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Abstract—The aim of this paper is to present a new semi-
supervised classification method based on modified Partial
Least Squares algorithm and Gaussian Mixture Models. The
economical datasets are used to compare the performance of
the classification.

Index Terms—Partial Least Square, Gaussian Mixture
Model, Semi-Supervised Learning, Classification, Feature Ex-
traction, Kernel Methods.

I. INTRODUCTION

FEATURE extraction, classification, and clustering are
the basic methods used to analyze and interpret mul-

tivariate data. For classification task, the datasets contain
vectors of features belonging to certain classes. These vectors
are called samples. On the other hand, for the purpose
of clustering, we do not have information about proper
classification of objects. In datasets for classification tasks,
the number of samples is usually much smaller compared to
the number of features. In this situation, the small number
of samples makes it impossible to estimate the classifier
parameters properly; therefore, the classification results may
be inadequate. In the literature, this phenomenon is known
as the Curse of Dimensionality. In this case, it is important to
decrease the dimension of the feature space. This can be done
either by feature selection or feature extraction. Some of the
linear feature extraction methods are for example Principal
Component Analysis (PCA) and Partial Least Squares (PLS).
These methods are often applied in chemometrics, engi-
neering, computer vision, and many other applied sciences.
However, the classical approach to feature extraction is based
on the mean and the sample covariance matrix. It means
that these methods are sensitive to outliers. Moreover, when
the features and the target variables are non-linearly related,
linear methods cannot properly describe the data distribution.
Different non-linear versions of PCA and PLS have been
developed (see [13], [9], [14]). In real classification task,
we often have the dataset with relatively small amount of
labeled data and a huge amount of data without labels. In real
applications, we frequently encounter the problem with ob-
taining labeled data, as it is both time-consuming and capital-
intensive. Sometimes, it requires specialized equipment or
expert knowledge. Labeled data is very often associated with
intense human labor, as in most applications, each of the
examples need to be marked manually. In such situations,
semi-supervised learning can have a great practical value.
The semi-supervised techniques allow us to use both labeled
and unlabeled data. Including the information coming from
unlabeled data and semi-supervised learning, we can improve
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the feature extraction task. Unlabeled data, when used in
conjunction with a small amount of labeled data, can improve
learning accuracy.

In this paper, we present a new semi-supervised method for
nonlinear feature extraction. We propose to combine a kernel
for modified Partial Least Squares method with a Gaussian
Mixture Model (GMM) (see [2], [15]) clustering algorithm.
The supervised kernel exploits the information conveyed by
the labeled samples and the cluster kernel from the structure
of the data manifold. The proposed semi-supervised method
was successfully tested in economical datasets.

II. METHODOLOGY

Let us assume that we have the L-classes classification
problem and let (xi, yi) ∈ X×{C1, . . . , CL}, x ∈ Rp where
matrix of sample vectors X and response matrix Y are given
by the following formulas:

X =

 x11 . . . x1p
...

. . .
...

xn1 . . . xnp

, Y =

 1 0 . . . . . . 0
...

...
0 0 . . . 0 1

.
(1)

Each row of the matrix Y contain 1 in a position denoting
the class label.

A. Partial Least Squares

One of the commonly used feature extraction methods is
the Partial Least Squares (PLS) Method (see [16], [4], [8]).
PLS uses of the least squares regression method [7] in the
calculation of loadings, scores and regression coefficients.
The idea behind the classic PLS is to optimize the following
objective function:

(wk, qk) = arg maxwTw=1;qT q=1cov (Xk−1w, Yk−1q) (2)

under conditions:

wT
k wk = qkq

T
k = 1 for 1 ≤ k ≤ d, (3)

tTk tj = wT
kX

T
k−1Xj−1wj = 0 for k 6= j, (4)

where cov (Xk−1w, Yk−1q) is a covariance matrix between
Xk−1w and Yk−1q, vector tk is the k-th extracted com-
ponent, wk is the vector of weights for k-th component
and d denotes the number of extracted components. The
matrices Xk, Yk arise from Xk−1, Yk−1 by using so called
deflation technique which removes the k-th component using
the following formulas:

X(k+1) = Xk − tktTkXk (5)

Y(k+1) = Yk − tktTk Yk (6)
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Extracted vector wk corresponds to the eigenvector con-
nected with the largest eigenvalue of the following eigen-
problem:

XT
k−1Yk−1Y

T
k−1Xk−1wk = λwk (7)

Let SB denote the between scatter matrix and SW within
scatter matrix, given by:

SB =
L∑

i=1

pi (Mi −M0) (Mi −M0)
T
, (8)

SW =
L∑

i=1

piE
[
(X −Mi) (X −Mi)

T |Ci

]
=

L∑
i=1

piSi,

(9)
where Si denotes the covariance matrix, pi is a priori
probability of the appearance of the i-th class, Mi is the
mean vector for the i-th class, and M0 is given by:

M0 =
L∑

i=1

piMi. (10)

These matrices are often used to define separation criteria
for evaluating and optimizing the separation between classes.
For the PLS, a separation criterion is used to find vectors of
weights that provide an optimal separation between classes
in the projected space. In PLS method the matrix in each
k-th step is:

XT
k YkY

T
k Xk =

L∑
i=1

n2i (Mi −M0) (Mi −M0)
T (11)

This matrix is almost identical to the between class scatter
matrix SB . Hence, we can say that the separation criterion in
the PLS method is based only on the between scatter matrix.
It means that the classic PLS method is that it does not
properly separates the classes. To provide a better separation
between classes we can use weighted separation criterion
(see [1]) denoted by:

J = tr (γSB − (1− γ)SW ). (12)

where γ is a parameter from interval [0, 1], SB and SW

are between scatter matrix and within scatter matrix, respec-
tively. Applying a linear transformation criterion, condition
(12) can be rewritten in the following form:

J (w) = tr
(
wT (γSB − (1− γ)SW )w

)
. (13)

which is more suitable for optimization. The next step is to
optimize the following criterion:

max
wk

d∑
k=1

wT
k (γSB − (1− γ)SW )wk, (14)

under the conditions:

wT
k wk = 1 for 1 ≤ k ≤ p. (15)

The solution to this problem can be found using the Lagrange
multipliers method. To find the correct value of the parameter
γ, we used the following metric:

ρ(C1, C2) = min
c1∈C1,c2∈C2

ρ(c1, c2), (16)

where Ci is the i-th class for i ∈ {1, 2}. The value of the
parameter γ was chosen by the using the following formula:

γ =
mini,j=1,...,L,i6=j {ρ(Ci, Cj)}

1 + mini,j=1,...,L,i6=j {ρ(Ci, Cj)}
. (17)

Parameter γ equals 0 if and only if certain i and j classes
exist for which ρ(Ci, Cj) = 0. This means that at least one
sample which belongs to classes Ci and Cj , exist. If distance
between classes increase, the value of γ also increases.
Therefore the importance of the component SW becomes
greater.

To improve separation between classes in classic PLS
method, we replace the matrix (11) with the matrix from our
separation criterion (13) (see [1]) to optimize the objective
criterion

wk = arg maxw

(
wT (γSB − (1− γ)SW )w

)
, (18)

under the following conditions:

wT
k wk = 1 for 1 ≤ k ≤ d (19)

tTk tj = wT
kX

T
k−1Xj−1wj = 0 for k 6= j, (20)

We call this extraction algorithm, i.e., Extraction by ap-
plying Weighted Criterion of Difference Scatter Matrices
(EWCDSM). One can prove that the extracted vector wk

corresponds to the eigenvector connected with the largest
eigenvalue for the following eigenproblem:

(γSB − (1− γ)SW )w = λw. (21)

Additionally, the k-th component corresponds to the eigen-
vector related to the largest eigenvector in the following
eigenproblem:

Xk−1X
T
k−1 (D − (1− γ)I) t = λt. (22)

Matrix D = [Dj ] is an n × n block-diagonal matrix where
Dj is a matrix in which all elements equals 1/nnj , and nj
is the number of samples in the j-th class.

A proper features extraction for nonlinear separable is
difficult and could be inaccurate. Hence, for this problem
we designed a nonlinear version of our extraction algorithm.
We used the following nonlinear function Φ : xi ∈ RN →
Φ(xi) ∈ F which transforms the input vector into a new,
higher dimensional feature space F . Our aim is to find an
EWCDSM component in F . In F , vectors wk and tk are
given by the following formulas:

wk = (D − (1− γ)I)Kkwk (23)

tk = Kkwk (24)

where K is the kernel matrix. One can prove that the
extracted vector wk corresponds to the eigenvector connected
with the largest eigenvalue using the following formula:

(Dk − (1− γ)I) ΦkΦT
kwk = λwk. (25)

Furthermore, the k-th component corresponds to the eigen-
vector connected with largest eigenvector in the following
eigenproblem:

Kk−1(Dk−1 − (1− γ)I)t = λt. (26)
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B. Classification using PLS method
Let us assume that Xtrain and Xtest are the realizations

of the matrix X for train and test datasets respectively. The
idea of a training step is to extract vectors of weights wk and
components tk by using the train matrix Xtrain and to store
them as a columns in matrices W and T respectively. To
classify samples into classes, we use train matrix Xtrain to
compute the regression coefficients by using the least squares
method [7] given by:

Q = W
(
PTW

)−1
UT , (27)

where,
U = Y Y TT

(
TTT

)−1
, (28)

W = XTU, (29)

P = XTT
(
TTT

)−1
. (30)

We then multiply test matrix Xtest by the coefficients of
the matrix Q. To classify samples corresponding to the Ytest
matrix, we use the decision rule:

yi = arg maxj=1,...,LYtest(i, j). (31)

The final form of the response matrix is the following:

Ytest =
[
y1y2 · · · yL

]T
. (32)

Like for the linear version of the algorithm, if want make a
prediction, first we must compute the regression coefficient
using the formula (33)

Q = ΦTU(TTKU)−1TTY, (33)

where T is matrix of the components and matrix U has the
following form

U = Y Y TC. (34)

We make a prediction by multiplying the test matrix data
Φtest by matrix Q, i.e.

Ŷ = ΦtestQ, (35)

and then by using the decision rule

yi = arg max
j=1,...,L

Ŷ (i, j). (36)

Finally, the response matrix has the following form

Ytest =


y1
y2
...
yL

 (37)

Like in classic kernel PLS algorithm, if we want make a
prediction for the data from test dataset, we use the following
formula.

Ŷ = KU
(
TTKU

)−1
TTY = TTTY, (38)

and the decision rule has the following formula

yi = arg max
j=1,...,L

[TTTY ](i, j). (39)

Finally, the response matrix is given by

Ytest =


y1
y2
...
yL

 . (40)

III. GAUSSIAN MIXTURE MODEL

Gaussian mixture model (GMM) (see [2], [15]) is a kind of
mixture density model, which assumes that each component
of the probabilistic model is a Gaussian density component,
i.e., given by formula

p(x|θk) =
1

√
2π

p|Σk|
exp−1

2
(x− µk)T Σ−1k (x− µk) (41)

where θk = (µk,Σk) are the parameters of the Gaussian
distribution, including the mean µk and positive defined
covariance matrix Σk. Hence, the Gaussian Mixture Model
is the probability density on Rp given by formula

p(x|θ) =
M∑
k=1

p(x|θk)p(k) (42)

where θ = (µ1,Σ1, µ2,Σ2, . . . , µM ,ΣM , ) is the vector of
the model parameters, p(k) represents a priori probabilities,
which sum to one. In GMM method, we assume that the co-
variance matrices are diagonal; hence, the GMM is specified
by (2p+ 1)M parameters. The parameters are learned form
the training dataset by classical Expectation-Maximization
(EM) algorithm (see [12]). With Gaussian components, we
have two steps in one iteration of the EM algorithm. E-step
is the first step in which we re-estimate the expectation based
on the previous iteration

p(k|x) =
p(k)p(x|k)∑M
i=1 p(k)p(x|k)

(43)

p(k)new =
1

n

n∑
i=1

P (k|x). (44)

The second step is so-called M-step in which we update the
model parameters to maximize the log-likelihood

µi =

∑n
j=1 p(k|xj)xj∑n
j=1 p(k|xj)

(45)

Σi =

∑n
j=1 p(k|xj)(xj − µi)(xj − µi)

T∑n
j=1 p(k|xj)

. (46)

The initial values of µi are randomly chosen from a nor-
mal distribution with the mean µ0 = 1

n

∑n
i=1 xi and the

covariance Σ0 = 1
n

∑n
i=1(xiµ0)(xiµ0)T . Using the Bayes

rule, it is possible to obtain a posteriori probability πi,k of
x belonging to cluster k by the following formula

πi,k =
p(x|k)p(k)

p(x)
(47)

where p(x|k) is the conditional probability of x given the
cluster k. It means that GMM is a linear combination of
Gaussian density functions. The GMM clustering is fast and
provides posterior membership probabilities.

IV. PROPOSED SEMI-SUPERVISED MODIFIED PLS
METHOD

Like in [6], in this paper, we propose using a Gaussian
Mixture Model (GMM) to perform the clustering, which is
fast and provides posterior probabilities that typically lead to
smoother kernels (see [6], [5]). The proposed cluster kernel
will be the combination of a kernel computed from labeled
data and a kernel computed from clustering unlabeled data
(using GMM), resulting in following algorithm:
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1) Compute the kernel for labeled data using the follow-
ing formula

Ks(xi, xj) = Φ(xi)
T Φ(xj) (48)

2) Run the GMM algorithm n times with different initial
values and number of clusters This results in q·t cluster
assignments where each sample has its corresponding
posterior probability vector πi ∈ Rm, where m is the
number of clusters.

3) Compute the kernel for all (labeled and unlabeled)
data. The kernel is the mean of inner products maxi-
mum posterior probabilities πi and πj . The kernel is
given by following formula:

Ku(xi, xj) =
1

N

t∑
k=1

q∑
l=1

πT
i πj (49)

where m is the number of clusters, N is normalization
factor.

4) Compute the final kernel using the following formula

K(xi, xj) = δKs(xi, xj) + (1− δ)Ku(xi, xj) (50)

where delta ∈ [0, 1] is a scalar parameter tuned during
validation.

5) Use the computed kernel into kernel PLS method.
Because the kernel in (49) corresponds to a summation of
inner products in t · q-dimensional spaces, the above kernel
in (49) is a valid kernel. Additionally the summation of (50
leads also to valid Mercers kernels.

V. EXPERIMENTS

A. Dataset

We applied the new extraction method to commonly
accessible economical datasets: Australian Credit Approval
and German Credit Data.We compared our method with PLS
based on the Australian Credit Approval available at [17].
The Australian Credit Approval was introduced in papers
[10], [11]. This dataset contains information from credit
card application form divided into two classes denoted as
0 and 1. Class 1 contains information about people who
receive positive decision regarding credit card application.
Class 0 contains information about people who receive neg-
ative decision regarding credit card application. This dataset
contains 690 samples, where 307 samples are those taken
from class 0. The remaining 383 samples belong to class
1. Each sample is represented by 14 features. The second
dataset, German Credit Data available at [17] contained 1000
samples divided into two classes: class 0 and class 1. Each
sample is represented by 30 features.Both datasets contained
some non-numerical features. In order to apply extraction
algorithm to those datasets, the data had to be relabeled. We
assigned natural numbers as new values of non-numerical
features.

B. Experimental scheme and Results

To examine the classification performance of proposed
method, we used the following experimental scheme. First,
we normalized each dataset. For each dataset, we randomly
chose 10% of samples as a labeled data (5% from each
class). To define the (q · t) cluster centers and the posterior

probabilities for each of them, we used 200 samples as
unlabeled samples per each class in both datasets. In all
cases, we tuned the parameter δ from 0 to 1 in 0.05 intervals.
When the mixture models were computed, we chose the most
probable Gaussian mode and computed the Kc kernel. We
used the nonlinear version of EWCDSM with the Gaussian
kernel and parameter σ. The result for all datasets are
presented in the Table I. We used the jackknife method [3]
to find the proper value of parameters δ and σ. Classification
performance is computed by dividing the number of samples
classified properly by the total number of samples. This rate
is know as a standard error rate [3].

TABLE I
CLASSIFICATION PERFORMANCE (PER CENT) OF ECONOMIC DATASETS

Australian German

SS Kernel EWCDSM 95,65 94,21
PLS 63,91 83,78

VI. CONCLUSIONS

We introduced a new kernel version of an algorithm
for semi-supervised feature extraction. Our algorithm uses
weighted separation criterion to find the weights vector,
which allows for the scatter between the classes to be maxi-
mal and for the scatter within the class to be minimal. When
comparing the new criterion with the other well known ones,
it can be seen that the new one can be used in a situation
where the number of samples is small and the costs of
computation are lowered. The new extraction algorithm can
distinguish between between high-risk and low-risk samples
for two different economical datasets. Moreover, we have
shown that our method had significantly higher classification
performance compared to classical the PLS method. The
presented method performs well in solving classification
problems. However, to draw some more general conclusions,
further experiments should be conducted using other datasets.
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