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Abstract—Atoms adsorbed on a honeycomb lattice diffuse
and eventually form dimers. Three types of dimers are possible
with this lattice’s symmetry: ortho-, meta- and para-dimer. We
estimate the probability of para- and ortho-dimer formation
when atoms jump independently between sites of the underlying
lattice. Our analyze is based on a simple model of diffusive
motion of a pair of atoms which bind to lattice sites separated by
a distance ∆, measured as a number of edges between sites and
characterized by a chirality coefficient χ. Because of diffusive
motion of atoms, ∆ and χ change in time and we trace a flow
over the configurational space. The flow eventually converges
to one of possible absorbing states. If the particular adsorbing
state is reached it means that a dimer corresponding to this state
is formed. We have computed time-dependent probabilities PO

and PP for ortho- and para-dimer formation, respectively. We
have found that 4/15 < PO/PP < 5/14.

Index Terms—chirality, diffusion, dimer, honeycomb lattice,
random walk.

I. INTRODUCTION

ADSORPTION of atoms on plane lattices is a process
of great importance in nanotechnology. A prominent

example is adsorption of atomic hydrogen on graphene
with prospective applications in low-scale-electronics [1],
[2]. This phenomenon is also interesting in conjunction with
hydrogen storage for subsequent use.

The adsorption of atoms on honeycomb lattices has gained
attention because of their structural and chemical simplicity
as models for the study of fundamental surface processes.
Examples include formation and conversion of dimers or
emergence of chiral properties due to the loss of mirror
symmetry in the adsorbate – substrate system [4], [5], [6],
[7].

For the purpose of this study a complex process of
dimer formation will be reduced to a random walk process
involving point-like atoms which jump between nodes of
honeycomb lattice. Dimers are energetically more stable than
the monomers and thus, within such a scenario, a dimer is
formed when the relative positions of two atoms correspond
to one of three arrangements presented in Fig. 1. Here, we
take into account only the short dimmers. Extended dimers
can also be considered, e.g. a number of extended hydrogen
dimer configurations on graphite surface was reported in [3].

The mathematics behind our description relies on cellular
automata network dynamics. We employ a language of a
random walk in a space with absorbing states. An ensemble
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Fig. 1. Three different dimers on hexagonal lattice: (a) ortho-dimer, (b)
meta-dimer, (c) para-dimer. Open circles mark the molecule positions and
the solid lines are only visual guides

of all dimer configurations is represented by a set of disjoint
classes of configurations characterized by chiralities of all
possible node-to-node arrangements [7].

Consider a pair of atoms related to different nodes of
honeycomb lattice. They are separated by a distance ∆ being
the number of edges along the shortest path between the
nodes. At each time step the atoms jump independently and
the distance ∆ updates to new value:

∆ −→ ∆′ ∈ {∆− 2,∆,∆ + 2}. (1)

The distance ∆, however does not supply all necessary infor-
mation about the atom-to-atom arrangement. It is because the
same value of ∆ corresponds to (∆ + 1)/2 (odd ∆) or ∆/2
(even ∆) different arrangements. Examples of arrangements
with odd values of ∆ are presented in Fig. 2. Equation (1)
shows that the simultaneous jump of atoms conserves parity
of ∆. It means that such a diffusive motion keeps a pair
of atoms within an ensemble of configurations with the
parity fixed by initial atoms’ positions, i.e. the nodes to
which they binded when the adsorption took place. Therefore
each value of ∆ = 2p + 1 represents an ensemble of p
configurations {∆1 ≡ ∆z,∆2, . . . ,∆p ≡ ∆a} each of which
is characterized by a chirality angle θ (see Fig. 3). We call
such an ensemble the chirality class χ∆.

This chirality-class concept can be used to detect a dimer
formation in a following way: if two atoms happen to reach
one of χ1, χ2 chirality class or the configuration 3A from
χ3 they merge irreversibly forming a dimer.

In this paper we concentrate on ortho- and para-dimers
and we relate probabilities of their formations with initial
positions of atoms.

II. RANDOM WALK IN CHIRALITY SPACE

To see how diffusive motion of molecules is perceived
from the chirality space perspective let us consider two atoms
sitting at time τ at sites separated by ∆. To be specific, we
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Fig. 2. Pairs of atoms on honeycomb lattice with separations 1, 3, 5 and
7: (a) two ∆ = 3 configuration, 3Z (zig-zag) and para-dimer (P ) (being
3A armchair configuration); (b) three ∆ = 5 configurations, i.e. 5Z (zig-
zag), 51 and 5A (armchair); (c) ∆ = 7 with its four configurations: 7Z
(zig-zag), 71, 72 and 7A (armchair). The only one ∆ = 1 configuration
1Z , representing the ortho-dimer O, is shown in (a). Open circles mark
positions of atoms and the solid lines are only visual guides

Fig. 3. Chirality class χ7 with its four configurations: 7Z (Zig-zag), 71,
72 and 7A (Armchair) and corresponding chiral angles θ. Open circles
represent adsorbed atoms

take here ∆ = 5. At time τ + 1 atoms jump independently
to new nodes. There is no bias so each atom choses one of
three its neighboring nodes with probability 1/3. Since the
atoms move independently then, after the jump they can be in
one of 9 equally probable new node-to-node configurations

which belong to chirality classes χ3, χ5 and χ7. Closer look
at these 9 configuration enable us to trace links along which
configurations from the class χ5 disperse among the classes
χ3, χ5 and χ7. For this particular ∆ = 5 case links from
5Z , 51 and 5A are presented in Fig. 4. Such a series of links
can be constructed virtually for any ∆, although it can be a
tedious job.

Diagrams in Figs. 4 and 5 contain information sufficient
to built up a chain of recursive relations which starts at
a configuration within a given chirality class and ends at
P (para-dimer) or at O (ortho-dimer). Configurations P
and O are the absorbing states in the chirality space. It is
interesting to note that the absorbing state P can be reached
from configuration 3z with the probability 2/9, once the
configuration 3z is populated or, with the probability 1/9
from the configuration 5A if there is a pair of atoms in
this configuration (see Fig. 4c). It means that there are two
independent pathways enabling para-dimer creation whereas
only one pathway 3z → O, with conditional probability 1/9,
points to the ortho-dimer formation (see Fig. 5). Each of
these pathway is spanned by the links between consecutive
classes χ1, χ3, . . ., χµ (where µ is related to the lattice
extension and to the life time of adsorbed atom [4]).

Before we employ the above mentioned pathways to
estimate the probability of accessing the absorbing states P
and O, we have to analyze how the configuration 5A behaves
on the pathway going to P . The diagram (c) in Fig. 4 shows
that the vertex 5A has no loop. It implies that the conditional
probability P (5A|5A) for 5A stays active, if it was active
in the precedent time step, equals to zero and thus, 5A is
a transitive state with no internal dynamics. Therefore, the
pathway going to P via 5A is open only if 5A is constantly
activated by 51 (with the probability 2/9 as seen from the
Fig. 4(b) and some configurations from the class χ7, namely
71 and 7A (not shown here).

III. PROBABILITY FUNCTIONS FOR ORTHO- AND
PARA-DIMER FORMATIONS

When two atoms are adsorbed on the lattice their relative
initial positions correspond to a configuration ∆l (0 ≤ l ≤
(∆−1)/2) from the chirality class χ∆. Then, this initial con-
figuration starts to flow in the chirality space and eventually
reaches one of the absorbing states O or P . Therefore, our
quantities of interest are the probabilities PO(τ) and PP (τ)
for the two-atom-configuration ∆ reaches chirality class χ1

or the configuration 3A (from the class χ3), respectively.
In other words PO(τ) and PP (τ) are the probabilities that
two atoms merge irreversibly forming a dimer. Last two
stages of such a flow are presented in Fig. 6. The flow
diagram depicted in Fig. 6 can be considered as a rough
approximation to the process. Within this approximation
we keep an exact structure of relations inside of χ1 and
χ3 classes whereas relations involving remaining chirality
classes are reduced to links between χ3 and an effective class
denoted by the symbol Σ in Fig. 6. It means that detailed
structure of relations among chirality classes χ5, χ7,. . ., χµ
is wrapped into the effective class Σ.

In this spirit, the probability PP (τ) for such a flow of
conversions of ∆l>3 when starting at τ = 0 will be captured
by P at time τ can be written in the following form

PP (τ) = P (P |3z) ·P3z(τ − 1) +P (P |Σ) ·PΣ(τ − 1), (2)
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Fig. 4. Schemes of dispersion of chirality class χ5: (a) configuration
5Z , (b) configuration 51 and (c) configuration 5A. Arrows and labels
indicate target configurations and conditional probabilities of corresponding
conversions, respectively. Double circle is the absorbing configuration P
representing the para-dimer

Fig. 5. Same description as in the Fig. 4: configuration 3Z from the
chirality class χ3. Double circles: O and P state for ortho- an para-dimer
absorbing configurations, respectively

Fig. 6. Flow diagram in the chirality space. Two last stages before a dimer
formation are shown. Double circles indicate absorbing configurations O
and P . Links between chirality classes follow links shown in Figs. 4-5.
Symbol Σ denotes the set of all chirality classes except classes χ1 and χ3

where P (α|β) denotes the conditional probability that the
atoms jump from a configuration β to α. P (α|β) can also
be seen as a rate of conversion of the configuration β into
the configuration α once β is populated. Since there is only
one pathway to ortho-dimer formation then the probability
PO is given by

PO(τ) = P (O|3z) · P3z(τ − 1). (3)

We see that PP (τ) as well as PO(τ) depend on the same
pair of probability functions: P3z and PΣ evaluated at the
preceding time τ−1. It means that our approximation reduces
original random walk in chirality classes to the random walk
between two point-like classes Σ and 3Z plus two absorbing
configurations O and P . The probabilities P3z(τ) and PΣ(τ)
depend on their values in previous time in a following way

P3z(τ) = P (3z|3z) ·P3z(τ −1)+P (3z|Σ) ·PΣ(τ −1), (4)

PΣ(τ) = P (Σ|3z) · P3z(τ − 1) + P (Σ|Σ) · PΣ(τ − 1). (5)

Since these functions characterize non-absorbing states of
our chirality network then they are a self-sustained pair of
time dependent quantities. Therefore, their particular forms
can be evaluated in a chain-like manner starting from the
initial values P3z(τ = 0) and PΣ(τ = 0).

To see that let us rewrite the Eqs. (2)-(5) as a matrix-vector
equation

P(τ) = T · P(τ − 1) = . . . = Tτ · P(0) (6)

where the vectors of probability functions P(τ) and P(0)
are

P(τ) =


PO(τ)
PP (τ)
P3z(τ)
PΣ(τ)

 , P(0) =


0
0
0
1

 . (7)
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Entries of the transfer matrix T are the appropriate condi-
tional probabilities marked in the Fig. 6, i.e.

T =


1 0 1/9 0
0 1 2/9 1/9
0 0 2/9 4/9
0 0 4/9 4/9

 . (8)

The particular form of P(0) reflects our assumption that the
initial positions of atoms are separated by ∆ > 3 and thus
PO(0) = PP (0) = P3z(0) = 0. The nonsingular matrix T
can be easily diagonalized. Its spectrum is the set of numbers
{1, 1, λ−, λ+} where

λ∓ =
1

3
∓
√

17

9
(9)

and thus the τ -th power of T is given by

Tτ = S−1 ·


1 0 0 0
0 1 0 0
0 0 λτ− 0
0 0 0 λτ+

 · S, (10)

with

S =


1 0 5/9 4/9
0 1 14/9 15/9
0 0 −1 + λ−/4 0
0 0 0 −1/2 + λ+/4

 , (11)

Explicit forms of Tτ , Eq. (10) and P(τ), Eq. (7), yield
the time dependent probabilities PO(τ) and PP (τ) in terms
of P(0) = (0, 0, 0, 1), namely

PO(τ) =
4

19
+

5
√

17− 11

19(17 +
√

17)
λτ−−

23 + 7
√

17

19(17 +
√

17)
λτ+ (12)

PP (τ) =
15

19
+

4(7
√

17− 23)

19(17 +
√

17)
λτ−−

163 + 43
√

17

19(17 +
√

17)
λτ+ (13)

as well as the functions P3z(τ) and PΣ(τ)

P3z(τ) =
2√
17

(λτ+ − λτ−) (14)

PΣ(τ) =
8

17 +
√

17
λτ− +

9 +
√

17

17 +
√

17
λτ+ (15)

As an example the function PO(τ) is shown in Fig. 7.
Although P(τ) can be written for a general initial distri-

bution P(0), i.e. P(0) = (0, 0, P3z(0), PΣ(0)), the overall
characteristic of dimer formation can be seen already from
Eqs. (12) - (15) which are valid only for P(0) = (0, 0, 0, 1).
Since |λ∓| < 1 then, for τ >> 1, we have the following
relation among the probabilities of dimer formation

PO(τ)

PP (τ)
≈ 4

15
+

1

15

(
1 +

52

15
√

17

)
λτ+ −→

4

15
. (16)

If the initial configuration is a mixture of ∆3z and ∆Σ

configurations with probabilities p and 1 − p, respectively
then P(0) = (0, 0, p, 1 − p) and the ratio of probabilities
stays within the range

4

15
<
PO(τ)

PP (τ)
<

5

14
(17)

when τ →∞.
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Fig. 7. Discrete-time probability function PO(τ) of the ortho-dimer
formation given by Eq. (12). Dashed line is a visual guide

IV. CONCLUSION

Our analytical approach relies on assumption that the
dimers appear due to sequences of synchronous jumps of
atoms. We are perfectly aware that such an assumption does
not reflect displacement of adsorbed atoms in a real system.
It is mainly because atoms do not move simultaneously.
They change positions at different times. Our toy model,
however yields some valuable information because the co-
herent movement of atoms can appear in the proximity of
one of the adsorbing states. A few steps before the dimer
formation, when the atoms are relatively close to each other,
they correlate their jumps and the rate at which a particular
dimer appears can be described within the scenario resulting
from our model. Obviously, more detailed description of
the random walk is necessary, i.e. more then two chirality
classes should be considered in conjunction with distributions
of distances in hexagonal lattices [7], [8]. Apart from the
hopping time also a residence time have to be included
into the model because the time of residence is substantially
longer that the time of hopping from one lattice node to
another.
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