
Design of a Secure File transfer System Using
Hybrid Encryption Techniques

Abdeldime M.S. Abdelgader, Lenan Wu, Mohamed Y. E. Simik and Asia Abdelmutalab

Abstract—Due to the recent innovations in the internet and the
network applications and the wide spread of internet and
networks, it is now completely possible to conduct electronic
commerce on the internet or through the local area networks,
and the wide spread of computer and communication network
promoted many users to transfer files and sensitive information
through the network, this sensitive data requires special deal.
This work presents a security system that can provides privacy
and integrity for exchanging sensitive information through the
internet or the communication networks, based on the use of
recently developed encryption algorithms, such as AES, IDEA
and RSA. The aim of the work is to develop a simple file transfer
system that can obtains privacy, integrity and authentication for
the file transfer process. The proposed system uses symmetric
cryptography system for securing file transfer while using
public key cryptosystem and one way hash function to provide
integrity, authentication and key distribution. The system is
developed while putting into consideration the optimization of
the communication channel and the speed of the encryption
process.

Index Terms—Network security, computer security, RSA,
IDEA, File transfer

I. INTRODUCTION:

For the first few decades of their existence, computer
networks were imparity used by university researches for
sending email, and by corporate employees for sharing
printers and resources and managing data. Under these
conditions, security did not get a lot of attention. But now, as
millions of ordinary citizens are using networks for banking,
shopping, E-commerce and filling their tax returns, network
security is looming on the horizon as a potentially massive
problem. Security is a broad topic and covers a multitude of
sins. In its simplest form, security system concerns with
making sure that nosy people (intruders) cannot read or worse
yet, modify messages intended for other recipients [1-4]. It
also concerns with people trying to access remote services
that they are not authorized to use. The increasing awareness
of security system and communications vulnerability has
brought cryptography [4-6] out of its traditional shadow
world and puts it into the forefront of modern computer
technology.

Manuscript received May 30, 2015; revised, July 27, 2015.
Abdeldime M.S. Abdelgader is a lecturer with Karary University,

Khartoum-Sudan, now he is a PhD candidate with Southeast University,
School of Information Science & Engineering, Nanjing, 210096, China,
corresponding author phone: +8613584003982; E-mail:
abdeldime@hotmail.com.

Lenan Wu is a full professor with Southeast University, School of
Information Science & Engineering, Nanjing, 210096, China,
wuln@seu.edu.cn.

 Mohamed Y. E. Simik is a PhD candidate with Harbin Engineering
University, Information & Communication Engineering College. Harbin,
China, mocimic@hotmail.com

Asia Abdelmutalab with Karary university computer and electrical
departments, Email: asiatalab@gmail.com.

Since software and dedicated chips readily deal with the most
complex mathematical calculations, simplicity of use is not
an overriding concern. The most untutored user may now
easily implement the most highly sophisticated package.
Since cryptographic packages suggest something to hide the
spy still has the problem of anonymity but at least for the rest
of us, they are now a standard product. Unfortunately, for a
variety of reasons, this is not quite the same thing as saying
that electronic privacy is readily available. Security solutions
has been presented in the literature to provide security
services[7, 8]. These solutions mainly relies on cryptography
and hash functions[9]. Cryptosystems are divided based on
the used key into symmetric and asymmetric[10, 11]. Both of
them have their own advantage and many limitations.
This paper presents a secure file transfer system using the
advantage of both symmetric and asymmetric cryptosystems.
The proposed system utilizes the advantages of the
asymmetric cryptosystem to solve the limitation of the
symmetric ones and vice versa. The proposed security system
uses the advantages of symmetric cryptosystem, mainly
International Data Encryption Standard (IDEA)[12-14], to
provide fast and robust security, while utilizing the properties
of asymmetric systems and hash functions for providing key
distribution, integrity and authentication. This paper
describes how IDEA, RSA [13, 15, 16] and the hash functions
can fit in a network security system and file transfer. The
design and the implementation are presented. The proposed
scheme shown in Fig.1 can be used to securely send files and
sensitive data from client to server or from server to client.
The rest of the paper is organized as follows. Section II
provides a description about the proposed security system
from both sender and receiver sides. In section III we provide
a description to the implementation settings. Section IV
tackles further details about the main components of the
system. The result analysis is provided in section V, while
section VI concludes this work.

II. THE PROPOSED SECURITY SYSTEM

A scheme has been proposed to provide a security for the
computer network taking advantages of high security that can
be provided by the IDEA, RSA and the hash functions. The
proposed scheme shown in Fig .1 has two paths from the
sender (client) to the receiver (server) and vice versa. The first
path provides the security for plaintext and to the hash using
the IDEA algorithm, whereas, the second path provides the
security for the session key and integrity service using the
RSA algorithm and hash function. It is worth mention that the
network between the client and the server is assumed to be
un-secure network (USN). The operation of this scheme can
be explained by the following procedure to send a message
from the client to the server. However, before starting the
demonstration of the system design, we have to consider the
notations described in Table 1.

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-14047-2-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

Fig. 1 The Scheme Model of the Proposed File Transfer Security
system

A. Sender Side

Let the message that the client wants to send to the server
is	ܲ. The scheme uses the plaintext ܲ and the hash function
Message Digest (MD5), which converts the client’s plaintext
file as a message digest 	݄௦ ൌ ݉݀5ሺܲሻ . This latter ݄௦	 is
signed using the client’s private key ܦ with the RSA
algorithm [16] to give

ݏ݄ܿ ൌ ݏ݄
 ሺ݊ሻ (1)	ܾ݀݉ܦ

Where, n is the product of two large prime numbers ܲ
and	ܳ, which is generated by the RSA algorithm [15], [16].

The encrypted message ݄௦ is concatenated with the
plaintext P to form	ܯ. Then, to provide more security and to
reduce the time required for encryption, a compression
algorithm has been applied to the message ܯ to give the
compressed message	ܯ௭.

TABLE 1. USED NOTATIONS AND DESCRIPTIONS

The compressed message 	ܯ௭ is then splinted into several
groups each of 64 bits length, to be encrypted by the IDEA
algorithm using the one time session key ܭெ of 128 bits
length to produce the ciphertexts C. This ܭெ later is
transmitted, after it has been encrypted, as a session key
together with the client ID. The session key encryption is
achieved by the most popular RSA algorithm using the server
(receiver) public key	ܧ௦. The encrypted session key and the
ciphertexts C are then concatenated to form a new file which
will be sent by the client to the server using one of the transfer
options.

B. Receiver Side

On the receipt of the packet from the client, the server
(receiver) removes the client ID and recovers- decrypts - the

session key ܭெ using RSA and the server private key	ܦ௦. The
server then uses the session key and the symmetric encryption
algorithm, which is IDEA in this paper, to recover the
compressed version of the message	ܯ௭. It then uses the same
compression algorithm to recover 	ܯ which includes the
original plaintext and its signed hash. For authentication and
integrity purposes, it is then up to the server to check the
client’s plain file hash by using the same hash function and
RSA algorithm but with client public key ܧ. The scheme is
designed to achieve a conversation between the client and the
server. Therefore, the same procedure described is used when
information is sent from the server to the client.

III. SOFTWARE IMPLEMENTATION OF THE SYSTEM

When started with experimental part for the system, the
flowcharts of the procedures of the main component parts of
the system are drawn. This will be described in detail later.
These flowcharts are then converted to programs written in
Borland DELPHI 6.0 language however, it is better to use
JAVA language for programming this system because of its
high accuracy and flexibility on computer security system
design.

The system is efficiently operated on a computer (Pentium
III) with the following specifications:

 Speed 833GHz full cache.
 128 Mbytes RAM.
 30 G bytes hard disk.
 LAN card 10/100 bits

When the programs were run in this computer, the average
of response time was smaller than the response time
mentioned in the theory, depending upon the certain size of
the files that are encrypted.

A. Computer Simulation of Client Side:

When the system is installed to any computer, the followings
information need to be provided.

1. Client name (ID).
2. Client Password.
4. Client e-mail address [option].
After the client answered these questions, the system will

generate two keys (public and private) from RSA program
and give the client a list of the other clients that are already
installed in the system. The private keys of the client are
saved in client’s private database to keep this key physically
more privacy and secrecy. The public keys are saved into a
simple database file and are known to all users. The system
components and their results are explained in the following
sections.

IV. MAIN COMPONENTS OF THE SYSTEM

A. Hash function procedure:

This hash function program includes three options as shown
in Fig.2:

(1) The first one used to hash the plaintext. The resulted
hashed data can be used either for authentication or
integrity purposes, as shown in Fig 2.(b)

(2) The second one can be used for comparing a received
hash with another one generated at the recipient side to
insure that the plaintext has not changed.

The hash program (Md5) performs the first task by reading

Notation description
USN Unsecure network

R.N.G Random number generator
PGP Parity good privacy
MD5 Massage Digest 5

P Plain text
݄ Hash function
 ெ The session keyܭ
݄ Cipher hash
݄௦ Cipher sign hash
 Private key of the clientܦ
 ௦ Private key of the serverܦ
 Public key of the clientܧ
 ௦ Public key of the serverܧ
 The concatenated version of the message andܯ

encrypted hash
 ܯ ௭ Compress version ofܯ
C The ciphertexts

ZIP Compress function

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-14047-2-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

the plaintext file as a binary file, and use the hash function
algorithm to generate the 128-bit hash of the file, and the
second task by reading the received hash and compare it with
the local generated one, bit by bit and verify whether it is the
same or not.

B. RSA procedure

The encryption key is a pair of numbers ሺ݁, ݊ሻ where n is a
product of two prime numbers and ݍ and ݁ is a number
relatively prime to the number 	∅ሺ݊ሻ ൌ ሺ െ 1ሻ ൈ ሺݍ െ 1ሻ .
The decryption key is a number ݀ such that 	݀ ൈ ݁ ൌ
ሺሺ݀1݉ െ 1ሻ ൈ ሺݍ െ 1ሻሻ . The plaintext is broken into
blocks of size	ܾ	, treating each block in as a binary number
(each number is less than n). The corresponding ciphertexts
block is obtained by computing 	ܿ ൌ ݉݉݀	݊ . In the
decryption the cipher text is also broken into blocks of size b
(by the way encryption is done, each of these blocks will
represent a number less than n). For a block 	ܿଵ , the
corresponding plaintext ݉ଵ	is obtained by computing	݉ଵ ൌ
ܿଵ݉݀	݊.

Note that the key size here is not fixed unlike the secret key
systems. The receiver generates his key using the following
steps:

(1) Fix the size of ݊ (it is usually 512, 1024 or 2048
bits).

(2) Generate two random prime number p and q of
roughly equal size so that their product ݊ has the
size as fixed above (if n has 512 bits, then p and q
should each be about 256 bits long).

(3) Generate a random number ݁ of size close to that
of ݊ such that ݁ and number 	∅ሺ݊ሻ ൌ ሺ െ 1ሻ ൈ
ሺݍ െ 1ሻ have no common factors.

(4) Compute ݀ such that	݀ ൈ ݁ ൌ ሺሺ݀݉	1 െ 1ሻ ൈ
ሺݍ െ 1ሻሻ.

All these four steps of the key generation process can be
performed easily. However, computing d from e and n
appears very difficult. The Eavesdropper only knows n and
so he can obtain and ݍ only by factoring݊. This is believed
to be a very hard and difficult task. Moreover, the only known
way of breaking RSA by obtaining the decryption key ݀ that,
as we just argued, is difficult.

The designed RSA program implemented to obtain RSA
key generation, encryption and decryption on demand. Fig.3
shows the RSA flowchart. It is divided into four parts. The
first one generates two numbers and checks them whether
they are prime or not. Then it executes arithmetic operations
to find the public and private keys and save them together
with the user ID to simple database file. The second part
opens the request file as a binary file to achieve the encryption
operation on it, using the equation needed for the public key
(e). After that the program reads the file as four characters
and so on until the file finished. The results are accumulated
in the cipher file. The third part of RSA flowchart performs
the decryption operation with the same equations. In this part
the cipher file is either the IDEA session key or is Message
Digest, which is encrypted by the private key. The results are
accumulated in other file. The Fourth part manipulates the
large lengths of the numbers that are used in this program.
These lengths are variables; they could be up to 600 digits
decimal number.

C. IDEA encryption operation

For IDEA encryption, the file is opened as a binary file and
the program is designed to open all files such as (dat, txt,.avi,
jpg,... etc.).

(a) Main options

(b) Create hash procedure

(c) Compare two hash procedure

Fig. 2 Hash Function procedure (a) main options (b) create hash

(c) compare two hash

Then, the program generates a random numbers from the
computer random number generator (RNG). After that, the
program converts the decimal number of this random
numbers to binary numbers. Then, the plaintext file is divided
into blocks, each of them 64 bit and each block is divided into

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-14047-2-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

four sub-blocks ଵܺ, ܺଶ, ܺଷ, ܺସ .
The random number is also divided as	ܼଵ, ܼଶ, ܼଷ, … , ଼ܼ .

Both X’s and Z’s are 16 bits. Now, the rounds are started to
execute the arithmetic operations. Four sub-blocks become
the input to the first round of the eight rounds of the
algorithm. In each round the four sub-blocks are XORed,
added and multiplied with one another and with six 16-bit
sub-keys. Between rounds, the second and third sub-blocks
are swapped.
Finally, the four sub-blocks are combined with four sub keys
in an output transformation. In each round, the sequence of
events is as follows:

(1) Multiply X1 by the first subkey.
(2) Add X2 to the second subkey.
(3) Add X3 to the third subkey.
(4) Multiply X4 by the fourth subkey.
(5) XOR the results of the steps (1) and (3).
(6) XOR the results of the steps (2) and (4).
(7)Multiply the results of step (5) with the fifth
subkey	ܼ5.
(8) Add the results of steps (6) and (7).
(9)Multiply the results of step (8) with the sixth
subkey	ܼ6.
(10) Add the results of steps (7) and (9).
(11) XOR the results of steps (1) and (9).
(12) XOR the results of steps (3) and (9).
(13) XOR the results of steps (2) and (10).
(14) XOR the results of steps (4) and (10).

The output of the round is the four sub-blocks that are the
results of steps (11), (12), (13), and (14). Swap the two inner
blocks (except for the last round) and that is the input to the
next round. After the eighth round, there is a final output
transformation:

(1) Multiply X1 and the first subkey.
(2) Add X2 and the second subkey
(3) Add X3 and the third subkey.
(4) Multiply X4 and the fourth subkey.

Finally, these four sub-blocks are attached to produce the
ciphertexts. Creating the sub keys is also easy. The algorithm
uses (52) of them (six for each of the eight rounds and four
more for the output transformation). First, the 128-bit key ܼ
is divided into eight 16-bit sub-keys. These are the first eight
sub keys for the algorithm (the six for the first round, and the
first two for the second round). Then, the key is rotated 25
bits to the left and again divided into eight sub keys. The first
four are used in round 2; the last four are later used in round
3. The key is rotated another 25 bits to the left for the next
eight sub keys and so on. The results are given from the
variables ଵܵହ, ଵܵ, ଵܵ, ଵ଼ܵ after the eighth round has finished.
These results are saved in a file. Then the rounds are repeated
until the plaintext is finished.

The decryption part has the same steps and rounds, but the
sub keys are reversed. The decryption sub keys are either
additive or multiplicative inverses of the encryption sub keys.
In this paper, for the purposes of IDEA, the all-zero sub-block
(16 bits) is considered to represent 2ଵ ൌ 	െ1 for
multiplication modulo2ଵ 1, thus the multiplicative inverse
of 0 is 0. Calculating these take some doing, but can only have
to do it once for each decryption key.

In the previous sections the operations are achieved
without the knowledge of what was going on in the file. When
the client selects the file that he wants to encrypt or decrypt
by using the mouse pointer, he determines the destination to

where he needs to send to, to server or other client. The
implemented IDEA program is also configured to receive the
key from the RNG when working in the encryption mode or
from RSA output when working in the decryption mode, and
the data from the ZIP depending on the operation mode. After
the client selects the file, he can directly select the operation
mode. These encryption operations are run sequentially in the
sender side, as shown in the flowchart of Fig.4, and then
select the recipient.

D. The sender Encryption Procedure

Fig.4 shows the overall secure files program flowchart at
the sender side.

Fig. 3 RSA flow Chart

Fig. 4 The flowchart of the overall procedure at the sender side

The flowchart of Fig. 4 explains the encryption procedures,
which are explained in details in the previous sections.
Therefore, the flowing will just describe the flowchart.

1. MD5 procedure generates the hash and then the digest is
saved into file.

2. The RSA procedure generates the two keys (Public,

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-14047-2-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

Secret) for the client and save them together with the user ID
to the corresponding database file. Then, RSA encrypts the
hash by using the client’s private key.

3. The results of procedures (1, 2) and the plaintext file are
merged together then, compressed using ZIP program.

4. The IDEA procedure generates 128-bit session key, the
result of procedure (3) will be encrypted by the IDEA
Procedure.

5. The session key is encrypted by RSA algorithm using
the client public key.

6. Finally, the results in procedures (4, 5) above are merged
and saved in temporary file in order to be sent.

The result of the program will be send as a temporary file
(*.snd) to the server. The transmission process can be done
by one of the flowing:

1. Simple way: cutting from the client’s computer and then
past it into special location in the file server. The encrypted
file could be saved in the file server.

2. Copy file: copy the file to a share directory that can be
available to the server or the destination client

3. Using the file transfer program, which use UDP or TCP
protocols to send the file to server or other client through the
network. However, many transfer techniques can be also
used.

E. The receiver decryption procedure

The reviver decryption operation is shown in the flowchart of
Fig. 5 and can be described as follows: -

1. After the file is received, the decryption program deals
with the file as a sequence groups of 64-bit, these groups are
spitted as follows:

• The first blocks are the encrypted data.
• The last two blocks are encrypted session key.
2. Decrypts the last two blocks using RSA program

depending on recipient secret key to find the IDEA key.
3. The first blocks will be decrypted by IDEA program

depending on the decrypted session key.
4. The results are accumulated as a temporary file and then

it will be decompressed by ZIP program.
5. The resulted file is separated into two parts. The first one

is the plaintext and the other is the message digest (hash).
6. MD5 compare the received hash with the locally

generated one to check if any change is made to the plain file.
This will obtain an integrity verification.

These points are done after the program checks the client’s
ID and his private key.

V. SYSTEM ANALYSIS AND RESULTS

The proposed scheme of the secure file transfer system
used in the design deal with the server as a normal client and
as we see, the system is two way direction so, under this
condition we can say the sender - whatever it can server or
client - post his message to the recipient at any time. And the
recipient always is waiting for the message to be accepted.
However, the server can be used to store the public keys or as
public key distributer. Therefore, the simple database table,
which contains the user’s public keys, can be saved in the
server to be under access of all users. The system has been
tested by sending several files using different scenarios, and
a decent results is obtained. It is obvious that the security of
this system greatly depend on the private key of the users.

Therefore, this key needs to be securely stored by the user
himself. In the implemented version, the RSA procedure
automatically promotes the user to store his private key into
a USB disk or secure server. In this paper, the length of the
key is only 128 bits. However, the length of the keys and the
extension of the files in the proposed system are all user-
defined.

In this work, instead of using the plaintext data for
authentication purposes, the authentication is obtained by
hashing the real scanned signature file (bitmap file) of the
user and encrypt and decrypt the hash using the private key
of the sender ܦand the public key of the intended receipt ܧ௦
respectively. This feature is supported by the design system,
because using the plaintext data for obtaining an
authentication services may significantly open a vulnerability
in the system that may alter the privacy service. That mean
the intruder can use his knowledge of the public key and the
reverse version of the hash function to restore the plain text.
In this system, the hash function of the plain text is used only
to obtain the integrity service and we can concatenate it with
the plaintext information prior to be encrypted using IDEA.

Fig. 5 The flowchart of the overall procedure at the receiver

On implementing of this system, it became necessary to
have a controller to check the public keys and the private keys
for each user together with hash file particularly in the case
of a wide area network. The system creates a controller placed
in the server to provide control on these keys. The proposed
system is flexible and can be modified at any time if required.
It includes algorithm and keys and can be utilized in Civilian
establishments and Military Industry Companies. In this
paper, we use the UDP protocol to send the file through the
network also sending files can be done in LAN by cutting the
file and then pasting it in a special location in the server as
well as using real time communication system and social
networks. In the internet, the encrypted file can be send with
message as attachment in normal E-mail software. The users
can gain many advantages such as, the protection of the
sensitive information files. These files cannot be decrypted
unless we have the private key of the intended user of these
files and may be the program. In addition to protection against
attackers, the program also protects the files from the viruses,

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-14047-2-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

because these files are not standard files (document,
executable, etc.). Furthermore, for better utilization of the
available bandwidth, the compressing of a file reduces its size
and also increases its robustness against viruses and attacks.

Besides, RSA, which usually produces a bulk of data and
has a very low speed, is only used in this system for the
encrypting of the short key and hash function (only 128 bits).
This is also very useful characteristic of the proposed system
in the context of bandwidth utilization and speed. As the
proposed system involves many types of keys in the transfer
operation, it requires a public infrastructure to manage these
keys. The proposed system simply solves this by creating a
simple database file containing the public keys and this file
can be published through the network. The database also
contains the users IDs, their public keys and their additional
public information. The secret key should be saved in a
physically secured media by the user. One more things, the
proposed system can be easily implement using a single chip
to support other special two way onboard security systems
and application.

VI. CONCLUSION

This paper proposed a secure file transfer system using the
advantage of the modern cryptosystems. In one hand, the
proposed system utilizes IDEA cryptography algorithm,
which is more secure and have less implementation
complexity, fast algorithm and very difficult to crack, for
providing robust privacy services. In the other hands, as the
key distribution is one of the common limitations of IDEA,
the proposed system solves it by using one of the public key
cryptography systems such as RSA. The proposed system can
obtain higher authentication and integrity using the properties
of the hash function and RSA. The proposed system can be
updated by using other symmetric and asymmetric
cryptosystems instead of IDEA and RSA.

ACKNOWLEDGMENT

This work is supported by National Natural Science
Foundation of China (No. 610011024) and the National Key
Technology R&D Program under the grant 2012BAH15B00.

REFERENCES

[1] L. T. Heberlein, G. V. Dias, K. N. Levitt, B.

Mukherjee, J. Wood, and D. Wolber, "A network
security monitor," in Research in Security and
Privacy, 1990. Proceedings., 1990 IEEE Computer
Society Symposium on, 1990, pp. 296-304.

[2] C. Kaufman, R. Perlman, and M. Speciner, Network
security: private communication in a public world:
Prentice Hall Press, 2002.

[3] A. Abdelgader and L. Wu, "A Secret Key Extraction
Technique Applied in Vehicular Networks," in
Computational Science and Engineering (CSE),
2014 IEEE 17th International Conference on, 2014,
pp. 1396-1403.

[4] S. N. Kumar, "Review on Network Security and
Cryptography," Science and Education, vol. 3, pp.
1-11, 2015.

[5] J. Katz and Y. Lindell, Introduction to modern
cryptography: CRC Press, 2014.

[6] D. Bailey, M. Campagna, R. Dugal, and D.
McGrew, "AES-CCM Elliptic Curve Cryptography
(ECC) Cipher Suites for TLS," 2014.

[7] T. Herath, R. Chen, J. Wang, K. Banjara, J. Wilbur,
and H. R. Rao, "Security services as coping
mechanisms: an investigation into user intention to
adopt an email authentication service," Information
Systems Journal, vol. 24, pp. 61-84, 2014.

[8] K. C. Silvester, "Using a Communication Protocol
to Provide Security Services," ed: Google Patents,
2014.

[9] R. Amin and G. Biswas, "Anonymity preserving
secure hash function based authentication scheme
for consumer USB mass storage device," in
Computer, Communication, Control and
Information Technology (C3IT), 2015 Third
International Conference on, 2015, pp. 1-6.

[10] S. Chandra, S. Paira, S. S. Alam, and G. Sanyal, "A
comparative survey of Symmetric and Asymmetric
Key Cryptography," in Electronics, Communication
and Computational Engineering (ICECCE), 2014
International Conference on, 2014, pp. 83-93.

[11] A. Gupta, R. Mittal, and G. RKGITW, "Symmetric
and Asymmetric Cryptosystem," 2014.

[12] N. Nassar, R. Newhook, and G. Miller, "Enhanced
mobile security using SIM encryption," in
Collaboration Technologies and Systems (CTS),
2014 International Conference on, 2014, pp. 189-
196.

[13] H. B. Pethe and S. Pande, "A Survey on Different
Secret Key Cryptographic Algorithms," IBMRD's
Journal of Management & Research, vol. 3, pp. 142-
150, 2014.

[14] S. Kumari and J. Chawla, "Comparative Analysis on
Different Parameters of Encryption Algorithms for
Information Security," 2015.

[15] S. G. Krantz and H. R. Parks, "RSA Encryption," in
A Mathematical Odyssey, ed: Springer, 2014, pp.
197-215.

[16] S. Challenge, J. Zhang, D. Zhang, and A. Drew,
"Number Theory Applied to RSA Encryption,"
2015.

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II
WCECS 2015, October 21-23, 2015, San Francisco, USA

ISBN: 978-988-14047-2-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2015

