

Performance Comparison of Bivariate Copulas on the CUSUM and EWMA Control Charts

Sasigarn Kuvattana, Saowanit Sukparungsee, Piyapatr Busababodhin, and Yupaporn Areepong

Abstract—This article proposes the comparison of control charts for bivariate copulas when observations are exponential distribution. The Monte Carlo simulation was used to investigate the value of Average Run Length (ARL) for in-control and out-of-control process. The dependence of random variables were used and measured by Kendall’s tau in each copula. The simulation results show that performance of MCUSUM control chart was similar to MEWMA control chart for almost all shifts.

Index Terms—Copula, ARL, MCUSUM, MEWMA, Monte Carlo simulation

I. INTRODUCTION

CONTROL chart is one of the most widely applied statistical process control (SPC) which is a statistical and visual tool designed to detect shifts in manufacturing process. It is designed and evaluated under the assumption that the observations are from processes which are independent and identically distributed (i.i.d.). Univariate control chart is devised to monitor the quality of a single process characteristic but modern process often monitor more than one quality characteristic. These quality characteristics are clearly correlated and separate univariate control charts for monitoring individual quality characteristic which may not be adequate for detecting changes in the overall quality of the product. Thus, it is desirable to have control charts that can monitor multivariate measurements and they are referred to as multivariate statistical process control charts.

Multivariate statistical process control (MSPC) charts are the most rapidly developing sections of statistical process control [1] and lead to an interest in the simultaneous inspection of several related quality characteristics [2-3]. The three most common multivariate control charts are the multivariate cumulative sum (MCUSUM) [4] control chart, the multivariate exponentially weighted moving average (MEWMA) [5] control chart and the multivariate Shewhart control chart. Multivariate Shewhart control chart is used to detect large shifts in the mean vectors. The MEWMA and MCUSUM are commonly used to detect small or moderate shifts in the mean vectors [6]. MSPC procedures are based on a multi-normality assumption and independence but many processes are often non-normality and correlation. Moreover, multivariate control charts are the lack of the related joint distribution and copula can specify this property. Copulas are functions that join multivariate distribution functions to their one-dimensional margins. It can estimate joint distribution of nonlinear outcomes and explain the dependence structure among variables through the joint distribution by eliminating the effect of univariate marginals. Many researchers have developed the copula on MCUSUM and MEWMA charts (see [5], [7-14]).

This article presents comparison of efficiency between MCUSUM and MEWMA control charts when observations are exponential distribution with the means shifts and use a bivariate copulas function for specifying dependence between random variables.

II. THE MULTIVARIATE CUMULATIVE SUM CONTROL CHART

The multivariate cumulative sum (MCUSUM) control chart is the multivariate extension of the univariate cumulative sum (CUSUM) chart. The MCUSUM chart was initially proposed by Crosier [15]. The MCUSUM chart may be expressed as follows:

\[C_t = \sum_{i=1}^{t} (S_{i-1} + X_i - a) \left(\frac{1}{C_i} \right)^{1/2} ; \quad t = 1, 2, 3, \ldots \]

where covariance \(\sum_{i} \) and \(S_i \) are the cumulative sums expressed as:

\[S_t = \begin{cases} 0, & \text{if } C_i \leq k \\ (S_{t-1} + X_t - a) \left(\frac{1}{C_i} \right), & \text{if } C_i > k \end{cases} \]

the reference value \(k > 0 \) and \(a \) is the aim point or target value for the mean vector [16]. The control chart statistics for MCUSUM chart is

\[Y_t = \left| S_t - \sum_{i=1}^{t-1} S_i \right|^{1/2} ; \quad t = 1, 2, 3, \ldots \]

The signal gives an out-of-control if \(Y_t > h \) where \(h \) is the control limit [17].
III. THE MULTIVARIATE EXPONENTIALLY WEIGHTED MOVING AVERAGE CONTROL CHART

Lowry et al. [18] have developed a multivariate exponentially weighted moving average (MEWMA) control chart. The MEWMA control chart is a logical extension of the univariate exponentially weighted moving average (EWMA) control chart. The EWMA statistic assigns less weight to the past observations than the current observation [6].

Suppose that \(X_i \) is a vector of observations at sample \(i = 1, 2, 3, \ldots \) with mean vector equal to the zero vector and known covariance matrix \(\Sigma \) and the vectors are independent over time. The extension of the EWMA control chart to the multivariate case is defined as follows:

\[
Z_i = \lambda X_i + (1 - \lambda)Z_{i-1}
\]

with the scalar charting constant \(\lambda, 0 \leq \lambda \leq 1 \) which may be adjusted to change the weight of the past observations and \(Z_0 = 0 \). The quantity plotted on the control chart of the MEWMA [19] is

\[
T_i^2 = Z_i \sum_{t=1}^{i-1} Z_t
\]

The control chart signals a shift in the mean vector when \(T_i^2 > h \), where \(h \) is the control limit chosen to achieve a desired in-control and the covariance matrix for \(Z_i \) is

\[
\sum Z_i = \frac{\lambda}{2 - \lambda} \left[1 - (1 - \lambda)^2 \right] \sum
\]

which is analogous to the variance of the univariate EWMA. The Average Run Length performance of the MEWMA control chart depends on the off-target mean vector because the mean vector shifts from the zero vector to a new out-of-control vector. The shift size is reported in terms of a shift size is reported in terms of a set of parameters. The value 0 is the in-control state and large values of \(\delta \) correspond to bigger shifts in the mean.

Note that if \(\lambda \) in equation (4) equal to 1, the MEWMA control chart statistic reduces to \(T_i^2 = X_i \sum Z_i \), the statistic used to on the Hotelling \(T^2 \) control chart [19].

IV. COPULA FUNCTION

Copulas introduced by Sklar [20]. According to Sklar’s theorem for a bivariate case, let \(X \) and \(Y \) be continuous random variables with joint distribution function \(H \) and marginal cumulative distribution functions \(F(x) \) and \(F(y) \), respectively. Then \(H(x, y) = C(F(x), F(y); \theta) \) with a copula \(C : [0,1] \times [0,1] \) where \(\theta \) is a parameter of the copula called the dependence parameter, which measures dependence between the marginals. For the purposes of statistical method it is desirable to parameterize the copula function. Let \(\theta \) denote the association parameter of the bivariate distribution and there exists a copula \(C \). Then

\[
F(x) = u, \quad F(y) = v \quad \text{where} \quad u \text{ and } v \text{ are uniformly distributed variates [21]. This paper focuses on two types of Archimedean copulas which are Clayton and Frank [22].}

Archimedean copulas

Let a class \(\Phi \) of functions \(\phi : [0,1] \to [0,\infty] \) with continuous, strictly decreasing, such that \(\phi(1) = 0, \quad \phi'(t) < 0 \) and \(\phi''(t) > 0 \) for all \(0 < t < 1 \) [22-24]. Archimedean copulas of two types are generated as follow:

A. Clayton copula

\[
C(u,v; \theta) = \left[\max(u^{-\theta} + v^{-\theta} - 1, 0) \right]^{-1/\theta},
\]

where \(\phi(t) = (t^{-\theta} - 1) / \theta, \quad \theta \in [-1, \infty) \setminus 0 \).

B. Frank copula

\[
C(u,v; \theta) = -\frac{1}{\theta} \log \left(\frac{e^{-\theta u} - 1 + e^{-\theta v} - 1}{e^{-\theta} - 1} \right),
\]

where \(\phi(t) = -\log \left(\frac{e^{-\theta u} - 1}{e^{-\theta} - 1} \right), \quad \theta \in (-\infty, \infty) \setminus 0 \).

V. DEPENDENCE MEASURES FOR DATA

Generally, a parametric measure of the linear dependence between random variables is correlation coefficient and nonparametric measures of dependence are Spearman’s rho and Kendall’s tau. According to the earlier literature, the copulas can be used in the study of dependence or association between random variables and the values of Kendall’s tau are easy to calculate so this measure is used for observation dependencies.

Let \(X \) and \(Y \) be continuous random variables whose copula is \(C \) then Kendall’s tau for \(X \) and \(Y \) is given by

\[
\tau = 4 \int_0^1 \int_0^1 C(u,v) \, dC(u,v) - 1
\]

where \(\tau_c \) is Kendall’s tau of copula \(C \) and the unit square \(I^2 \) is the product \(1 \times 1 \) where \(1 = [0,1] \) and the expected value of the function \(C(u,v) \) of uniform \((0,1)\) random variables \(U \) and \(V \) whose joint distribution function is \(C \), i.e., \(\tau_c = 4E[C(U,V)] - 1 \) [23].

Genest and McKay [22] considered Archimedean copula \(C \) generated by \(\phi \), then

\[
\tau_{arch} = 4 \int_0^1 \frac{\phi(t)}{\phi'(t)} \, dt + 1
\]

where \(\tau_{arch} \) is Kendall’s tau of Archimedean copula \(C \).

A. Clayton copula

\[
\tau = \theta / (\theta + 2); \quad \theta = [-1, \infty) \setminus \{0\}
\]

B. Frank copula

\[
\tau = 1 + 4 \left(\frac{1}{\theta} \int_0^1 \frac{1}{e^t - 1} \, dt - 1 \right) / \theta; \quad (-\infty, \infty) \setminus \{0\}
\]
VI. AVERAGE RUN LENGTH AND SIMULATION RESULTS

The popular performance measure for control charts is the Average Run Length (ARL). ARL is classified into \(ARL_0 \) and \(ARL_1 \), where \(ARL_0 \) is the Average Run Length when the process is in-control and \(ARL_1 \) is the Average Run Length when the process is out-of-control [25]. The copula approach focuses on Clayton and Frank. This article uses Monte Carlo simulation in R statistical software [26-28] with the number of simulation runs 50,000 and sample size is 1,000. Observations were from exponential distribution with parameter \(\alpha \) equal to 1 for in-control process \(\mu = \mu_0 + \delta \). The process means are equal to 1, 1.25, 1.5, 1.75, 2, 2.25 and 2.5.

Copula estimations are restricted to the cases of dependence (positive and negative dependence) and all copula models, setting \(\theta \) corresponds with Kendall’s tau. The level of dependence is measured by Kendall’s tau \(\tau \) which are defined to 0.8 and -0.8, respectively.

The results of simulation experiments are shown in Table I - IV for the different values of Kendall’s tau \(\tau \) and \(\mu \). Table I shows strong positive dependence \(\tau = 0.8 \) and Table II shows strong negative dependence \(\tau = -0.8 \). For example, Table I shows positive dependence \(\tau > 0 \) when the shifts in one exponential parameter. In the case of \(\mu_1 = 1 \) and \(\mu_2 \) is changed, for all shifts \(\mu_2 = 1, 1.25 \leq \mu_2 \leq 2.5 \), the \(ARL_1 \) values of Frank copula on MCUSUM control chart are less than MEWMA control chart. In the case of \(\mu_2 = 1 \) and \(\mu_1 \) is changed, for small shift \(\mu_1 = 1.25, \mu_2 = 1 \), the \(ARL_1 \) value of Clayton copula on MCUSUM control chart is less than MEWMA control chart, for moderate and large shifts \(1.5 \leq \mu_1 \leq 2.5, \mu_2 = 1 \), the \(ARL_1 \) values of Frank copula on MCUSUM control chart are less than MEWMA control chart. Table II shows positive dependence \(\tau > 0 \) when the shifts in both exponential parameters. For small shifts \(1.25 \leq \mu_1 \leq 1.75, 1.25 \leq \mu_2 \leq 1.75 \), the \(ARL_1 \) values of Clayton copula on MEWMA control chart are less than MCUSUM control chart, for moderate and large shifts \(2 \leq \mu_1 \leq 2.5, 2 \leq \mu_2 \leq 2.5 \), the \(ARL_1 \) values of Clayton copula on MCUSUM control chart are less than MEWMA control chart.

Table I

<table>
<thead>
<tr>
<th>Parameters</th>
<th>(ARL_0) and (ARL_1)</th>
<th>MCUSUM</th>
<th>MEWMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_1), (\mu_2)</td>
<td>Clayton</td>
<td>Frank</td>
<td>Clayton</td>
</tr>
<tr>
<td>1, 1</td>
<td>370.041</td>
<td>370.129</td>
<td>369.984</td>
</tr>
<tr>
<td>1, 1.25</td>
<td>195.156</td>
<td>195.096</td>
<td>200.143</td>
</tr>
<tr>
<td>1, 1.5</td>
<td>107.211</td>
<td>105.377</td>
<td>109.134</td>
</tr>
<tr>
<td>1, 1.75</td>
<td>62.768</td>
<td>59.581</td>
<td>68.107</td>
</tr>
<tr>
<td>1, 2</td>
<td>38.588</td>
<td>36.230</td>
<td>47.712</td>
</tr>
<tr>
<td>1, 2.25</td>
<td>25.877</td>
<td>23.634</td>
<td>34.206</td>
</tr>
<tr>
<td>1, 2.5</td>
<td>18.506</td>
<td>16.566</td>
<td>23.184</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Parameters</th>
<th>(ARL_0) and (ARL_1)</th>
<th>MCUSUM</th>
<th>MEWMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_1), (\mu_2)</td>
<td>Clayton</td>
<td>Frank</td>
<td>Clayton</td>
</tr>
<tr>
<td>1, 1</td>
<td>370.041</td>
<td>370.129</td>
<td>369.984</td>
</tr>
<tr>
<td>1, 1.25</td>
<td>195.156</td>
<td>195.096</td>
<td>200.143</td>
</tr>
<tr>
<td>1, 1.5</td>
<td>107.211</td>
<td>105.377</td>
<td>109.134</td>
</tr>
<tr>
<td>1, 1.75</td>
<td>62.768</td>
<td>59.581</td>
<td>68.107</td>
</tr>
<tr>
<td>1, 2</td>
<td>38.588</td>
<td>36.230</td>
<td>47.712</td>
</tr>
<tr>
<td>1, 2.25</td>
<td>25.877</td>
<td>23.634</td>
<td>34.206</td>
</tr>
<tr>
<td>1, 2.5</td>
<td>18.506</td>
<td>16.566</td>
<td>23.184</td>
</tr>
</tbody>
</table>
TABLE III

<table>
<thead>
<tr>
<th>Parameters</th>
<th>ARL<sub>0</sub> and ARL<sub>1</sub></th>
<th>MCUSUM</th>
<th>MEWMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARL<sub>0</sub></td>
<td>ARL<sub>1</sub></td>
<td>ARL<sub>0</sub></td>
</tr>
<tr>
<td></td>
<td>Clayton</td>
<td>Frank</td>
<td>Clayton</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>370.073</td>
<td>369.898</td>
</tr>
<tr>
<td>1.25</td>
<td>217.642</td>
<td>213.616</td>
<td>206.189</td>
</tr>
<tr>
<td>1.5</td>
<td>125.222</td>
<td>122.585</td>
<td>116.565</td>
</tr>
<tr>
<td>1.75</td>
<td>73.649</td>
<td>72.141</td>
<td>75.813</td>
</tr>
<tr>
<td>2</td>
<td>47.062</td>
<td>45.447</td>
<td>53.299</td>
</tr>
<tr>
<td>2.25</td>
<td>32.383</td>
<td>30.621</td>
<td>40.395</td>
</tr>
<tr>
<td>2.5</td>
<td>23.563</td>
<td>22.106</td>
<td>29.449</td>
</tr>
<tr>
<td>1.25</td>
<td>370.073</td>
<td>369.898</td>
<td>370.048</td>
</tr>
<tr>
<td>1.5</td>
<td>217.844</td>
<td>211.881</td>
<td>205.465</td>
</tr>
<tr>
<td>1.75</td>
<td>125.629</td>
<td>121.631</td>
<td>116.712</td>
</tr>
<tr>
<td>2</td>
<td>74.104</td>
<td>71.510</td>
<td>74.983</td>
</tr>
<tr>
<td>2.25</td>
<td>47.452</td>
<td>44.831</td>
<td>53.409</td>
</tr>
<tr>
<td>2.5</td>
<td>32.383</td>
<td>30.440</td>
<td>40.168</td>
</tr>
<tr>
<td>1</td>
<td>23.563</td>
<td>22.106</td>
<td>29.449</td>
</tr>
</tbody>
</table>

TABLE IV

<table>
<thead>
<tr>
<th>Parameters</th>
<th>ARL<sub>0</sub> and ARL<sub>1</sub></th>
<th>MCUSUM</th>
<th>MEWMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARL<sub>0</sub></td>
<td>ARL<sub>1</sub></td>
<td>ARL<sub>0</sub></td>
</tr>
<tr>
<td></td>
<td>Clayton</td>
<td>Frank</td>
<td>Clayton</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>370.073</td>
<td>369.898</td>
</tr>
<tr>
<td>1.25</td>
<td>1.25</td>
<td>158.821</td>
<td>159.226</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>80.217</td>
<td>81.915</td>
</tr>
<tr>
<td>1.75</td>
<td>1.75</td>
<td>45.524</td>
<td>46.497</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>28.945</td>
<td>29.362</td>
</tr>
<tr>
<td>2.25</td>
<td>2.25</td>
<td>19.808</td>
<td>19.990</td>
</tr>
<tr>
<td>2.5</td>
<td>2.5</td>
<td>14.329</td>
<td>14.522</td>
</tr>
</tbody>
</table>

VII. CONCLUSION

The authors compared efficiency between MCUSUM and MEWMA control charts for bivariate copulas when observations are exponential distribution using the Monte Carlo simulation approach. The results found that MCUSUM control chart performs better than MEWMA control chart when one exponential parameter changes but the performance of MCUSUM control chart was found to be similar to the MEWMA control chart referring to the shift in both exponential parameters for all shifts.

ACKNOWLEDGMENT

The authors would like to thank the King Mongkut’s University of Technology North Bangkok and Thailand Ministry of Science and Technology for the financial support during this research.

REFERENCES

[20] A. Sklar, “Fonctions de repartition a n dimensions et leurs marges,”

Introduction for Practitioners. Foundations and Trends in

distributions with uniform marginals,” American Statistician, vol.

Springer. 2006.

bivariate Archimedean copulas,” Journal of the American Statistical

Approximations of Average run length Run Length for AR(1) on
Exponential CUSUM,” Proceedings of IMECS 2012, Hong Kong,

Archimedean copulas in high dimensions under known margins,”

copula functions via multiprecision: R Package Rmpfr. [Online].
Available:
http://cran.r-project.org/web/packages/copula/vignettes/Frank-
Rmpfr.pdf