
 

  
Abstract—It is an oft-made observation in auditory 

psychology that a tone applied to just one ear will not decrease 
in loudness over time. Nonetheless its loudness will apparently 
decrease (“adaptation”) if indicated by the lower magnitude of 
a same-frequency tone of matching loudness, presented 
intermittently to the other ear (“simultaneous dichotic loudness 
balance”, denoted SDLB). In Bulletin of Mathematical Biology, 
Prof. K.H. Norwich proposes to solve this “mystery of loudness 
adaptation” through “a mathematical exploration” of two 
methods for measuring loudness adaptation: monaural 
presentation, and binaural presentation. Close scrutiny of Dr. 
Norwich’s analysis reveals, however, a plethora of 
contradictions, arbitrary decisions, and incongruities. He over-
relies on mathematics, ignoring the psychology and physiology 
literatures. His “exploration” lacks any explication of the 
interaction of physiological systems with experimental-
psychology procedures. Such an explication, however, can be 
found in a physiology-based, qualitative model by Nizami, 
which recognizes the possible effects, on loudness, of a neural 
feedback pathway, the olivocochlear bundle (OCB). An 
auditory stimulus at one ear induces OCB firing, which “turns 
down the volume” at the opposite ear. Nizami’s own model can 
explain, within the context of SDLB procedures, ten known 
SDLB outcomes. Altogether, “The mystery of loudness 
adaptation” has a solution which is non-trivial but nonetheless 
far different from (and far less mysterious than) Dr. Norwich’s 
“mathematical exploration”. 
 

Index Terms—loudness, adaptation, Simultaneous Dichotic 
Loudness Balance (SDLB), olivocochlear bundle 
 

I. INTRODUCTION 
N the Bulletin of Mathematical Biology [1], Professor K. 
H. Norwich provides “A mathematical exploration of the 

mystery of loudness adaptation” (title). The “mystery” in 
question involves an experimental procedure called 
“simultaneous dichotic loudness balance”, commonly 
denoted SDLB. In SDLB, one ear, which Dr. Norwich 
denotes the “adapting ear”, is exposed to a continuous tone. 
Meanwhile, the opposite ear, which Dr. Norwich denotes the 
“control ear”, is intermittently exposed to a shorter tone of 
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the same frequency but adjustable intensity. The intensity of 
the control-ear tone is adjusted by the listener within 
adjustment sessions of 5-20 seconds (a fixed value 
characterizing a given study) until it is just as loud as the 
adapting-ear tone. 

Fig. 1 shows the experiment set-up [2]. “Stickman” sits 
within a soundproof chamber. Leads (dashed lines) extend to 
the headphones from outside. Here, Stickman’s right-ear 
headphone is the “control” headphone, because the lead 
passes through an attenuator that Stickman can adjust. 
(Which of left or right is “control” or “adapting” can be 
changed by simply turning the headphones around). Within 
an adjustment session (typically 5-20 seconds), Stickman 
sets the attenuator so that the control tone yields the same 
contribution to overall loudness as the adapting tone. The 
final attenuator setting within each adjustment session is 
recorded by the experimenter. 

Fig. 2 shows the schedule of the tones [3], in which “The 
on-off markers do not show the variations in intensity of the 
comparison [i.e., control] stimulus [here, a tone] during a 
loudness balance”. Over time, the requisite intensity of the 
control-ear tone decreases. Fig. 3 shows this decrease [3]. 
This observation is traditionally (e.g., [2]) taken to mean that 
the loudness of the tone in the adapting ear diminishes. But, 
as Dr. Norwich notes, when a tone is presented only in one 
ear (whether intermittently or continuously), its loudness 
does not adapt. This apparent contradiction is what Dr. 
Norwich calls “the mystery of loudness adaptation”. 

To solve this mystery, Dr. Norwich proposes to “analyze 
mathematically” (as he states in his paper’s abstract) the two 
methods for measuring loudness adaptation, i.e., monaural 
(one ear) presentation and binaural (two ears) presentation. 
Dr. Norwich’s mathematical analysis might conceivably 
offer some new insights. Unfortunately, that does not prove 
to be the case, as Dr. Norwich’s treatment of loudness 
adaptation shows considerable confusion, which ultimately 
renders his algebra meaningless. In particular, he assumes 
that two different unitless measures are mathematically 
relatable simply because they are unitless. With unitless 
quantities being commonplace in science and engineering, 
errors like Dr. Norwich’s have the potential for great havoc. 
Let us study Dr. Norwich’s mistakes. 
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Fig. 1. The listener’s role in SDLB (see text). 
 
 

 
 
Fig. 2. Tone presentation during SDLB (see text). 

II. NORWICH: MERGING THE TWO “LOUDNESS LAWS” 

A. The Growth of Loudness as a Function of Sound-
Pressure-Level: the Entropy Equation 

Dr. Norwich starts the algebra with the growth of loudness 
as a function of sound pressure level, and mentions two laws 
that have traditionally been used to describe loudness 
growth, the Weber-Fechner logarithmic Law, bxlnay += , 

and Stevens’ Law, a power function naxy = . He describes 
these as “forms of the psychophysical law” ([1], p. 300; 
original italics) and states that “the two laws can be merged 
into a single loudness law” ([1], p. 300). “The 
psychophysical law” permeates Dr. Norwich’s publications, 
although it is never clear what it is. Indeed, few people have 
suggested a merger of the Weber-Fechner Law and Stevens’ 
Law, probably because those Laws are known to rest upon 
different assumptions about discriminability of one 
magnitude of stimulus from another. Krueger [4] discusses 
this issue, but as a prelude to a detailed effort at unifying the 
two Laws. Krueger’s paper was accompanied by 31 printed 
“open peer commentaries” (pp. 267-299 of that particular 
Journal), whose authors’ demeanors varied from mild 

skepticism to disbelief to downright (but polite) ridicule. 
There was one exception: an enthusiastic endorsement by 
Dr. Norwich [5], who also promoted his own model. 

That model lies at the heart of Dr. Norwich’s treatment of 
“The mystery of loudness adaptation”, as follows. Dr. 
Norwich declares, using L for loudness, γ for “a parameter 
whose value is greater than zero” ([1], p. 300), and φ for the 
magnitude of a tone, that 
 

( )nγlnL ϕ+= 1 .                 (1) 
 
For this Dr. Norwich cites one of his papers on his “Entropy 
Theory of Perception” [6], as well as his dedicated book [7]. 
He assumes that Eq. (1) applies separately to each ear. 
 

 
 
Fig. 3. The empirical course of the magnitude of a tone in the 
control ear which is judged to evoke an equal subjective 
contribution to loudness as the (same-frequency) tone in the 
adapting ear, for the tones of Fig. 2 above. The horizontal dashed 
line represents the adapting tone’s constant magnitude. The vertical 
axis is not annotated, because the “adaptation” (here, the drop in 
decibels below the dashed line) can vary from 0 to 50 dB, 
depending upon the experiment. 
 

Eq. (1) is curious, because it is almost Dr. Norwich’s 
“Entropy Equation”, his topic of at least 45 papers. The 
actual “Entropy Equation” (e.g., [6], [7]) contains a 
parameter of a priori unknown value, k, which multiplies the 
logarithm of Eq. (1). Its absence is seemingly unexplained. 
But to continue: Dr. Norwich ([1], p. 301) notes that “when 
γφn becomes substantially less than one” (i.e., when φ is 
“small”, for fixed γ) then Eq. (1) “reduces to Stevens’ law” 
(i.e., thanks to a Taylor-series expansion of the logarithm). 
Conversely, when γφn “is substantially greater than one” 
(i.e., when φ is “large”, for fixed γ) a logarithmic law ensues, 
which Dr. Norwich (later) calls the Weber-Fechner Law. 
This notion of two-laws-in-one permeates the Entropy 
Theory from its beginnings to the present day, and is its most 
persistent claim. But in the literature at large, however, the 
Weber-Fechner Law and Stevens’ Law, respectively, refer to 
a logarithmic equation or a power equation applied to the 
entire dynamic range of hearing (discussed in [8]) – not 
each to lesser ranges of it. 
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B. Does Loudness Growth Follow the Entropy 
Equation? 

Dr. Norwich has no way of knowing, a priori, the limit 
“when γφn becomes substantially less than one” ([1], p. 301). 
That is, as Dr. Norwich himself observes in many papers, the 
parameters of his Entropy Equation can only be obtained by 
regression-fitting that equation to growth-of-sensation plots. 
Without parameter values, Dr. Norwich’s use of any 
approximation constitutes mere speculation. The Entropy 
Theory has been in print for 40 years [9] and yet, strangely, 
neither Dr. Norwich nor his co-authors have altogether done 
more than a handful of such regression-fits. 

The present author, in contrast, evaluated numerous 
examples (see [8]). The employed loudness estimates 
included that of Luce and Mo [10], data that Dr. Norwich 
[1] shows in his Fig. 1 and Fig. 2 as support for the notion 
that loudness growth is described (and with “near-
equivalence”, no less; see [1], p. 300) by “Stevens’ law” and 
the “Weber-Fechner law”. However, Nizami [8] has 
demonstrated that (1) the Entropy Equation may actually 
reduce to a power law for most of a loudness curve, with 
only the highest loudnesses forming a transitional region, 
described by the full Entropy Equation, between a power 
law and a logarithmic law; or that (2) the Entropy Equation 
may actually reduce to a logarithmic law for most of a 
loudness curve, with only the lowest loudnesses forming a 
transitional region, described by the full Entropy Equation, 
between a logarithmic law and a power law; or finally that 
(3) the Entropy Equation may apply in its full form to most 
of the data, reducing to a power law only at the extreme 
lowest intensities used and reducing to a logarithmic law 
only at the extreme highest intensities used. 

That is, Dr. Norwich’s attempt to characterize loudness 
growth as obeying two equations justifies neither equation 
post hoc. This point is important, because one equation from 
Dr. Norwich’s two-equation solution is crucial to his 
mathematical treatment of the loudness-matching process in 
SDLB; see Section IV, below. But first, there is an issue that 
is even more pressing, being fundamental to Dr. Norwich 
himself at both earlier and later points in his paper. It, too, 
relates to equations. It is the question of the units of 
measurement of the magnitude of the auditory stimulus. 

III. NORWICH: UNITS OF MEASUREMENT 

A. Dr. Norwich’s Units of Intensity: “decibels sensation 
level” 

Referring to Eq. (1), Dr. Norwich continues: “γ is 
dimensionless, since φ has been defined as a pure number” 
([1], p. 300; italics supplied). Dr. Norwich does not actually 
explain the term “pure number”. It may be unfamiliar to 
some readers. So: a “pure number” is one having no physical 
dimensions (i.e., meters, kilograms, seconds). To further 
understand Dr. Norwich’s parameters γ and φ, we must 
momentarily backtrack to [1] p. 298, where Dr. Norwich 
supplies a list of his Abbreviations. He refers to “dB SL”, 
which he defines as “decibels sensation level; 10 log10 φ”. 

Now, in the literature (e.g., [11]), 
 

( ) 001020 p,   for p pplog 
vel)sation  leibels  sendB SL (dec

≥=
          (2) 

 
where the root-mean-square sound-pressure-level of a tone is 
denoted p, and p0 is the listener’s absolute detection 
threshold (i.e., threshold in quiet) for that tone. If we use 
intensity I rather than pressure p, bearing in mind that in 
acoustics the square of pressure is proportional to intensity 
[11], and if we use I0 for absolute detection threshold, then 

 

( ) .I ,   for IIIlog 
vel)sation  leibels  sendB SL (dec

001010 ≥=
          (3) 

 
To Dr. Norwich, dB SL is 10 log10 φ (see the previous 
paragraph), hence φ = I/I0, making φ indeed a pure number. 
If so, φ=1 for absolute detection threshold (= 0 dB SL). 

B. The Units of the Parameters of the Entropy Equation 
Continuing: on [1] p. 302, Dr. Norwich states that “the 

decibel measures in the present study (e.g. A and B) will be 
expressed in units of sensation level, or dB SL (that is, dB 
SL = 10 log10 φ)”. This is where the terms A and B first 
appear. They are not actually defined, however, until they 
appear again, on [1] p. 305. (They will be dealt with further 
below.) Regarding “units of sensation level”, Dr. Norwich 
obviously uses “units” to mean “dimensions”. His usage will 
be continued here. However, on [1] p. 302’s very next line, 
Dr. Norwich states that “the units of sound intensity, φ, may 
be either units of pressure (newton m–2), or units of power 
(watt.m–2) [sic]”. So, φ now has physical units; it is no 
longer a pure number. 

From this point forward, φ seems to retain physical units. 
For example, on [1] p. 309, Dr. Norwich refers to “φ (in 
units of sound pressure)”. If, indeed, φ has units of sound 
pressure or, alternatively, units of sound intensity, then γ in 
the term γφn from Eq. (1) is not dimensionless, contrary to 
Dr. Norwich’s claim on [1] p. 300: “γ is dimensionless, since 
φ has been defined as a pure number” (italics added). γ is 
indeed not dimensionless, because in Eq. (1) the term γφn is 
added to the number 1, which can have units (dependent 
upon its context, e.g., one meter, one kilogram) but which, 
strangely,  has never been assigned units in Dr. Norwich’s 
publications. Therefore, γφn itself must always be unitless, so 
that γ must have the same units as 1/φn, which is not unitless 
if φ has units of sound pressure or sound intensity. 

Altogether, the units of γ are unresolved. This is crucial, 
because Dr. Norwich states on [1] p. 301 that “The 
parameter, γ, will be seen to govern loudness adaptation”. If 
φ is unitless, then so is γ; if φ has units that involve stimulus 
magnitude, then γ, too, must have units that involve stimulus 
magnitude. Either way, γ does not have units that involve 
time. How, then, can γ govern a time-dependent process such 
as loudness adaptation? 

IV. NORWICH: MATHEMATICALLY EXPRESSING THE 
LOUDNESS-MATCHING PROCESS IN SDLB  

Dr. Norwich declares ([1], p. 303) that “Clearly, the 
[SDLB] matching process can be described by”  
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.LL adaptingcontrol =                (4) 

 
That is, as Dr. Norwich explains, the loudness of the tone in 
the control ear is adjusted by the listener so that it equals the 
loudness in the adapting ear [at any given time during 
SDLB]. However, subsequently Dr. Norwich declares ([1], 
p. 303) that “Fechner’s law [sic]” applies to “the 
incompletely adapted control ear which has larger values of 
γφn”, and on [1] p. 304 he further declares that “Stevens’ 
law” applies to “the adapting ear which has smaller values of 
γφn”. Unfortunately, all of this contradicts Eq. (4); that is, if 
loudness L is indeed to be given by Eq. (1), then the two ears 
cannot have different values of γφn during SDLB. 

V. NORWICH: MATHEMATICALLY EXPRESSING THE 
ADAPTATION PROCESS IN SDLB  

A. The Time-Dependence of Loudness 
But Dr. Norwich continues ([1], p. 304): “The reason for 

assigning Fechner’s law [sic] in one case and Stevens’ law in 
the other is because the parameter, γ, decreases with 
adaptation”. However, Dr. Norwich never assigns γ a 
specific time-dependence. The latter assignment may have 
been understandably difficult because, as noted above, γ 
does not have units that involve time. Dr. Norwich again 
continues ([1], p. 304): “Both the adapting ear and the 
control ear adapt to the tones introduced to them (although 
we expect the latter to adapt less, since it is stimulated for a 
shorter time)” (original italics). 

Altogether, the latter quotation and the one above it (in 
the same paragraph) imply that the alleged time-dependence 
of γ is the same at both ears – and if the ears were reasonably 
similar physiologically, then why indeed would it differ? But 
what, then, of φ? Its magnitude in the adapting ear is held 
constant during adaptation, whereas its loudness-matching 
magnitude in the control ear empirically decreases over 
time. Therefore if γ decreases equally quickly in both ears, 
then, assuming (as always) that Eq. (1) applies separately to 
each ear, the control ear’s subjective contribution to 
loudness will always be lower than the adapting ear’s 
contribution, during SDLB – that is, γφn (Eq. (1)) will differ 
at each ear. But, as noted in Section IV, the two ears cannot 
have different values of γφn during SDLB. Hence, if γ indeed 
governs loudness adaptation, as Dr. Norwich states, then it 
cannot decrease with equal haste in both ears. All of this 
assumes that the one remaining parameter of Eq. (1), n, 
remains constant during adaptation; and later on, Dr. 
Norwich indeed states that it does ([1], p. 304). Altogether, 
Dr. Norwich contradicts himself. 

B. Loudness as a Function of the Logarithm of Stimulus 
Magnitude: the Algebraic Core of Norwich’s Paper 

On [1] p. 304 of Dr. Norwich’s paper we finally arrive at 
what is indisputably its algebraic core. It reintroduces the 
logarithmic extreme of the Entropy Equation for loudness, 
 

( ) ( ) ( )
( ) ( ) ( )[ ] .lognγlogln

γ loglnγ lnL nn

ϕ

ϕϕ

1010

10

10

10

+=

==
          (5) 

 
Up to this point, Dr. Norwich has implied that this equation 
applies to the control ear. But it transpires that henceforth he 
may be referring to either ear, or to both ears, as will be 
seen. On [1] p. 304, Dr. Norwich states that “It will be 
useful” to use this logarithmic extreme of Eq. (1). His only 
actual justification is an implied one, as follows: “We shall 
make use of the experimental data measured by Jerger 
(1957)”. This is Dr. Norwich’s first citation of Jerger (here 
as [12]). Dr. Norwich plots Jerger’s findings in a figure, and 
claims that they are “corroborated” by Weiler, Loeb, and 
Alluisi [13] and by D’Alessandro and Norwich [14] 
(although none of those data were provided). The Jerger data 
[12] is plotted as adaptation in decibels versus sensation 
level in decibels (at the adapting ear, as Dr. Norwich notes), 
for a variety of tone waveform frequencies. Each set of data-
points very roughly follows a straight line. It is not 
immediately clear how this justifies a logarithmic law for 
loudness, i.e., Eq. (5); in psychoacoustics, loudness and 
loudness change are not currently measured in decibels. 

Note that if φ has physical units, as Dr. Norwich seems to 
conclude (see Section III), then the right-hand side of Eq. (5) 
can indeed be interpreted as a linear equation in sensation 
level. Nonetheless, loudness as a function of the logarithm of 
the stimulus magnitude does not seem to emerge from 
Jerger’s data (which involves loudness only indirectly). As it 
transpires (below), this is a significant problem. 

C. The Extent of the Adaptation Caused by a Fixed-
Intensity Auditory Stimulus 

Dr. Norwich continues ([1], p. 304): “Our interest initially 
is in the extent of adaptation produced by an auditory 
stimulus of fixed intensity, φb, corresponding to a steady 
tone at the adapting ear”. With intensity φb and exponent n 
both held constant during the sustained tone, Dr. Norwich 
declares outright ([1], p. 304) that “γ is the parameter that 
encodes the process of adaptation”. He continues: “We shall 
deal with γ only at two distinct times: at t = 0, before any 
adaptation has taken place, it will have the constant value γ0; 
and at large times it will have the smaller value γ∞, which 
will govern the maximum degree of adaptation” ([1], p. 
304). Dr. Norwich then denotes the loudness for γ0 as L0, 
and the loudness for γ∞ as L∞. Dr. Norwich then subtracts L∞ 
from the larger term, L0, while changing the logarithms from 
base e to base 10 (and noting on [1] p. 304 that “The 
expression nlnφ does not change during the adaptation 
process, and so cancels”). Dr. Norwich hence arrives at 
 
( ) ( )

( )( ) ( ) ( )[ ]n
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Note well that “decibels of adaptation” is Dr. Norwich’s 
choice of words, not the present author’s. As Dr. Norwich 
explains ([1], p. 305), “decibels of adaptation can also be 
expressed as the difference between the basal sound level of 
the sustained tone administered to the adapting ear and the 
balancing sound level of the adjusted tone at the control 
ear”. That is, according to him ([1], Eq. (12)), 
 

( ) .A Bγγlog −=∞01010              (7) 

 
Here B – A is “the laboratory measure” of “the magnitude of 
adaptation to any steady tone”, where B is the dB SL of the 
“sustained tone” (all of this from [1] p. 305). Ipso facto, the 
term A is the final laboratory setting (i.e., at the asymptote of 
adaptation) of the magnitude of the loudness-matching tone 
at the control ear, although Dr. Norwich does not 
immediately say so. Note well, however, that equating 
( ) ( ) ∞− Lln Lln 1010 1010 0  to [ ]∞− γγ 10010     10 loglog  in Eq. 

(6) depends upon n
bϕ  being in both L0 and L∞ (from Eq. 

(5)), which mandates that Eqs. (6) and (7) either (a) refer to 
the adapting ear only, for which bϕϕ =  even at ∞=t , or (b) 
refer to both ears, but only at t = 0, at which time no 
adaptation has yet occurred! Neither of these choices seem 
to make sense, as [the stimulus of magnitude] B is applied at 
the adapting ear, and [the stimulus magnitude that is] A is 
established using the control ear. 

Note well that Dr. Norwich presents Eq. (6) without 
derivation. He takes two things lacking physical units – a 
loudness difference, and a stimulus magnitude difference 
expressed as a difference in decibels – and simply declares 
them to be equal. Such a move is unprecedented. 

VI. NORWICH: THE MYSTERY OF ZERO MONAURAL 
ADAPTATION 

Several pages of derivatives now appear in Dr. Norwich’s 
paper ([1], pp. 305-307). They appear to be irrelevant, as 
readers can verify for themselves. Finally, Dr. Norwich 
returns to Eq. (7). He states ([1], p. 311) that  

∞− γγ 10010   10    10 loglog  “is equal to the difference in sound 
level at the adapting ear”. Unfortunately, this is illogical, 
because the actual sound level at the adapting ear is the 
constant value φb, as Dr. Norwich had noted himself ([1], p. 
305). Nonetheless, Dr. Norwich states that B – A is “the 
difference between the sound level of the adapting tone 
(applied to the adapting ear) and the sound level of the 
matching tone (applied to the control ear)” ([1], p. 311). 
Altogether then, the left-hand-side of Eq. (7) applies to the 
adapting ear, whereas the right-hand-side of Eq. (7) depends 
upon both ears. This is an apparent contradiction, for which 
Dr. Norwich offers no resolution. 

Dr. Norwich ([1], p. 311) then states that 
 

At zero time – i.e. at the instant the adapting 
tone was begun – there was, of course, no 
adaptation whatever. If a balancing tone could 
have been invoked at the control ear at zero 
time, this tone would also have carried the 

sound level B. Therefore, let us regard the 
quantity B – A on the right-hand side as 
representing the difference in balancing tone 
level at the control ear, between zero and 
some large time (5 to 7 minutes). 

 
(Original italics.) In other words, Dr. Norwich now claims 
that the right-hand-side of Eq. (7) describes the control ear. 

Dr. Norwich then declares that in the “special case” of 
monaural assessment, A = B = 0, “since the control ear is 
always maintained in silence” ([1], p. 312). Thereby, Dr. 
Norwich refers to the adapting ear as the monaural case. But 
in this circumstance, A = B = 0 is illogical. First, Dr. 
Norwich originally defined B as the level of the sustained 
tone at the adapting ear. As such, B cannot be zero for a 
sustained monaural tone. Secondly, Dr. Norwich originally 
defined A as the level of the loudness-matching tone at the 
control ear, after many minutes of a sustained tone to the 
adapting ear. As such, A is not defined independently of the 
SDLB procedure in which it is obtained. But Dr. Norwich 
seems to ignore such issues. 

To continue: Dr. Norwich notes that if A = B = 0, then 
from Eq. (7), 0  10    10 10010 =− ∞γγ loglog , from which 

0γγ =∞ , “implying that no adaptation takes place, which 
resolves the paradox mathematically” ([1], p. 312). Of 
course, one is left wondering how a physical paradox can be 
resolved using mathematics alone; after all, one would 
expect that a physical paradox could only be resolved 
through physical insights, obtained through measurement. 

VII. A SUMMARY OF NORWICH’S SOLUTION TO “THE 
MYSTERY OF LOUDNESS ADAPTATION”, AND ITS ERRORS 
In his paper [1], Dr. Norwich seeks to solve “The mystery 

of loudness adaptation”. This “mystery” arises in SDLB, in 
which the loudness of a steady tone played to one ear (the 
“adapting ear”) is measured by matching to it the loudness of 
an intermittent same-frequency tone played to the other ear 
(the “control ear”). The loudness in the “adapting ear” 
appears to adapt (i.e., decrease). However, when loudness is 
judged using that ear only (monaural stimulation), there is 
no adaptation. 

Dr. Norwich’s first step towards solving this mystery is to 
assume that the growth of loudness as a function of tone 
magnitude is governed by his Entropy Equation, in two 
parameters (called γ and n) and in one variable, the “sound 
intensity” φ. Dr. Norwich then assumes that his Entropy 
Equation devolves to (1) a power equation (labeled by Dr. 
Norwich as “Stevens’ law”) for small tone magnitudes and 
(2) a logarithmic equation (labeled by Dr. Norwich as “the 
Weber-Fechner law”) for large tone magnitudes. 

The logarithmic equation proves crucial to Dr. Norwich’s 
mathematical treatment of the loudness-matching process in 
SDLB. But first, Dr. Norwich segues into another issue 
crucial to the use of his Entropy Equation, namely, the units 
of measurement of the magnitude of the auditory stimulus, φ, 
which in turn implies the units of the parameter γ. He 
declares that γ governs adaptation. He also declares that φ is 
unitless, but then he contradicts himself by implying that φ 
has units of tone magnitude. In either case, γ is not shown to 
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have units that involve time; and without such units, it is 
difficult to imagine how it would govern a time-dependent 
process such as adaptation. 

Dr. Norwich then notes that, during SDLB, the loudness 
in the control ear equals the loudness in the adapting ear. 
That is, the Entropy Equation should give the same value at 
each ear. But Dr. Norwich then contradicts himself, by 
declaring that “the Weber-Fechner law” applies to the 
control ear, and that “Stevens’ law” applies to the adapting 
ear, which altogether implies different values of the Entropy 
Equation for each ear. His rationale for adopting those 
different equations is that γ decreases during adaptation, and 
he implies that it decreases with equal haste in both ears – 
which cannot be the case during SDLB if γ indeed governs 
loudness adaptation. 

Dr. Norwich henceforth adopts “the Weber-Fechner law”, 
and implies a justification for it in the data of Jerger [12] and 
others. But the Jerger data provide no such justification. Dr. 
Norwich then takes the loudness at time zero, and a later 
loudness, the matching loudness in the control ear when such 
loudness has reached an asymptote, and subtracts the later 
loudness from the initial loudness. He then sets that 
difference directly proportional to the empirical magnitude 
of adaptation (in decibels) over the described time span. 
This move is unprecedented. It has no support in the data of 
Jerger [12] or others. Dr. Norwich then states that the 
theoretical loudness difference applies to the adapting ear, 
whereas the empirical adaptation depends upon both of the 
ears, and then depends upon the control ear. These are 
incongruities, for which no explanation is proffered. 

Dr. Norwich finally offers his solution to the mystery of 
loudness adaptation: that the lack of monaural adaptation 
should be thought of as a unique SDLB situation, one in 
which the control ear receives no stimulus. He sets 
adaptation to zero, which, in his equations, infers therefore 
that loudness does not drop over time. But the whole 
argument is circular, having been set up in the first place to 
produce exactly that result. 

Altogether, Dr. Norwich provides an incoherent and 
internally contradictory mishmash of concepts, a plethora 
that does not explain “The mystery of loudness adaptation” 
mathematically, assuming that this “mathematical 
engineering” is even possible. 

VIII. DISCUSSION: REGARDING THE USE OF UNITS BY 
NORWICH (ET AL.) 

Despite the incoherence of the conceptual framework that 
Dr. Norwich [1] attempts to present over the course of 16 
pages – such as which ear does what, and according to what 
equations – it is possible, nonetheless, to identify a particular 
mathematical error as key. Namely, Dr. Norwich sets a 
loudness difference, which lacks physical units, equal to a 
unitless difference in tone magnitudes. But being unitless 
does not make any things equate-able; that is, two apples do 
not equal two oranges. (Or three.) 

This is not the first time that Dr. Norwich has committed 
fundamental errors about the proper units of chosen 
quantities (as exposed, for example, in [15]). In a paper said 
to derive the Stevens’ Law exponent for the sense of taste 

directly from principles of thermodynamics ([16]; an 
incredible claim in its own right), Dr. Norwich sets the 
variance in the number of solute molecules present in some 
volume of solvent to be equal to the variance in the density 
of the solution. However, although number variance is 
independent of the volume of the liquid solution being 
studied, density variance is not (density being defined as 
number per volume). This mistake is patent. It was followed 
by another serious error, in which Dr. Norwich assumed, 
allegedly after the authoritative book by Tolman [17], that 
variance is the fluctuation measure for solute density in 
solution. In fact, as Tolman himself explained ([17], p. 509), 
the appropriate fluctuation measure is the mean-square 
fractional fluctuation. Thus, Dr. Norwich used quantities 
having the wrong units, eventually producing a Stevens’ Law 
exponent that was negative (see [15]). But Stevens’-Law 
exponents are always positive! 

This is not all. Dr. Norwich’s evident lack of deftness 
with units appears elsewhere, in particular, when crafting 
equations for auditory psychophysics. McConville, Norwich, 
and Abel [18] applied Norwich’s Entropy Equation to a 
well-established laboratory procedure, namely, two-interval 
forced-choice auditory intensity discrimination. They 
derived an equation for the Weber fraction, defined as the 
just-noticeable-increase in tone intensity divided by its base 
intensity (altogether, a unitless measure), as an equation in 
five unknowns. In their Table 1 of those unknowns, they 
listed the units of an unknown called β as s–1 (i.e., inverse-
seconds). Given t, representing time, they then listed β/t as 
unitless. In fact, its units would have been s–2. The 
McConville et al. [18] equations also included n, the same n 
used in [1] and said to be Stevens’ exponent. But close 
scrutiny of the McConville et al. equations (see [19]) reveals 
that their n has to be unitless in order to result in an 
(appropriately unitless) Weber fraction. If so, the equations 
demand that the units of β be (time)⋅ (intensity)–n, so that β/t 
would have units of (intensity)–n. In sum, McConville et al. 
[18] did not comprehend the units of their own parameters. 

IX. A NOVEL CONTRIBUTION: A PHYSIOLOGY-BASED 
QUALITATIVE MODEL OF WHAT HAPPENS DURING SDLB 

A. The Physiological Substrate: the Olivocochlear 
Bundle (OCB) 

In the auditory-physiology literature there is plenty of 
evidence (some of it reviewed in [20]) that there is a neural 
feedback pathway called the olivocochlear bundle (OCB) 
whereby an auditory stimulus applied to just one ear, say by 
using an earphone and an intensity not high enough to 
produce significant conduction through the skull, could 
progressively reduce the sensitivity of the opposite ear. That 
is, an ongoing tone at one ear evokes simultaneous firing 
(for the ongoing tone lasting as much as 10 minutes or more, 
with a slight firing-rate decline) in the OCB of efferent 
neurons (those carrying signals “away from” the brain) 
which project to the opposite ear. This effectively “turns 
down” that opposite ear’s “volume” as if same-frequency 
tones there had decreased in intensity by as much as 24 dB 
(and even greater declines may be possible). Olivocochlear 
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efferents are found at all characteristic (i.e., most sensitive) 
frequencies of primary afferents, showing a variety of 
thresholds, thereby allowing smooth and progressive 
“volume turn-down”. 

Fig. 4 shows a gross simplification of the OCB pathways 
from the adapting side to the control side. The vertical 
dashed line indicates the midline of the head, from under the 
jaw (ventral) to the top of the crown (dorsal). The relative 
locations of elements here roughly imitates their actual 
spatial relations. Boxes are nuclei, i.e., masses of neuronal 
cell bodies. Lines joining them are bundles of the neuronal 
conduction-lines, axons, one per cell body. Neuronal-spike-
flow direction in axons is indicated by arrows. CN = 
cochlear nucleus; DAS = dorsal acoustic stria; HN = various 
higher nuclei; IAS = intermediate acoustic stria; IHC = inner 
hair cell; MOC = medial olivocochlear nuclei; OHC = outer 
hair cell; TB = trapezoid bundle; UOCB = uncrossed 
olivocochlear bundle. Fig. 4 is simplified from a summary in 
Nizami [21], with later consultation of Guinan [20]. 
 

 
 
Fig. 4. The pathways that hypothetically allow adapting-ear tones 
to affect control-ear hearing. 
 

Those pathways from the control side to the adapting side 
are just the mirror images of what is shown in Fig. 4. The 
effects of the intensity of stimuli in one ear on the response 
of the other ear to stimuli has been studied in man, using, as 
indicators of OCB effect on the other ear, the changes in the 
stimulus-evoked oto-acoustic emissions (OAEs) there. The 
results largely support the notion that the OCB has the same 
qualitative effects in man as in other species ([20], p. 599). 
There are also two lines of psychophysical evidence for 
“volume turn-down” in man. First, there is an elevation of 
the detection threshold for the stimulus given to one ear, 
caused by activity in the OCB projecting to that ear from the 
opposite ear (e.g., [22], [23], [24], [25]). Secondly, that 
selfsame OCB activity can lower the subjective intensity 
(i.e., loudness) for stimuli that are well above detection 
threshold [26]. 
 

B. The Hypothetical Role of the OCB During SDLB 
Fig. 5 illustrates the present author’s interpretation of the 

hypothetical role of the OCB during SDLB in determining 
the adapting-ear and control-ear “volume settings” between 
some maxima and some minima, up to the end of the third 
adjustment session, as follows. Stimulus at one ear induces 
efferent OCB firing which “turns down the volume” at the 
opposite ear. For example, a continuous adapting-ear tone 
evokes continuous neural firing in the OCB that projects to 
the control ear (using the pathways of Fig. 4). That firing 
gradually “turns down the volume” at the control ear (Fig. 5, 
upper panels) before the second adjustment session. Note 
well that overall loudness is assumed to consist of equally-
weighted contributions from each ear (an assumption that is 
taken for granted in the literature). The overall loudness in-
between presentations of the control-tone is due only to the 
adapting-ear tone, and does not diminish. 
 

 
 
Fig. 5. The hypothetical actions of the adapting and control ears to 
affect each other’s “average volume setting” (see text), from after 
the first SDLB adjustment session (see Fig. 2) to the end of the 
third adjustment session. For simplicity, “adaptation” during the 
first adjustment session is presumed to be negligible. 
 

During the adjustment sessions, the listener adjusts the 
control-tone intensity, in order to equate the loudness 
contributions from each ear. The control tone desensitizes 
the adapting ear, momentarily reducing its loudness 
contribution. The desensitization of the adapting ear 
momentarily reduces the rate of adapting-ear-induced 
“volume turn-down” at the control ear, shown in Fig. 5 as a 
lessening of the slope of the curve (narrowly between the 
dashed lines, in the panels that are second-from-top and 
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fourth-from-top, on the left). Thanks to the intervals between 
adjustment sessions, the adapting ear should recover from 
the control-ear-induced “volume turn-down” (e.g., Fig. 5, 
panel third from top on right). During the third adjustment 
session and ones following it, the amount of “volume turn-
down” at the adapting ear increases (Fig. 5, lowest right-
hand panel), as follows. 

Over the successive adjustment sessions, “volume turn-
down” at the control ear accumulates, such that the 
magnitude of the control-ear tone intensity at the beginning 
of the session must be set increasingly higher to compensate. 
Fig. 6 shows this behavior.  

The bottom of Fig. 6 has a linear time scale, which applies 
to the whole figure. The figure’s upper and middle panels 
respectively show the equally-weighted contributions, to 
loudness, of the adapting ear and the control ear. Zero 
indicates no tone. In the figure’s lowest panel is the moving-
average tone magnitude at the control ear. The average is 
used here because the listener adjusts the control-ear tone’s 
magnitude up-and-down during the comparatively brief 
adjustment sessions. Note again that, in response to a control 
tone, the adapting ear is desensitized, hence reducing its 
contribution to loudness. By the end of each adjustment 
session, that reduced adapting-ear contribution must be 
matched by the listener, which is done by reducing the 
moving-average control-ear tone magnitude from its initial 
high to its final within-session setting. A typical adjustment 
session lasts from 10 seconds [2] to 20 seconds [3], more 
than enough time for the OCB to mediate a degree of 
“volume turn-down”, according to what Guinan [20] calls 
the “slow” time scale of OCB effects. 

Further, the initial upper setting of the control-ear tone 
magnitude tends to be enhanced during any adjustment 
session. That is, between adjustment sessions the attenuators 
that the listener adjusts are customarily reset to maximum 
attenuation (i.e., minimum control-ear tone magnitude) by 
the experimenter, plus-or-minus some small amount that is 
randomly determined. At the commencement of each 
adjustment session, therefore, the listener must rapidly boost 
the control-ear tone magnitude. 

C. The Effectiveness of This Physiology-Based 
Qualitative Model 

The above model can explain ten documented 
characteristics of SDLB [27]. That is, the observed monaural 
vs. binaural dichotomy in auditory adaptation can be 
explained by a feedback system in which an auditory 
stimulus in either ear affects the other ear. Thus, Dr. 
Norwich’s “mystery of loudness adaptation” would seem to 
be far less mysterious than at first proposed. 

X. PROFESSOR NORWICH’S “MYSTERY OF LOUDNESS 
ADAPTATION”, AND A PHYSIOLOGY-BASED QUALITATIVE 
MODEL TO REPLACE IT: SUMMARY AND CONCLUSIONS 

In “A mathematical exploration of the mystery of 
loudness adaptation” [1], Dr. Norwich seeks to provide a 
mathematical explanation for an apparent contradiction. The 
contradiction is that a tone applied by headphones to just 
one ear will not decrease in loudness over time, but its 
loudness will drop when indicated by the lower magnitude of 

a same-frequency tone of matching loudness, presented 
intermittently through the other side of the headphones. The 
latter loudness drop is called “adaptation”. To summarize: 
the loudness of a continuous tone declines over time in some 
experimental cases, but not in others. To solve this 
“mystery”, Dr. Norwich proposes to “analyze 
mathematically” the two methods for measuring loudness 
adaptation, i.e., monaural (one ear) presentation and binaural 
(two ears) presentation. 

Dr. Norwich’s mathematical analysis itself proves full of 
contradictions, arbitrary decisions, and incongruities. It has 
the look of circular logic; indeed, so does all of Dr. 
Norwich’s work on the Entropy Theory (see analyses in [8], 
[15], [19], [28], among others). 
 

 
 
Fig. 6. The hypothetical moving-average control-ear tone-
magnitude settings (bottom) during successive adjustment sessions 
(left to right) during SDLB, and the resulting final adapting-ear 
and control-ear loudness contributions at each session’s end 
(middle and top; see text). 
 

In retrospect, none of this should be surprising, as it is 
difficult to understand how the results of a psychology 
experiment involving a physiological system (as they all 
ultimately do) could be explained by a purely mathematical 
model, that is, one lacking any further explication of the 
interaction of the physiological system with the 
experimental-psychology procedures. Dr. Norwich relies 
over-much on math, and has a woeful ignorance of the 
psychology literature, as reflected in his remarkably thin 
reference list (see [1]), a scarcity which frankly typifies his 
work on the Entropy Theory (see criticisms in [8], [15], [19], 
[28]). Indeed Dr. Norwich, a full professor of physiology, 
seems unaware of the very existence of an auditory efferent 
feedback system [29]: 
 

 Neuroanatomical pathways from sensory 
receptors through the spinal cord, brain stem, 
midbrain to the cortex of the brain are well 
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known for the senses of taste (tongue to 
cortex), hearing (cochlea to cortex) etc. 
However, these pathways are purely afferent in 
nature. 

 
A similar emphasis on math without experimental grounding 
may explain why Dr. Norwich’s paper passed peer review at 
Bulletin of Mathematical Biology (Editor: Philip Kumar 
Maini). Indeed, Dr. Norwich’s “mystery” is not the first 
incidence of Bulletin of Mathematical Biology publishing an 
erroneous Entropy Theory paper; [6], [30], and [31] all 
appeared there, although [6] and [31] are indisputably 
erroneous (see respectively [8] and [28]), and readers can 
ascertain for themselves that [30] has serious problems, 
although lack of time prevents the present author from 
explication. Despite such condemnations of the Entropy 
Theory (and there are others by others, e.g., [32], [33], [34]), 
it continues to be published in allegedly peer-reviewed 
sources (e.g., [35], [36]). It was even proselytized by Dr. 
Norwich in a journal of conservative religion [37], an act 
revealing the role of belief (rather than proof) within the 
Entropy Theory. Scientists and engineers must beware of 
such false theory, lest it waste their precious time and energy 
and provide a bad example to their students. 

Altogether, the “mystery of loudness adaptation” can be 
explained by a conceptual model [27], one based entirely on 
what is known of auditory physiology and of the SDLB 
procedure, without the use of, or need for, a single equation. 
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