
 

 
Abstract— Cloud computing has attracted a lot of interest 

from both industry and academia. Many business models have 
been proposed to bring together cloud consumers and 
providers. In this paper, a resource trading framework is 
proposed as an alternative business model for clouds. The 
under-utilized cloud resources are being solved to potential 
customers by the guidance of a broker. The applicability of the 
proposed theoretic model is shown on a simple but 
demonstrative example. This research may be considered as a 
preliminary business model, which will further be expanded by 
integrating more cloudlets that compete with each other.   

 
Index Terms— Cloud computing; cloudlet; resource trading; 

brokering model. 

I.  INTRODUCTION  

Cloud computing management supports are becoming 
more and more important not only in the fields of IT 
infrastructures for Internet applications and services, but 
also in the field of telecommunication services and 
infrastructures. The growth in the cloud computing market 
has had an increasing effect on the market complexity since 
users have to deal with different virtual machine types, 
pricing schemes or cloud interfaces. The role of brokering 
comes into the scene at this point. A brokering mechanism 
may be considered as an intermediary that transforms 
competitive cloud market into a commodity service. 

The cloudlet concept is discussed in several works in 
literature. In one of them [1], the authors define cloudlet as a 
trusted, resource-rich computer or cluster of computers that 
is well-connected to the Internet and available for use by 
nearby mobile devices. They have stated the fact that using a 
cloudlet simplifies the challenge of meeting the peak 
bandwidth demand of multiple users interactively generating 
and receiving media such as high high-definition video and 
high-resolution images. One of the research questions that 
the authors have denoted has been our inspiration for the 
proposed framework: “Is deployment driven bottom-up by 
business owners installing cloudlets for the benefit of their 
customers, or is it driven top-down by service providers who 
share profits with the retail businesses on whose premises 
cloudlets are deployed?”. The same cloudlet concept as the 
one in this paper, is proposed as a means to take advantage 
when mobile devices cannot or do not want to connect to the 
cloud [2]. The authors propose come up with an admission 
control policy for mobile cloud computing hotspot. They 
have shown that the admission control scheme can achieve a 
desirable performance and improve throughput of a hotspot 
significantly. In [3], the authors have used the same cloudlet 
concept, a datacenter-in-a-box, and they have used a service 
admission control algorithm that jointly handles radio and 
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computing resources rather than confronting the problem as 
two independent resource management sub-problems. 

Related research where cloud brokering is used for 
resource allocation include work by Yang et al. [4]. The 
authors have proposed a service-oriented resource broker 
that has the aim to discover, select, reserve and assign best 
combined resources. Doing so, they have implemented a 
dynamic resource selection algorithm. Another research has 
explored the heterogeneity of cloud providers in terms of 
infrastructure and pricing policy in a cloud brokering 
approach [5]. The aim of the brokering is to optimize 
placement of virtual infrastructure across multiple clouds 
and to abstract the deployment and management of 
infrastructure components in these clouds. An economically 
viable cloud broker that sells bandwidth guarantees to 
video-on-demand providers individually under a certain 
pricing policy is presented in [6]. The broker jointly books 
bandwidth for them from the clouds to save reservation cost 
and maximize profit. They have modeled the market using a 
game, similar to our paper. The engineering aspects of using 
brokerage to interconnect clouds into a global cloud market 
are discussed in [7]. 

In this paper, the assumption is that the resources of the 
cloudlets (bandwidth, CPU, memory and capacity) may be 
under-utilized from time to time. The owners of the 
cloudlets may take this opportunity and sell these under-
utilized resources to potential customers.  

The rest of the paper is organized as follows. Section 2 
represents detailed explanation of the proposed framework 
by giving its network elements, process flow and 
formulation. A simple demonstrative example is given in 
Section 3. Section 4 discusses the results and presents 
concluding remarks.  

II. PROPOSED RESOURCE TRADING FRAMEWORK 

A. Network Elements and Process Flow 

The brokering framework, depicted in Fig. 1, consists of 
three network entities: The cloudlet owner (CO), the 
cloudlet brokering agent (or simply the broker) and the end 
user. The cloudlet owner has its mobile cloud computing 
(MCC) hotspot. The MCC hotspot provides a wireless 
access and it also has a cloudlet to serve its customers 
running mobile applications. Thus, a cloudlet can be defined 
as a datacenter-in-a-box concept which is a trusted, 
resource-rich computer of computers, well-connected to the 
Internet and available for use by nearby mobile devices [1] 
[2] [3].  These MCC hotspots can be located in cafés, coffee 
shops, shopping malls, campuses, airports, libraries, etc. In 
this way, mobile users may receive interactive response for 
their real time applications by low-latency, one-hop and 
high-bandwidth wireless access. 
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Fig. 1. System model 

 
 
Mobile users request for MCC services using their mobile 

terminals such as smart phones, tablet PCs and laptops. Each 
CO has its own resources in four different forms: 
Bandwidth, CPU, memory, and capacity [3] to serve its 
customers. In this paper, we claim that these resources are 
not fully utilized at all times. Therefore, COs intend to sell 
portions of their unutilized resources to resource-seeking 
end users in order both obtain additional revenue and attract 
more customers. At this point, the broker comes into the 
scene as an intermediary that brings together both parties. 
The brokers are the regionally centralized agents that work 
on behalf of COs. They are responsible for the efficient and 
opportunistic utilization of network resources in their 
regions. The broker keeps track of resources of COs on 
regular basis to be aware of the amount and the location of 
the available network resources that are ready to be used. 
The third network entity is the end user who is defined as 
the potential customer who needs some resources for the 
mobile services.   

Below is the information flow realized in one cycle of the 
proposed framework: 
1. Cloudlet owners inform brokering agent on their 

available resources. 
2. End users send their service requests (SR) to broker, if 

they have not sufficient resources. This SR is defined as 
a resource vector, including the amount of bandwidth, 
CPU, memory, and capacity separately.     

3. Broker, knowing the service requirements of the 
requesters and currently available network resources of 
COs, runs Mobile Cloudlet Resources Charging 
Mechanism to determine equilibrium unit prices of unit 
resources of each CO. 

4. The unit prices are offered to end users. 
5. End user has two choices: Prefer one of the COs or not 

using any of the offered resources. 
 
 

 

B. Problem Formulation 

The framework that is considered consists of a set of N 
MCCs owned by N COs, denoted by I = {1, 2, …, N}. Each 

MCC determines two service parameters: (p, q) 
2 N


 . p = 

{ p1, …, pN} is the price vector where pi is the unit price that 
COi charges the end user per unit resource demand, and q =  
{ q1, …, qN} where qi is the QoS measure of the service 

offered by COi. COi experiences a demand Di :
2 N

 
  . 

The demand to a CO depends not only on its own service 
parameters pi and qi, but also on the prices and the quality 
offered by its competitors. In other words, Di depends on the 
entire price vector (p) and the entire quality vector (q). The 

utility functions of the COs are given by 
2: NU
 

  . 

The strategy space, Si, of COi with the upper and lower 

bound constraints is given by the subset of 2 : 

   

  max min max

min
, : 0 ; 0

i i i i i i i
S p q p p p q q q       (1) 

 
Each MCC is assumed to be composed of four basic 

resources (bandwidth, CPU, memory and HDD capacity).  
Then, each new SR is expressed as a four-dimensional 
request vector of the form [R(1,x), R(2,y), R(3,z), R(4,w)], where x, 
y, z, w and R(1,x), R(2,y), R(3,z), R(4,w) are the requirements 

of the service for each of the four resources [3]. 
We assume that the average demand of COi, Di (p, q), is 

non-linear in all prices and QoS levels. If a CO increases its 
price, it causes a decrease in its demand and its QoS level 
increase causes an increase on its own demand. 
Furthermore, if the prices of the competitors of COi 
increase, that results an increase on the demand of COi, 
while the increase of the QoS levels of the competitors of 
COi causes a decrease on its own demand.  

Random-utility models are based on a probabilistic model 
of individual customer utility. It is often reasonable to 
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assume that a firm has only probabilistic information on the 
utility function of any given customer, and this can be 
modeled by assuming that customers’ utilities for 
alternatives are themselves random variables [8] [9]. Let the 
n alternatives be denoted as j = 1,…, n. An end user has a 
utility for alternative j, denoted Uj. The probability that an 
end user selects alternative j from a subset S of alternatives 
is given by: 

 

    max :
j j i

P S P U U i S             (2) 

 
The equation (2) can be defined as the probability that j 

has the highest utility among all the alternatives in the set S. 
The binary-logit model is applied to a situation where there 
are only two alternatives to choose from. The multinomial-
logit model (MNL) is a generalization of the binary-logit 
model to n alternatives. 

For the MNL model, the probability that an alternative j is 
chosen from a set S   {1,2, .., n} that contains  j is given 
by: 

 
j

j

j

i S

u

u

e
P S

e










                                                             (3) 

The logit function is the inverse of the sigmoid function, 
or the logistic function used in mathematics, especially in 
statistics. The logit demand function is based on the MNL 
model [8]. Hence, the utility of the CO i is modeled as in 
(4). The no-purchase alternative is also considered with 
utility U0 and u0=0: 

 

0 0 0
U u                                                   (4) 

 
It is common to model uj as a linear function of several 

known attributes including price [10]. Assuming the 
representative component of utility uj is linear in price and 
interpreting the choice probabilities as fractions of a 
population of end users of size N lead to the class of logit-
demand functions. For example, if we assume that u1 = -
bp+βq, this gives the following demand function: 

 

 ,
1

bp q

bp q

e
d p q N

e





 

 


                                          (5) 

 
where N is the market size, b and β are the coefficient of 

the price and QoS level sensitivities, respectively. In the 
multiple-product case, the demand function is given by: 

 

 

1
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,p, q 1, ...,

1

.
i i

N
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i i ij j i i ij j
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
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 
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  (6) 

 
with bi, cij, βi, γij positive constants that represent to what 

extent the users influence from price and quality variations. 
Besides, these coefficients enable to unify the units by 

converting them to currency. The ai is the base demand. For 
the simplicity, in this paper, the end user of COi is assumed 
to have the same profile. In other words, all the end users of 
COi have the same price (bi, cij) and quality (βi, γij) 
sensitivities. Going forward, end users of a CO can be 
differentiated according to their sensitivities to price and 
quality. It is evident that one of the key driving indicators of 
the pricing is the user acceptance of a given service. An end 
user accepts to use a service only if its price is reasonable 
and its QoS level is satisfying. The MNL probability that an 
end user chooses COi as a function of the vector of prices 
(p) and quality (q) is then given by: 

 

 

1

, ,

, ,

Prob p, q

1

i

n

i

i i ij j i i ij j
j I j i j I j i

b p c p q q

b p c p q qi i ij j i i ij j
j I j i j I j i

e

e

 

 



 
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 
 
 
 

   

 
 
 
 
   

    
   




 



    (7) 

 
The base demand of COi is the sum of the resource 

requests coming to COi. Since each CO is exposed to all the 
SRs sending to broker by end users, ai is the same for each 
CO and it can be determined as the market demand [11].      

In order to differentiate SRs, we assume three classes of 
services: a High Demanding Service (HDS), a Low 
Demanding Service (LDS), ans a Best Effort Service (BES) 
[3]. It is assumed that the unit resource vector is given as: 
RBU = (1 BU1, 1 BU2, 1 BU3, 1 BU4), which represent the 
required basic units (BU) for bandwidth, CPU, memory, and 
HDD capacity, respectively. The requirements of three 
classes of services are identified as multiples of this unit 
vector. Hence, the requirement of LDS is RLDS = RBU, the 
requirement of HDS is RHDS = 16. RBU, and the requirement 
of is RBES = 5. RBU. Accordingly, the market demand (ai) can 
be generated by: 

 

 HDS,LDS,BES

.
i t t

t

a x R


                                              (8) 

 
with xt the number of end users requesting service class t.  
For this paper, the QoS level of the given resources (qi) is 

assumed to be measured by the non-blocking probability in 
the COi’s network, which is in the range of [0,1]. 

The resource constraint needs to ensure that the resource 
capacity of each CO is equal or greater than the sum of the 
resources requested by end users (ai). Hence, the resource 
constraint for a cloudlet can be expressed as: 

 

        1, 2, 3, 4, ,
i i i i i i i i i

a R x R y R x R w i I         (9) 

 
where  
 

       1, 2, 3, 4,
i i i i i i i i

R x R y R x R w    represents 

the sum of four types of resources of COi.  
As mentioned earlier, the objective of COs in the 

framework is to attract potential customers by offering them 
available resources, by generating additional revenue. We 
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assume that the revenue of COi  is also its utility, and it is 
given as:  

 

(p, q) (p, q).
i i iU D p                                           (10) 

 
The pricing problem solved by the broker is modeled as a 

non-cooperative game, where players are the COs, which 
compete with each other to attract maximum number of 
users. Their strategy is the choice of unit resource prices, 
subject to given QoS level. The payoffs of the players are 
their utility values. In analyzing the outcome of the game, as 
the players need to determine their unit prices independently 
and are influenced by the other players’ decisions, the 
broker is interested to determine if there exists a 
convergence point, from which no player would deviate 
anymore, i.e. Nash equilibrium [12].  

Ui (p,q) is the revenue of COi, when the vector of price set 
by all COs, p, and the vector of QoS parameters, q, of all 
COs is fixed at some point, q̂ . Then a single-parameter 

Nash equilibrium in p at q̂  is the vector p* that solves for 

all i: 
 

 
 * * * *

1 1 1
ˆ,q

ˆ ˆ(p*, q) max , ..., , , , ..., , q
i

i i i i i N
ip

U U p p p p p
 

     (11) 

III. NUMERICAL ANALYSIS  

In this section, we aim at showing the results taken by the 
proposed resource trading framework on a simple but 
demonstrative example. The framework is assumed to be 
composed of two cloudlet owners (CO1 and CO2) and six 
end users. Two of the end users are assumed to request 
HDS, one of them requests LDS and three of them request 
BES. Therefore, the total resource request (ai) is equal to 48. 
RBU. The upper and lower bound of the price values are 
taken 0 and 12, respectively. 

The customers of CO1 are assumed to sit for long periods 
and web surfing is the mostly seen mobile application. The 
students, who are relatively more sensitive to price, 
constitutes the major part of the customers. On the other 
hand, the customers of CO2 are assumed to sit for shorter 
periods and their average age is assumed relatively higher. 
The customers usually make business meetings through 
voice over IP or video-conferencing applications. We have 
differentiated the customer profiles of these two COs in 
order to show the impact of parameter settings to the results. 
The parameters are identified as: b1=0.4, b2=0.2, c12=0.25, 
c21=0.10, β1=1.25, β2=1.50, γ12=0.4, γ21=0.75. The QoS 
levels of two COs are set as their non-blocking probabilities 
(q1=0.8 and q2=0.9). 

The results of this given scenario are summarized in 
Table 1. As CO1’s customer profile has higher price 
sensitivity (0.4), it offers lower unit price (2.55). Together 
with the customers’ lower quality sensitivity (1.25), CO1 
receives 44% of the market demand. 

 
 
 
 
 
 

 
TABLE I 

PRICE AND EXPECTED DEMAND VALUES AT MARKET EQUILIBRIUM 
CO1  CO2

Offered price (p*) 2.55  3.82
Expected percentage of end users   44%  31%
Expected demand 21.06  15.08
Unit price of HDS 40.8  61.12
Unit price of LDS 2.55  3.82
Unit price of BES 12.75  19.1
Total expected revenue of COs 111.33

 
IV. THREATS TO VALIDITY AND CONCLUSION 

The nonlinear structure of the objective function 
complicates the problem solution process. During the 
runtime of the code for our simple demonstrative example, 
we have noticed that both the initial point where the 
algorithm begins and the chosen algorithm have dramatic 
influence on the optimum points. As the optimum price 
values in the equilibrium are the local optimum points of the 
problem, it is important to be certain that the algorithm gives 
reliable results. Going forward, we will use heuristics to 
compare the results of different algorithms.  

The optimum unit price values are generated by the 
brokering agent. The price and quality sensitivity 
coefficients of the cloudlet owners’ customers may be 
determined by the broker itself, since it has sufficient 
information related to the end users’ usage behaviors. This 
was not the concern of our paper, but determining the 
sensitivity coefficients by mining customer data would be 
another research area in this topic. 

The proposed trading framework assumes that the 
cloudlet concept is adopted by many providers; moreover 
they tries to earn additional money from unutilized portions 
of its resources. Hence, this research may be considered 
among the propositions of business models for cloud 
computing. The research will be developed by considering 
more cloudlets and more end users to the scenario. 
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