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Abstract—In this paper the error performance of a super-
orthogonal space time trellis coded-OFDM system with channel
estimation error in a quasi-static frequency selective fading
channel is analysed. A least squares estimate of the channel
matrix is obtained by using a sequence of pilot symbols. The
estimated error is a function of additive white Gaussian noise.
The Gauss Chebychev quadrature technique is used to derive
the closed form expression of the pairwise error probability
(PEP) by assumming the variance of the channel estimation
error. Based on the closed form PEP expression, the bit error
rate was obtained. Performance results show that the proposed
method gives a simulated bit error rate that is correlated with
the calculated bit error rate.

Index Terms—Space-time codes, pairwise error probability,
OFDM, Gauss Chebychev quadrature technique.

I. INTRODUCTION

SUPER-orthogonal block codes (SOBC) were developed
earlier for flat fading [1], [2] (i.e. frequency non-selective

fading) channels without temporal interference. In a flat
fading channel SOBC in the space and time domain show
an improved coding gain and provide full diversity when
compared with both space-time block codes [3] and space-
time trellis codes [4]. In a frequency selective channel, two
main methods can be used to enhance the performance of
SOBC, i.e. using of maximum likelihood sequence esti-
mation with multichannel equalisation and Orthogonal Fre-
quency Division Multiplexing (OFDM) where the temporal
signal interferences are reduced by converting the frequency
selective fading channel into parallel flat fading channels.
Two forms of SOBC in the OFDM environment are pos-
sible [5]: super-orthogonal space-time trellis coded-OFDM
(SOSTTC-OFDM), which is capable of realising both spatial
and temporal diversity, and super-orthogonal space-frequency
trellis coded-OFDM (SOSFTC-OFDM), which is a scheme
that is capable of realising both spatial and frequency diver-
sity. Performance analyses of most coded-OFDM schemes
[6], including SOBC-OFDM schemes, have been done based
on the assumption that perfect channel estimation is available
and that estimation errors are negligible. In spite of the fact
that perfect channel estimation is convenient in evaluating
the performance of coded-OFDM schemes, performance
evaluation when the channel is estimated is a more realistic
approach.
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Channel estimation can be performed using two main meth-
ods. One is called pilot-based channel estimation [7], [8],
which is based on sending training data by the transmitter
that is known a priori at the receiver. The other is called blind
channel estimation [9], [10], which explores the statistical
information of the channel and certain properties of the
transmitted signals. Though the blind estimation method
has no overhead loss, it is only applicable to slow time-
varying channels owing to its need for a long data record
and high complexity. Pilot-based channel estimation uses
pilot code sequences to estimate the channel. In coded-
OFDM and for pilot-based channel estimation, two pilot
arrangement methods are possible i.e. block-type or comb-
type pilot arrangement.
As a result of the additive noise at the receiver, using pilot
based estimation, we apply a least squares based channel
estimation technique to SOSTTC-OFDM in a quasi-static
frequency selective fading channel. The channel estimation
matrix is obtained from the transmitted a priori pilot infor-
mation at the receiver. A closed form expression of the PEP
is derived after the channel has been estimated. The derived
PEP is used to calculate the bit error rate and a comparison
is made between the calculated and simulated bit error rate.
The paper is organised as described below. Section 2 gives
the system model of an SOSTTC-OFDM scheme. The
channel estimation technique is presented in Section 3. In
Section 4, the authors discuss the performance analysis of the
SOSTTC-OFDM, with imperfect channel estimation by us-
ing the Gauss Chebychev quadrature technique to determine
the closed form expression of the PEP. A numerical example
of the PEP using two-state SOSTTC-OFDM is given in
Section 5. In Section 6, the PEP obtained in Section 5 is
used to calculate the bit error rate and a comparison of both
the simulated and calculated bit error rate is made. Some
concluding remarks are given Section 7.

II. SYSTEM MODEL

An OFDM transmission system with Nt transmit antennas,
Nr receive antennas and N subcarriers is considered. The
transmission employs concatenating SOSTTC and OFDM as
shown in Figure 1.
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Fig. 1. Transmission diagram for a concatenated SOSTTC and OFDM
scheme with Nt = 2 and Nr = 1.

The super-orthogonal space time trellis encoder is described
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for Nt = 2 (The case of Nt = 2 is chosen because for
complex orthogonal design, full rate orthogonal block code
only exist for Nt = 2 [1] ). kc information bits are first
mapped into two modulated symbols {s1 , s2} and to a
rotation angle θ by the trellis encoder related to the current
state. The super-orthogonal space time block transmission
matrix is given in (1) for Nt = 2.

A(s1, s2, θ) =

[
s1e

jθ s2
−s∗2e

jθ s∗1

]
. (1)

The super-orthogonal space time block encoder outputs s1ejθ

and −s∗2e
jθ from the first antenna at the first and second time

intervals, respectively. Also on the second antenna, the super-
orthogonal space time block encoder outputs s2 and s∗1, at
the first and second time interval, respectively. For M -phase
shift keying (PSK) modulation with a signal constellation
represented by si ∈ ej2πa/M , i = 1, 2., a = 0, 1, · · · ,M − 1;
one can pick θ = 2πá/M , where á = 0, 1, · · · ,M−1. In this
case the resulting transmitted signals of (1) are also members
of the M -PSK constellation alphabet, and thus no expansion
of the constellation signals is required. The choices for θ that
can be used in (1), for both binary phase shift keying (BPSK)
and quaternary phase shift keying (QPSK), are given as 0, π
and 0, π/2, π, 3π/2, respectively.
It should be noted that when θ = 0, (1) becomes the code
presented in [3] (i.e. Alamouti code).
The outputs of the super orthogonal space time encoder
from the two antennas can then be transmitted on each
OFDM subcarrier. The signal received for an SOSTTC-
OFDM scheme, at the jth received antenna, on the nth
subcarrier and for two time intervals t and t+ 1, is written
as:[

rtj(n)

rt+1
j (n)

]
=

[
s1(n)e

jθ s2(n)
−s∗2(n)e

jθ s∗1(n)

]
•
[

H1j(n)
H2j(n)

]
+

[
ηtj(n)

ηt+1
j (n)

]
, (2)

where Hij(n) is the channel impulse response in the fre-
quency domain from the ith transmit antenna to the jth
receive antenna for the nth subcarrier and ηtj(n) is the noise
component at the receive antenna j for subcarrier n at time
interval t. The noise components are independently identical
distributed (i.i.d) complex Gaussian random variables with
zero-mean and variance No/2 per dimension.
Equation (2) can be written in a more compact matrix form
for an nth subcarrier, as:

rj(n) = s(n)Hj(n) + ηj(n), (3)

where Hj(n) = [H1j(n) H2j(n)]
T and for an entire frame

of N subcarries, equation (3) can be written as:

Rj = SHj + Ñj , (4)

with the individual elements given by,

Rj = [rj(1) rj(2) rj(3) · · · rj(N)], (5)

S =


s(1) 0 . . . 0
0 s(2) . . . 0
...

...
. . .

...
0 0 . . . s(N)

 , (6)

Hj = [Hj(1) Hj(2) Hj(3) · · · Hj(N)], (7)

and

Ñj = [ηj(1) ηj(2) ηj(3) · · · ηj(N)]. (8)

The time domain channel impulse representation between
the ith transmit antenna and the jth receive antenna can be
modeled as an L tapped-delay line. The channel response at
time t with delay τs can be expressed as:

hij(τs, t) =
L−1∑
l=0

ĥij(l, t)δ(τs − nl/N∆f), (9)

where δ(· ) is the Dirac delta function, L denotes the number
of non-zero taps, ĥij(l, t) is the complex amplitude of the lth
non-zero tap with delay of nl/N∆f (nl is an integer) and
∆f is the tone spacing of the OFDM system. In (9), ĥij(l, t))
is modeled as a wide-sense stationary narrowband complex
Gaussian processes with power E[|ĥij(l, t))|2] = σ2

l , and the
normalized channel power: ΣL−1

l=0 σ2
l = 1 .

For an OFDM system with adequate cyclic prefix, the chan-
nel inpluse response in the frequency domain is expressed
as:

Hij(n) =
L−1∑
l=0

ĥij(l, t)exp(−j2πn(l)/N), (10)

where ĥij(l, t), for l = 0, 1, 2, · · · , L − 1, are narrowband
zero-mean complex Gaussian processes for the different i
transmit antenna and j receive antennas. Equation (10) can
be rewritten in matrix form as:

Hij(n) = hijw(n), (11)

where hij = [ĥij(0) ĥij(1) · · · ĥij(L − 1)] is the channel
vector, w(n) = [w(0) w(1) · · · w(L − 1)]T is the FFT
coefficient vector (note that w(k) = e−j2πnk/N ) and T
denotes the transpose operation.

III. CHANNEL ESTIMATION

Based on (3), the received signal at the pilot subcarrier p for
transmit antenna i and receive antenna j can be written as:

rj(p) = s(p)Hj(p) + ηj(p), (12)

where ηj(p) consist of i.i.d complex Gaussian random noise
vectors, s(p) is the pilot symbols matrix of the form given in
(1) and rj(p) is the received pilot matix at the pilot instance.
From (12) , the least square estimate [11] of the channel
matrix at the pilot subcarrier is given by :

H̃(p) =
(s(p))Hrj(p)

s(p)(s(p))H
, (13)

where (· )H denotes the conjugate transpose operator. The
pilot symbols must be chosen such that s(p)(s(p))H is
invertible. In the remainder of the analysis, the authors
will omit the pilot index p in equation (13) for notation
convenience.
Using (12) and (13), H̃ can be rewritten as:

H̃ = H+
sHη

ssH
. (14)
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The denominator in (14) can be written as ssH = NtINt

, if one assume that all the orthogonal training symbols
are selected from a constellation where each member has
normalised unit energy, e.g. PSK.
Therefore (14) can be rewriten as:

H̃ = H+
sHη

NtINt

, (15)

The estimate of the channel frequency response written in
(15) can be seen to be perturbed by zero mean Gaussian
noise and can be rewritten as:

H̃ = H+
sHη

NtINt︸ ︷︷ ︸
E

= H+ E. (16)

When the channel frequency response estimate is perfect, the
channel frequency estimation error matrix E = 0 and

H̃ = H. (17)

For an entire frame of N transmitted subcarriers the es-
timated channel frequency response can be expanded as
follow:

H̃ = [H̃(1) H̃(2) H̃(3) · · · H̃(N)]

= [h̃1j h̃2j ] •


w(n) 0 . . . 0
0 w(n) . . . 0

. . . . . .
. . .

...
0 0 . . . w(n)


= h̃ij •W(n), (18)

where h̃ij = [h̃ij(0) h̃ij(1) · · · h̃ij(L− 1)] is the estimated
channel impulse response and W(n) is the FFT coefficient
matrix.
An alternative expression of the estimated channel impulse
response as a function of the channel impulse response error
e is written as:

h̃ = h+
sHη

NtINt
w(n)︸ ︷︷ ︸

e

= h+ e. (19)

IV. PERFORMANCE ANALYSIS

To evaluate the performance of the SOSTTC-OFDM sys-
tem with imperfect channel estimation, the authors use the
PEP. The PEP is the probability of choosing the codeword
Ŝ = [̂s(1) ŝ(2) · · · ŝ(N)] when in fact the code
S = [s(1) s(2) · · · s(N)] was transmitted after the
channel has been estimated. The maximum likelihood metric
corresponding to the correct path (i.e. m(R,S)) and the
incorrect path (i.e. m(R, Ŝ)) will be used.
The metrics corresponding to the correct and the incorrect
paths (i.e. based on (4)) for j = 1 are given by (20) and (21)
respectively.

m(R,S) = ||R− (H̃S)||2, (20)

m(R, Ŝ) = ||R− (H̃Ŝ)||2, (21)

where H̃ is expressed in (18).
The realization of the PEP over the entire frame length and
for the estimated channel frequency response is written as:

P (S → Ŝ|H̃) = Pr{m(R,S) > m(R, Ŝ)}
= Pr{(m(R,S)−m(R, Ŝ)) > 0}(22)

Simplifying (22) by substituting (20) and (21) gives the
following expression:

P (S → Ŝ|H̃) = Pr{||R− (H̃S)||2)− ||R− (H̃Ŝ)||2 > 0}
= Pr{||H̃S||2 − ||H̃Ŝ||2 > 0}
= Pr{||H̃(S− Ŝ)||2 > 0}
= Pr{||H̃∆||2 > 0} (23)

where ∆ is the block codeword difference matrix that
characterizes the transmitted and erroneous symbols.
The conditional PEP can now be expressed in terms of the
complementary error function as:

P (S → Ŝ|H̃) =
1

2
erfc
(√

Es

4No
H̃∆∆HH̃H

)
. (24)

Expanding (24) will result in:

P (S → Ŝ|h̃) = 1
2erfc

(√
Es

4No

∑N
n=1 h̃Φ(n)(h̃)

H

)
, (25)

where the expression for Φ(n) is given in (26), W(n) is
given in (18) and ∆∆H is the codeword difference matrix
with detailed expression in (27) and (28).

Φ(n) = W(n)∆(n)(∆(n))H(W(n))H , (26)

∆∆H =


∆(1)∆(1)H 0 . . . 0

0
. . . . . . 0

...
...

. . .
...

0 0 . . . ∆(N)∆(N)H

 , (27)

∆(n) = s(n)− ŝ(n). (28)

A complementary error function, as defined integrally in [12],
is written as:

erfc(b) =
2

π

∫ ∞

0

e−b2(t2+1)

t2 + 1
dt. (29)

The conditional PEP can be expressed as an integral using
the above. Thus, with E(x) denoting the average of x, one
gets the following expression :

P(S → Ŝ|h̃)

= 1
πE

{∫∞
0

exp[−(t2+1) Es
4No

∑N

n=1
h̃Φ(n)(h̃)H ]

t2+1 dt

}
. (30)

The above expression can be simplified further using the
results in [13]. For a complex distributed Gaussian random
row vector matrix z with mean µ and covariance matrix
σ2
z = E[zz∗ − µµ∗], and a Hermitian matrix M , one can

write the expected value as;

E[exp(−zM(z∗)T )] =
exp[−µM(I+ σ2

zM)−1(µ∗)T ]

det(I+ σ2
zM)

. (31)
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Based on (31), the mean and variance of the estimated
channel impulse matrix needs to be obtained.
As expressed in (19), the estimated channel is a function
of the channel impulse response matrix and the channel
estimation error. The estimated channel impulse vectors in h̃
and the channel estimation error vectors in e are uncorrelated
and independent.
The sum of any two independent random variables X ∼
C(µX, σ

2
X) and Y ∼ C(µY, σ2

Y) that are normally distributed
is also normally distributed [14], i.e. ,

Z = X + Y
Z ∼ C(µX + µX, σ

2
Y + σ2

Y). (32)

Therefore from the above illustration and since the channel
impulse responses are zero-mean random variables, the mean
of the estimated channel impulse response will be an all-zero
matrix while the variance will be the sum of the variance of
the channel impulse response matrix and the estimation error
matrix. This is expressed as:

σ2
h̃

= σ2
h + σ2

e (33)

Using (30) and substituting the mean and the variance of the
estimated channel, the conditional PEP in (29) can be written
as:

P (S → Ŝ)

= 1
π

∫∞
0

1
t2+1

1

det[I+ Es
4No

σ2

h̃

∑N

n=1
Φ(n)(t2+1)]

dt.(34)

To solve (34), an integral equation expressed as:

I =
1

π

∫ ∞

0

1

t2 + 1
f(t2 + 1)dt (35)

is considered, where
f(t2 + 1) = 1

det[I+ Es
4No

σ2

h̃

∑N

n=1
Φ(n)(t2+1)]

.

Substituting y = 1
t2+1 into (35), leads to the following

expression:

I =
1

2π

∫ 1

0

1√
y(1− y)

f(1/y)dy. (36)

Equation (36) is in the orthogonal polynomial form of (35)
as expressed in [12] and the Gauss-Chebyshev quadrature
technique of the first kind can be used to solve it. This may
be done as follows:∫ 1

−1

f(u)√
1− u2

du =
m∑
i=1

Bif(ui) + Vm. (37)

where ui = cos (2i−1)
2m , Bi = π

m and Vm ≤
max

−1<u<+1

π

(2m)!22m−1
|f2m(u)|.

Note that if 2y − 1 = u then,

2y − 1 = cos
(2i− 1)π

2m
,

2y = cos
(2i− 1)π

2m
+ 1,

1

y
= sec2

(2i− 1)π

4m
. (38)

Therefore:

I =
m∑
i=1

Bif(ui) + Vm

=
1

2m

m∑
i=1

f

(
sec2

(2i− 1)π

4m

)
+ Vm. (39)

The closed form expression of the PEP, using the Gauss
Chebyshev quadrature formula as enumerated above, can
now be written as follows:

P (S → Ŝ)

= 1
2m

∑m
i=1

1

det[I+ Es
4No

σ2

h̃

∑N

n=1
Φ(n) sec2

(2i−1)π
4m ]

+ Vm.(40)

As m (which is the order of the polynomial i.e. f(ui))
increases, the remainder term Vm becomes negligible.

V. NUMERICAL EXAMPLE

As an example, a two-state SOSTTC-OFDM trellis is used.
Figure 2a represent the trellis when BPSK symbols are
transmitted while Figure 2b represent the trellis when QPSK
symbols are transmitted. In the trellises, two sets, each
containing two pairs of symbols, are assigned to each state,
i.e. there is a pair of parallel paths between each pair of
states. The label (s, l)/A(si, sj , θ) along each branch of
the trellises refers to the pair of input symbols (s, l) and
the corresponding output symbol function A(si, sj , θ) . For

(0,0)/A(+1,+1,0)

(0,1)/A(-1,-1,0)
(1,0)/A(+1,-1,0)

(1,1)/A(-1,+1,0)

(1,0)/A
(+1,-1

,π)

(1,1)/A
(-1

,+1,π)

(0,0)/A(+1,+1,π)

(0,1)/A(-1,-1,π)

State 1

State 2

(a)

(0,0)/A(+1,+1,0)

(0,1)/A(-1,-1,0)
(1,0)/A(+1,-1,0)

(1,1)/A(-1,+1,0)

(1,0)/A
(+j,-j

,π)

(1,1)/A
(-j,

+j,π
)

(0,0)/A(+j,+j,π)

(0,1)/A(-j,-j,π)

State 1

State 2

(b)

Fig. 2. Two-state SOSTTC-OFDM

Nt = 2, Nr = 1 and L = 2, the FFT coefficient matrix
W(n) can be written as:

W(n) =


1 0

w(n) 0
0 1
0 w(n)

 . (41)
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To obtain the pairwise error probability, the error events of
the trellises will be considered.
In Figure 2a, the first parallel paths, where n = 1, which
correspond to an error event length of 1 are considered, i.e.
Le(1). The codeword matrix obtained from the trellis and
W(n) values is written as:

Le(1) = W(1) •
[

2 −2
2 2

]
•
[

2 2
−2 2

]
• (W(1))H .(42)

For an error event of length 2, i.e. n = 2, the codeword
matrix obtained from the trellis based on the addition of the
dominant error paths is expressed as:

Le(2) = A + B, (43)

where

A = W(1) •
[

0 −2
2 0

]
•
[

0 2
−2 0

]
• (W(1))H , (44)

and

B = W(2) •
[

0 −2
0 2

]
•
[

0 0
−2 2

]
• (W(2))H .(45)

For an error event of length 3, the codeword matrix obtained
from the trellis based on the addition of the dominant error
paths is expressed as:

Le(3) = A + B + C, (46)

where

A = W(1) •
[

0 −2
2 0

]
•
[

0 2
−2 0

]
• (W(1))H ,(47)

B = W(2) •
[

0 0
2 2

]
•
[

0 2
0 2

]
• (W(2))H ,(48)

and

C = W(3) •
[

0 −2
0 2

]
•
[

0 0
−2 2

]
• (W(3))H .(49)

For other error events in Figures 2a and 2b, the codeword
matrices can be calculated with respect to the various error
event paths using the above method .
For different SNR, the calculated codeword matrix is then
substituted into the closed form PEP equation given in (40).
The variance of the estimated channel will be an identity
matrix whose diagonal elements is 0.5, since the channel
power has been normalised to one. The PEP curves in Figure
3 and Figure 4 are generated based on the assumptions
that the remainder value Vm is negligible and the order
polynonial equals to 2.
In Figures 3 and 4, the PEP performance of a two state
SOSTTC-OFDM code for when BPSK and QPSK symbol
are transmitted is shown, respectively. In both Figures, an
error event of length 2 has the worst PEP compared to error
event of length 1, 3, 4 and 5. This is because for the chosen
SOSTTC-OFDM transmission, the dominant error event is
concentrated at error event path of length 2. This is the worst
case PEP scenario for the code.
Since a BER is of greater importance in digital communica-
tion than the PEP, an estimation of the BER for SOSTTC-
OFDM with channel estimation error is obtained by account-
ing for the error event path up to a pre-determined specific
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Fig. 3. PEP performance of two-state BPSK SOSTTC-OFDM
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Fig. 4. PEP performance of two-state QPSK SOSTTC-OFDM

value using (50),

Pb(E) ≈ 1

b

∑
S̸=Ŝ

q(S → Ŝ)P(S → Ŝ). (50)

In (50) b is the number of input bits per trellis transition and
q(S → Ŝ) is the number of bit errors associated with each
error event. If the maximum length of error events taken
into account is chosen as Le, it is sufficient to consider
the error event up to Le. This represents a truncation of
the infinite series used in calculating the union bound on
the bit error probability for high SNR values. The choice of
Le is critical in the sense that most of the dominant error
events for the range of SNRs of interest should be properly
chosen to prevent excessive computational complexity (the
computational complexity grows exponentially with Le).
To approximate the BER by considering only the error event
path of one, two, three, four and five, the BER1, BER2,
BER3,BER4, and BER5 respectively, are used.

BER1 ≈ 1

2
(PEP1) (51)

BER2 ≈ 1

2
(PEP1 + 12 ∗ PEP2) (52)

BER3 ≈ 1

2
(PEP1 + 12 ∗ PEP2 + 28 ∗ PEP3) (53)

BER4 ≈ 1

2
(PEP1 + 12 ∗ PEP2 + 28 ∗ PEP3 + 64 ∗ PEP4) (54)
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BER5 ≈ 1

2
(PEP1 + 12 ∗ PEP2 + 28 ∗ PEP3+

64 ∗ PEP4 + 144 ∗ PEP5)
(55)

The number of errored bits for various error events in Figure
2b, can be enumerated using the above mentioned methods

VI. PERFORMANCE RESULT

The simulated and the calculated performance of an
SOSTTC-OFDM system in a quasi-static frequency selective
fading channel are presented. The same parameter stated is
used for the calculated and simulated code. In Figures 5
and 6, the simulated BER for N=64 is compared with the
calculated BER for various error events: 1, 2, 3, 4 and 5,
which correspond to N = 2, 4, 6, 8 and 10, respectively. The
graph shows that an increase in the error events (i.e. from
1 to 5) gives a more accurate and tighter BER evaluation
compared with the simulated one. The graph shows that for
a maximum error event of length 5, the analysis and the
simulation are very close, therefore for the high SNR region,
the calculated BER values can be used instead of simulation,
which can be time- consuming.
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Fig. 5. BER of BPSK SOSTTC-OFDM with channel estimation error.
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Fig. 6. BER of QPSK SOSTTC-OFDM with channel estimation error.

VII. CONCLUSION

The analysis of the PEP and BER performance of SOSTTC-
OFDM, with channel estimation error in a quasi-static fre-
quency selective fading channel, is considered. By assuming
the statistical distribution of the estimation error, a closed
form expression for the PEP can be derived. The expression

derived is used to calculate the BER. The results presented
show that, for high SNR region, the analytical BER and
the simulated BER have a tight-bound for an error event
of length 5 .
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