
 

 
Abstract— This article proposes the comparison of control 
charts for bivariate copulas when observations are exponential 
distribution. The Monte Carlo simulation was used to 
investigate the value of Average Run Length (ARL) for in-
control and out-of-control process. The dependence of random 
variables were used and measured by Kendall’s tau in each 
copula. The simulation results show that performance of 
MCUSUM control chart was similar to MEWMA control chart 
for almost all shifts. 
 

Index Terms—Copula, ARL, MCUSUM, MEWMA, Monte 
Carlo simulation 
 

I. INTRODUCTION 

ONTROL chart is one of the most widely applied 
statistical process control (SPC) which is a statistical 
and visual tool designed to detect shifts in 

manufacturing process. It is designed and evaluated under 
the assumption that the observations are from processes 
which are independent and identically distributed (i.i.d.). 
Univariate control chart is devised to monitor the quality of 
a single process characteristic but modern process often 
monitor more than one quality characteristic. These quality 
characteristics are clearly correlated and separate univariate 
control charts for monitoring individual quality 
characteristic which may not be adequate for detecting 
changes in the overall quality of the product. Thus, it is 
desirable to have control charts that can monitor 
multivariate measurements and they are referred to as 
multivariate statistical process control charts.  

Multivariate statistical process control (MSPC) charts are 
the most rapidly developing sections of statistical process 
control [1] and lead to an interest in the simultaneous 
inspection of several related quality characteristics [2-3]. 
The three most common multivariate control charts are the 
multivariate cumulative sum (MCUSUM) [4] control chart,  
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the multivariate exponentially weighted moving average 
(MEWMA) [5] control chart and the multivariate Shewhart 
control chart. Multivariate Shewhart control chart is used to 
detect large shifts in the mean vectors. The MEWMA and 
MCUSUM are commonly used to detect small or moderate 
shifts in the mean vectors [6].  MSPC procedures are based 
on a multi-normality assumption and independence but 
many processes are often non-normality and correlation. 
Moreover, multivariate control charts are the lack of the 
related joint distribution and copula can specify this 
property. Copulas are functions that join multivariate 
distribution functions to their one-dimensional margins . It 
can estimate joint distribution of nonlinear outcomes and 
explain the dependence structure among variables through 
the joint distribution by eliminating the effect of univariate 
marginals. Many researchers have developed the copula on 
MCUSUM and MEWMA charts (see [5], [7-14]).        

This article presents comparison of efficiency between 
MCUSUM and MEWMA control charts when observations 
are exponential distribution with the means shifts and use a 
bivariate copulas function for specifying dependence 
between random variables.  

II. THE MULTIVARIATE CUMULATIVE SUM CONTROL 

CHART 

The multivariate cumulative sum (MCUSUM) control 
chart is the multivariate extension of the univariate 
cumulative sum (CUSUM) chart. The MCUSUM chart was 
initially proposed by Crosier [15]. The MCUSUM chart may 
be expressed as follows:  
   1/ 2
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where covariance ( ) and  tS  are the cumulative sums 
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1

, if   

( ) 1 , if  

t

t
t t t

t

C k

k
C k

C


       

 

0

S
S X a

           (2) 

 

the reference value 0k    and  a  is the aim point or target 
value for the mean vector [16]. The control chart statistics 
for MCUSUM chart is

  
                        

            1/2  [ ]  ;  1,  2,  3,t t t tY   -1
S S                       (3) 

 

The signal gives an out-of-control if  tY h   where h  is the 

control limit [17]. 
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III. THE MULTIVARIATE EXPONENTIALLY WEIGHTED 

MOVING AVERAGE  CONTROL CHART 

Lowry et.al. [18] have developed a multivariate 
exponentially weighted moving average (MEWMA) control 
chart. The MEWMA control chart is a logical extension of 
the univariate exponentially weighted moving average 
(EWMA) control chart. The EWMA statistic assigns less 
and less weight to the past observations than the current 
observation [6]. 

      Suppose that iX   is a 1p   vector of observations at 

sample 1, 2,3,...i   with target mean vector equal to the 

zero vector and known covariance matrix   and the vectors 

are independent over time. The extension of the EWMA 
control chart to the multivariate case is defined as follows: 

                       1(1 )i i i    Z X Z                                  (4) 

with the scalar charting constant  , 0 1   which may be 

adjusted to change the weighting of the past observations 

and 0 0.Z   The quantity plotted on the control chart of the 

MEWMA [19] is 
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The control chart signals a shift in the mean vector when 
2 ,iT h   where h  is the control limit chosen to achieve a 

desired in-control  and  the covariance matrix for iZ  is   

      21 (1 )
2i

i 

     Z

                     (6) 

which is analogous to the variance of the univariate EWMA.  
The Average Run Length performance of the MEWMA 
control chart depends on the off-target mean vector because 
the process mean vector shifts from the zero vector to a new 
out-of-control vector . The shift size is reported in terms of a 

quantity 
1 1/ 2( ) ,  μ μ  it usually called the non-

centrality parameter. The value 0   is the in-control state 

and large values of   correspond to bigger shifts in the 

mean. 
 

Note that if   in equation (4) equal to 1, the MEWMA 

control chart statistic reduces to 
12 /

i
i i iT


 Z

X X  the statistic 

used to on the Hotelling 2T  control chart [19]. 

IV. COPULA FUNCTION 

  Copulas introduced by Sklar [20].  According to Sklar’s 
theorem for a bivariate case, let X  and Y  be continuous 
random variables with joint distribution function H  and 
marginal cumulative distribution ( )F x  and (y)F , 

respectively. Then  ( , ) ( ), ( );H x y C F x F y  with a 

copula    2
: 0,1 0,1C   where   is a parameter of the 

copula called the dependence parameter, which measures 
dependence between the marginals. For the purposes of 
statistical method it is desirable to parameterize the copula 
function. Let   denote the association parameter of the 
bivariate distribution and there exists a copula .C  Then 

( ) ,  F x u ( )F y v  where u  and v  are uniformly 

distributed variates [21]. This paper focuses on two types of 
Archimedean copulas which are Clayton and Frank [22].  
 

      Archimedean copulas 

       Let a class   of functions    : 0,1 0,    with 

continuous, strictly decreasing, such that  (1) 0,  ( ) 0t    

and ( ) 0t   for all 0 1t   [22-24]. Archimedean 

copulas of two types are generated as follow: 
 

      A. Clayton copula 

  1/
( , ;  ) = ( 1,  0) ,C u v max u v

 
                                      (7) 

where  ( ) ( 1) /  ;    [ 1, ) \ 0t t        .                                      

   B. Frank copula 
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V. DEPENDENCE MEASURES FOR DATA 

  Generally, a parametric measure of the linear dependence 
between random variables is correlation coefficient and 
nonparametric measures of dependence are Spearman’s rho 
and Kendall’s tau. According to the earlier literature, the 
copulas can be used in the study of dependence or 
association between random variables and the values of 
Kendall’s tau are easy to calculate so this measure is used 
for observation dependencies. 
       Let X  and Y  be continuous random variables whose 
copula is C   then Kendall’s tau  for X  and Y is given by 

4 ( , ) ( , ) - 1 c C u v dC u v   2I
 where c  is Kendall’s tau of 

copula C  and the unit square 2 is the product   where 

 0,1   and the expected value of the function  ( , )C u v of 

uniform (0,1) random variables U and V whose joint 
distribution function is ,C  i.e., 4 [ ( , )] 1c E C U V    [23]. 
         Genest and McKay [22] considered Archimedean 

copula C  generated by  , then 
1
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where Arch  is Kendall’s tau of Archimedean copula .C   

A. Clayton copula 
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VI. AVERAGE RUN LENGTH AND SIMULATION RESULTS 

The popular performance measure for control charts is the 
Average Run Length ( ARL ). ARL  is classified into 0ARL  

and 1ARL , where 0ARL  is the Average Run Length when 

the process is in-control and 1ARL  is the Average Run 
Length when the process is out-of-control [25].  The copula 
approach focuses on Clayton and Frank. This article use 
Monte Carlo simulation in R statistical software [26-28] 
with the number of simulation runs 50,000 and sample size 
is 1,000. Observations were from exponential distribution 
with parameter ( ) equal to 1 for in-control process (

0 1  ) and the shifts of the process level ( ) by 

0    . The process means are equal to 1, 1.25, 1.5, 

1.75, 2, 2.25 and 2.5.  
     Copula estimations are restricted to the cases of 
dependence (positive and negative dependence) and all 
copula models, setting   correspondes with Kendall’s tau. 
The level of dependence is measured by Kendall’s tau 
values ( 1 1   ) which are defined to 0.8 and -0.8, 
respectively. 

The results of simulation experiments are showed in 
Table I - IV for the different values of Kendall’s tau and 
denote 1  for the variables X  and 2  for the variables .Y  

The control chart was chosen by setting the desired 0ARL = 

370 for each copula. Table I-II show strong positive 
dependence ( 0.8)   and Table  -IV show strong negative 

dependence ( 0.8)   . For example, Table I shows 

positive dependence ( 0)  when the shifts in one 

exponential parameter. In the case of 1 1   and 2  is 

changed, for all shifts 1 2( 1,  1.25 2.5)    , the 1ARL  
values of Frank copula on MCUSUM control chart are less 
than MEWMA control chart. In the case of 2 1   and 1  is 

changed, for small shift 1 2( 1.25,  1)   , the 1ARL  value 

of Clayton copula on MCUSUM control chart is less than 
MEWMA control chart, for moderate and large shifts 

1 2(1.5 2.5,  1)    , the 1ARL values of Frank copula on 

MCUSUM control chart are less than MEWMA control chart. 
Table II shows positive dependence ( 0)  when the shifts 

in both exponential parameters. For small shifts 

1 2(1.25 1.75,  1.25 1.75)     , the 1ARL  values of 

Clayton copula on MEWMA control chart are less than 
MCUSUM control chart , for moderate and large shifts 

1 2(2 2.5,  2 2.5)     , the 1ARL  values of Clayton 

copula on MCUSUM control chart are less than MEWMA 
control chart. 

 

 

 

 

 

 

 

 

 
TABLE I 

COMPARISON OF ARL ON CONTROL CHARTS WITH KENDALL’S TAU VALUE 

EQUAL TO 0.8 WHEN THE SHIFTS IN ONE EXPONENTIAL PARAMETER. 

Parameters 0ARL  and 1ARL  

1   2  
MCUSUM  MEWMA 

Clayton Frank Clayton Frank 

1 1 370.041 370.129 369.984 370.042 

1 1.25 195.156 195.096 200.143 197.932 

1 1.5 107.211 105.377 109.134 106.283 

1 1.75 62.768 59.581 68.107 66.309 

1 2 38.588 36.230 47.712 44.407 

1 2.25 25.877 23.634 34.206 29.761 

1 2.5 18.506 16.566 23.184 19.036 

1 1 370.041 370.129 369.984 370.042 

1.25 1 195.710 196.190 199.332 197.433 

1.5 1 108.657 105.015 109.455 106.719 

1.75 1 63.247 60.205 67.890 66.209 

2 1 38.869 36.091 47.970 44.633 

2.25 1 25.919 23.573 34.067 29.834 

2.5 1 18.501 16.441 23.432 19.060 

 
 

TABLE II 
COMPARISON OF ARL ON CONTROL CHARTS WITH KENDALL’S TAU VALUE 

EQUAL TO 0.8 WHEN THE SHIFTS IN BOTH EXPONENTIAL PARAMETERS. 

Parameters 0ARL  and 1ARL  

1   2  
MCUSUM  MEWMA 

Clayton Frank Clayton Frank 

1 1 370.041 370.129 369.984 370.042 

1.25 1.25 145.866 149.487 145.435 150.129 

1.5 1.5 76.576 80.001 74.421 78.224 

1.75 1.75 46.467 48.708 45.555 49.047 

2 2 30.540 31.957 31.957 34.814 

2.25 2.25 21.532 22.423 23.649 25.791 

2.5 2.5 15.978 16.533 18.390 19.461 
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TABLE   
COMPARISON OF ARL ON CONTROL CHARTS WITH KENDALL’S TAU VALUE 

EQUAL TO -0.8 WHEN THE SHIFTS IN ONE EXPONENTIAL PARAMETER. 

Parameters 0ARL  and 1ARL  

1   2  
MCUSUM  MEWMA 

Clayton Frank Clayton Frank 

1 1 370.073 369.898 370.048 369.860 

1 1.25 217.642 213.616 206.189 203.742 

1 1.5 125.222 122.585 116.565 114.836 

1 1.75 73.649 72.141 75.813 73.019 

1 2 47.062 45.447 53.299 51.502 

1 2.25 32.383 30.621 40.395 38.061 

1 2.5 23.563 22.106 29.449 27.579 

1 1 370.073 369.898 370.048 369.860 

1.25 1 217.844 211.881 205.465 203.404 

1.5 1 125.629 121.631 116.712 114.335 

1.75 1 74.104 71.510 74.983 72.594 

2 1 47.452 44.831 53.409 51.980 

2.25 1 32.486 30.440 40.168 38.269 

2.5 1 23.635 22.082 29.611 27.783 

 
 

TABLE IV 
COMPARISON OF ARL ON CONTROL CHARTS WITH KENDALL’S TAU VALUE 

EQUAL TO -0.8 WHEN THE SHIFTS IN BOTH EXPONENTIAL PARAMETERS. 

Parameters 0ARL  and 1ARL  

1   2  
MCUSUM  MEWMA 

Clayton Frank Clayton Frank 

1 1 370.073 369.898 370.048 369.860 

1.25 1.25 158.821 159.226 148.415 149.336 

1.5 1.5 80.217 81.915 78.387 78.738 

1.75 1.75 45.524 46.497 49.877 49.953 

2 2 28.945 29.362 35.369 34.948 

2.25 2.25 19.808 19.990 25.562 25.497 

2.5 2.5 14.329 14.522 18.411 18.236 

 

VII. CONCLUSION 

The authors compared efficiency between MCUSUM and 
MEWMA control charts for bivariate copulas when 
observations are exponential distribution using the Monte 
Carlo simulation approach. The results found that 
MCUSUM control chart performs better than MEWMA 
control chart when one exponential parameter changes but 
the performance of MCUSUM control chart was found to be 
similar to the MEWMA control chart referring to the shift in 
both exponential parameters for all shifts. 
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