

Abstract— The number of DNA sequences stored in databases

is growing exponentially. Thus, decreasing the Data storage costs
for the creation and the analysis of DNA sequences has become a
necessity. Standard compression algorithms failed to get a good
compression ratio. In this paper, we describe a LOSSLESS
algorithm that compresses the DNA sequence in its equivalent in
hexadecimal representation. In addition, by using a
mathematical operation, it identifies the regions of similarity
between two sequences.

Index Terms—DNA, encode, Hexadecimal Representation, Big
Data, Horizontal compression, Vertical compression;

I.INTRODUCTION
ioinformatics is a field that combines mathematics,
statistics, physics, chemistry and biology. It solves the
problems that biologists face in the agricultural, medical

science and study of the living world. The most important
element in bioinformatics is the study of biomolecules present
in all living cells that are the DNA sequences. DNA contains
all the genetic information, called genotype, enabling the
development and functioning of living beings. Each element
constituting it is a nucleotide, which is formed of a
nitrogenous base - adenine (A), cytosine (C), guanine (G) or
thymine (T).
The scientific community has developed data banks where
biologists can store, analyze and search for similarities
between the DNA sequences and the strains they identified as
well as classify DNA sequences by degree of similarity.
GenBank is a free access database that contains a large
amount of DNA sequences whose size increases
exponentially. This database, which is headed by the
International Nucleotide Sequence Database Collaboration
[1], stores DNA sequences in their raw format and may
contain redundant data. It is thus imperative to propose

Manuscript received July 01, 2015; revised July 20, 2015.
Bacem Saada, Ph.D. Student with Harbin Engineering University, College

of Computer Science and Technology, Harbin, China,
(email:basssoum@gmail.com).

Jing Zhang, Ph.D. Professor with Harbin Engineering University, College
of Computer Science and Technology, Harbin, China, (email:
zhangjing@hrbeu.edu.cn).

compression algorithms of DNA sequences to reduce the size
and to well analyze and select which data should be stored in
the database.
Since the 2000s, the reduction in sequencing costs and the
growth of data storage discs sizes resulted in the
implementation of several projects on the sequencing of entire
genomes. Among these projects, we can mention the 1000
Genomes Project and the Human Arabidopsis thaliana Project
in 1001 [2]. The genome size is very large; to humans it
reached 3 billion nucleotides and can even reach more than
100 billion nucleotides for certain amphibian species [3].
This large amount of data requires powerful computers to
properly analyze them and large databases to store them. This
induces us to have two main problems. The first is the
encoding of the data that defines how it is stored. The second
is the time required to process them. This has led to the
development of many data compression methods to attempt to
reduce their sizes. Compression techniques known as lossless
compressors compress data without any loss. Therefore, they
are used to compress text files and thus the DNA sequences.

In this article, in Section II, we will present the DNA
sequences compression algorithms. In Section III, we will
present our approach to DNA sequences compression and
explain how it is useful in comparing DNA sequences.
Finally, in section IV, we will present the experiments made
and we will draw a comparison with existing algorithms.

II.DNA SEQUENCES COMPRESSION ALGORITHMS
Compression of DNA sequences uses algorithms made for
compressing text and alphabets. The difficulty in the
application of the algorithms on the DNA sequences is that the
DNA sequences contain only 4 nucleotide bases {A, C, G, T}
for which the probability of the occurrence in the DNA
sequence is substantially identical .
There are two major classes of DNA sequences compression.
The compression algorithms for DNA in horizontal mode and
the Compression Algorithms for DNA in vertical mode. The
first class compresses a single sequence based on its genetic
information. Biocompress [4], for instance, compresses the
repetitions and palindromes in a sequence. BIocompress-2 [5]
is based on a Markov model to compress the non-repetitive

Vertical DNA Sequences Compression
Algorithm Based on Hexadecimal

Representation

Bacem Saada, Jing Zhang

B

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-14047-2-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

regions of a sequence. To calculate the efficiency of an
algorithm, it is necessary to calculate the compression ratio of
a nucleotide-by-bit. The rate is calculated as follows: Ratio =
Bits / Bases. By applying these algorithms to the standard
benchmark data [6], the compression ratio is of 1.85 BPB for
Biocompress and 1.78 BPB for biocompress-2.
Some compression algorithms are based on the binary
representation of DNA sequences (eg, A = 00, C = 01, G = 10,
T = 11). For example, GENBIT [7] divides a sequence into
blocks of 8 bits and introduces a 9th bit at the end of this
sequence. If the block is identical to the previous one, the 9th
bit will be equal to 1, otherwise 0. The compression ratio
reaches 1.125 / BpB. DNABIT [8] divides the blocks in
sequences and compresses them while taking into account if
they have been previously detected or not.
The second type of algorithms processes a vertical
compression of DNA sequences that is a compression of a set
of sequences by analyzing all their genetic information in
order to detect one of these sequences that will be
representative of the whole. LZ77 [9] proposes a compression
algorithm of several genomes belonging to the same genus.
DNAZIP package [10] has a series of algorithms that divide a
genome into a set of blocks and compress them later.

III.OUR PROPOSED ALGORITHM
A. Description of the algorithm

Our algorithm is based on the binary representation of
nucleotides. It compresses the nucleotides in two bits.
Thereafter, to reduce the size of the sequence, the bits will be
converted into a hexadecimal representation whose character
codes two nucleotides. Finally, our algorithm will be used to
detect regions of similarity between several DNA sequences.

B. Overview of the algorithm

In order to illustrate our algorithm’s approach, throughout
this section, we will use the following sequence as an example:

AGAA ATGT GACC GACC ATCT AGGC CAAT CGTT
CACC ATCT

 B.1 Encoding phase

STEP 1: Conversion to binary digit

 The four nucleotides {A, C, G, T} will be coded as follows:
A=00, C=01, G=10, T=11

The result of the encoding of our example will be as follows:

AGAA ATGT GACC GACC ATCT AGGC CAAT CGTT
CACC ATCT

00100000 00111011 10000101 10001010 00110111
00101001 01000011 01101111 01000101 00110111

STEP 2: Hexadecimal conversion

In this second step, the algorithm converts the result of the
binary numbers in hexadecimal numbers. (Fig. 1).

Fig. 1. Conversion to Hexadecimal representation

Our example will be converted to hexadecimal representation
as follows:

00100000 00111011 10000101 10001010 00110111
00101001 01000011 01101111 01000101 00110111

20 3B 85 8A 37 29 43 6F 49 37

 B.2 Decoding phase

The decoding phase is the inverse of the encoding phase.

From a hexadecimal representation, a hexadecimal number will
be converted into a binary sequence. This bit sequence will
build the DNA sequence (Fig. 2).

Fig. 2. Conversion to nucleotide representation

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-14047-2-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

 B.3 The Use of the Run–Length Encoding algorithm

The DNA sequences may have repetitive blocks of
nucleotides. To better compress the sequence, it is possible to
apply the technique of Run-Length Encoding that detects
similar adjacent areas and keeps only one copy of this block.
All the same, an additional data structure must be used to keep
the occurrence of these characters and the number of
repetition (fig.3).

Fig. 3. RLE data structure

B.4 Detection of similar blocks between multiple sequences

By applying a searching process for similar regions on
multiple DNA sequences encoded in binary representation, it
is possible to detect similarities between them by using an
hexadecimal representation. It is easy to make a subtraction
operation between these sequences. The obtained result is then
converted to binary coding. Consequently, the bits equal to
zero represent the regions of similarity between the sequences
(Fig. 4).

Fig. 4. Detection of similarity between multiple species

IV. EXPERIMENTAL RESULTS

A. Evaluation Metrics
To measure the performance of our algorithm, we used two
types of data:
• Entire genomes sequence in order to calculate the
contribution of our algorithm in terms of compression ratio to
the genomes that have a large number of nucleotides.
• The DNA sequences belonging to the same genus: this will,
in addition to the compression of sequences, detect regions of
similarities between the sequences after applying the
Hexadecimal encoding.

B. Performance in terms of data compression
To achieve our experimental study, we used 11 species
belonging to the genus Bacillus. The species used are
amyloliquefaciens Anthracis, Azotoformans, Badius, Cereus,
Circulans, coagulans, licheniformis, megaterium, mycoides,
Psychrosaccharolyticus and pumilus. The DNA sequence’s
size is about 1500 nucleotides. We also used the genome
Mitochondria (MPOMTCG) and the genome of Vaccinia
Virus (VACCG) whose size is about 190000 nucleotides.
The compression using the hexadecimal coding has reduced
the DNA sequence’s original size to the half. As indicated in
table I, applying the RLE algorithm has permitted a gain of up
to 4% of the sequence’s original size. However, this gain is
only perceived in the genomes’ compression.
We also compared our approach to existing DNA sequences
compression algorithms in terms of binary representation rate
per nucleotide. Compression ratios presented in Table II show

TABLE I. PERFORMANCE OF OUR ALGORITHM ON DIFFERENT DNA SEQUENCES AND GENOMES

Sequence Name Number of

Nucleotides

Sequence Size
(Bytes)

Size after the
Hexadecimal
Compression

Size after the
RLE

compression
Bacillus Subtilis 1538 1560 780 780

Bacillus Anthracis 1459 1480 740 740
Bacillus Cereus 1501 1522 761 761

MPOMTCG 186609 189274 94637 94601
VACCG 191737 194476 97238 97237

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-14047-2-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

TABLE II. Comparison with other algorithms
 Sequence Base

Pair
GZIP DNA

Compress
DNA Pack CTW+LZ XM Hex-RLE

Subtilis 1538 2.30 1.92 1.91 1.92 1.87 2
MPOMTCG 186609 2.21 1.90 1.89 1.90 1.86 1.98

VACCG 191737 2.17 1.75 1.76 1.76 1.72 1.99

that the majority of algorithms have a compression ratio
greater than 1.7 BpB including our algorithm which has a
compression rate equal to 2 BpB.

C. Experiments in Time execution

To measure the execution time of our algorithm, we used a
computer with an Intel i3-2375M processor cadenced at 1.5
Ghz and a 4GB Ram memory.

Fig. 5. Execution time comparison between our approach and other

algorithms

The previous figure (fig.5) represents the execution time of
algorithms applied on the VACCG genome. It shows that our
algorithm has a running time better than the CTW + LZ
algorithm. All the same, the execution time is greater than that
of DNA and DNA Pack Compress. However, it is possible to
reduce the execution time of our algorithm if its execution is
parallelized.

D. Performance in terms of similarities percentages between

sequences of the same genus

Our algorithm permits an easy search of regions of similarity
of a set of DNA sequences. Indeed the transformation of the
sequences to the hexadecimal representation is followed by a
simple subtraction operation and a conversion of the result
into binary representation and a detection of adjacent zero
suites that represent the regions of similarity between the
sequences. To test our algorithm, we applied it on Bacillus
Anthracis and Bacillus Subtilis sequences (Tab III)

TABLE III. Number of similarity between Sequences
Number of similarity

(Nucleotide)
331

Number of similarity
(Hexadecimal characters)

134

the longest common subchain
(nucleotide)

190

the longest common subchain
(Hexadecimal characters)

95

Our algorithm has detected the longest subchain between the
two sequences.
Second, we have applied our algorithm on the species of the
genus Bacillus and the Phylum Firmicutes sequences.
Subsequently, we looked for the longest common string
between the sequences.

TABLE IV. Longest common chain for a set of species
Sequences from Length of the

longest chain
Length after
compression

Bacillus genius 140 70
Firmicutes Phylum 85 42

From the results in Table IV, we can say that our algorithm
has allowed a considerable gain in terms of data storage. In
addition, 70 Hexadecimal characters are only used to describe
the longest common chain of 11 species of the genus Bacillus
used in this experiment.

V. CONCLUSION AND FUTURE WORK

The main strength of our algorithm is that it allows, using a
simple arithmetic operation, to compare a set of DNA
sequences and identify regions of similarity between them.
The algorithm is also very easy to implement and his usage is
advantageous because a hexadecimal character code two
nucleotides. In the future, we will try to associate our
algorithm to other vertical compression algorithms based on
statistical approaches in order to choose the sequence that can
best represent a set of DNA sequences.

REFERENCES

[1] A.AppaRao, “DNABIT compress-compression of DNA sequences,”

in Proc. the Bio medical Informatics, 2011.
[2] Rajeswari, P. R., and Apparao, A., 2010, Genbit Compress Tool

(GBC)Java-Based Tool To Compress DNA Sequences and Compute
Compression Ratio (BITS/BASE) Of Genomes, International Journal
of Computer Science and Information Technology, 2(3), 181-191.

[3] Pierzchala, S. (2004). Compressing Web Content with mod—gzip
and mod—deflate. Linux Journal, 1-10.

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-14047-2-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

[4] Grumbach S. and Tahi F.: Compression of DNA Sequences. In Data
compression conference, pp 340-350. IEEE Computer Society Press,
1993.mod

[5] Korodi, G., Tabus, I., Rissanen, J., et al., 2007, DNA Sequence
Compression Based on the normalized maximum likelihood model,
Signal Processing Magazine, IEEE, 24(1), 47-53.

[6] S. Grumbach and F. Tahi, "Compression of DNA Sequences," in
Proc. of the Data Compression Conf., (DCC '93), 1993, 340–350.

[7] Rajeswari, P. R., and Apparao, A., 2010, Genbit Compress Tool
(GBC): A Java-Based Tool To Compress DNA Sequences and
Compute

[8] A.AppaRao, “DNABIT compress-compression of DNA sequences,”
in Proc. the Bio medical Informatics, 2011.

[9] Deorowicz, S., and Grabowski, S., 2011, Robust relative compression
of genomes with random access, Bioinformatics, 27(21), 2979–2986.

[10] Christley, S., Lu, Y., Li, C., et al., 2009, Human genomes as email
attachments, Bioinformatics, 25(2), 274-275

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-14047-2-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

	I. Introduction
	II. DNA sequences Compression algorithms
	III. Our proposed algorithm

