 4). The detection of similarity zones will be 
faster and more significant. 
 

 
Fig. 4.   Detection of similarity between species 

IV. EXPERIMENTAL RESULTS 
A. Evaluation Metrics 

 

To measure the performance of our algorithm, we used two 
types of data: 
• Entire  genomes: in order to calculate the contribution of our 
algorithm in terms of compression ratio to the genomes which 
have a large number of nucleotides. 
• DNA sequences belonging to the same genus: this will, in 
addition to the compression of sequences, detect regions of 
similarity between the sequences after applying the 
EXTENDED-ASCII encoding. 
 
B. Performance in terms of data compression 

 

To achieve our experimental study, we used 11 species that 
belong to the genus Bacillus. The species used are 
amyloliquefaciens Anthracis, Azotoformans, Badius, Cereus, 
Circulans, coagulans, licheniformis, megaterium, mycoides, 
Psychrosaccharolyticus and pumilus. The size of a DNA 
sequence is about 1500 nucleotides. We also used the 
Mitochondrial genome (MPOMTCG) and the Vaccinia Virus 
genome (VACCG) whose  size is about 190000 nucleotides. 
Compression using the Extended ASCII coding has reduced 
the DNA sequence to a quarter of its original size. As 
indicated in table I, applying the RLE algorithm had allowed a 
gain up to 4% of the original size of the sequence. However, 
this gain was only for large size genomes. 
We also compared our approach with existing DNA 
sequences compression algorithms in terms of binary 
representation rate per nucleotide. 
Compression ratios shown in Table II demonstrate that most 
of the algorithms have a compression ratio higher than 1.7 
BpB. Our algorithm provides better results and has a 
compression ratio equal to 1.65 BpB for the compression of 
the genome MPOMTCG. 

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II 
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-14047-2-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015



 

 
TABLE I. PERFORMANCE OF OUR ALGORITHM ON DIFFERENT DNA SEQUENCES AND GENOMES 

Sequence Name Number of 
Nucleotides 
 

Sequence Size 
(Bytes) 

Size after the 
Extended-ASCII 
Compression 

Size after the 
RLE 
compression 

Bacillus Subtilis 1538 1560 390 390 
Bacillus Anthracis 1459 1480 370 370 
Bacillus Cereus 1501 1522 381 381 
MPOMTCG 186609 189274 47319 47287 
VACCG 191737 194476 48620 48618 

 
TABLE II. Comparison with other algorithms 

Sequence Base 
Pair 

GZIP DNA 
Compress 

DNA Pack CTW+LZ XM ASC-RLE 

Subtilis 1538 2.30 1.92 1.91 1.92 1.87 1.68 
MPOMTCG 186609 2.21 1.90 1.89 1.90 1.86 1.65 
VACCG 191737 2.17 1.75 1.76 1.76 1.72 1.74 

 
 
 
C. Experiments in Time execution 
 

To measure the execution time of our algorithm, we used 
a computer with an Intel i3-2375M processor cadenced at 
1.5 Ghz and a 4GB Ram memory. 
 

 

 
Fig. 5.   Execution time comparison between our approach and other 

algorithms 
 
The previous figure (fig.5) presents the execution time by 
applying the algorithms on the VACCG genome. It shows 
that our algorithm has an execution time better than the 
CTW+LZ algorithm. moreover, the execution time of our 
approach is greater than DNA Pack and DNA Compress. To 
better reduce our algorithm’s execution time it is possible to 
use a data grid by parallelizing the execution of the 
algorithm. 
 
D. Performance in terms of similarities percentages between 
sequences of the same genus 
We applied our algorithm on the species of the genus 
Bacillus and the Phylum Firmicutes sequences. 
Subsequently, we looked for the longest common string 
between the sequences. 
 

TABLE II. Longest common chain for a set of species 
Sequences 

Species from 
Length of the 
longest chain 

length after 
compression 

Bacillus genus 140 18 
Firmicutes Phylum 85 11 

From the results in Table III, we can say that in the case of 
applying our algorithm on sequences of the same genus, we 
will have a considerable gain in terms of data storage. In the 
case described in the table, 18 characters will suffice to 
describe the longest common string of 11 species of the 
genus Bacillus. 

V. CONCLUSION AND FUTURE WORK 
The advantages of our algorithm is that it allows to have a 
compression ratio per base better than other compression 
algorithms and lower than 1.7 BpB. The algorithm is also 
very easy to implement and has an interest in the fact that a 
character in Extended-ASCII can encode four nucleotides. 
In the future, we will try to associate our algorithm to 
vertical compression algorithms based on statistical 
approaches to represent a set of DNA sequences or entire 
genomes in order to compress them with a rate higher than 
the rate of the current algorithms. 
 

REFERENCES 
 

[1] A survey of Internet-of-Things: Future Vision, Architecture, 
Challenges     and Services 

[2] S. G rumbach and F. Tahi, "Compression of DNA Sequences," in Proc. 
of the Data Compression Conf., (DCC '93), 1993, 340–350.  

[3] Pierzchala, S. (2004). Compressing Web Content with mod—gzip and 
mod—deflate. Linux Journal, 1-10. 

[4] Matsumoto, T., Sadakane, K., Imai, H., et al., 2000, Can General-
Purpose Compression Schemes Really Compress DNA Sequences?, 
Computational Molecular Biology, Universal Academy Press, 76–77.  

[5] Huffman, D. A. (1952). A method for the construction of minimum 
redundancy codes. Proceedings of the IRE, 40(9), 1098-1101. 

[6] Grumbach S. and Tahi F.: Compression of DNA Sequences. In Data 
compression conference, pp 340-350. IEEE Computer Society Press, 
1993. 

[7] ]Korodi, G., Tabus, I., Rissanen, J., et al., 2007, DNA Sequence 
Compression Based on the normalized maximum likelihood model, 
Signal Processing Magazine, IEEE, 24(1), 47-53. 

[8] Grumbach, S., Tahi, F.: A new Challenge for compression algorithms: 
genetic sequences. Journal of Information Processing and Management 
30, 866–875 (1994) 

[9] A.AppaRao, “DNABIT compress-compression of DNA sequences,” in 
Proc. the Bio medical Informatics, 2011. 

[10] Ahmed, S., Brickner, D. G., Light, W. H., Cajigas, I., McDonough, M., 
Froyshteter, A. B., ... & Brickner, J. H. (2010). DNA zip codes control 
an ancient mechanism for gene targeting to the nuclear periphery. 
Nature cell biology, 12(2), 111-118. 
 

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II 
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-14047-2-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015



 

[11] Ahmed, S., Brickner, D. G., Light, W. H., Cajigas, I., McDonough, M., 
Froyshteter, A. B., ... & Brickner, J. H. (2010). DNA zip codes control 
an ancient mechanism for gene targeting to the nuclear periphery. 
Nature cell biology, 12(2), 111-118. 

[12] Biji, C. L., Madhu, M. K., & Vishnu, V. (2015). Compression of Large 
genomic datasets using COMRAD on Parallel Computing Platform. 
Bioinformation, 11(5), 267. 

 

 

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II 
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-14047-2-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015


	I. INTRODUCTION
	II. DNA sequences Compression algorithms
	III. Our proposed algorithm
	IV. Experimental results
	V. Conclusion and Future Work



