Performance Comparison of Bivariate Copulas on the CUSUM and EWMA Control Charts

Sasigarn Kuvattana, Saowanit Sukparungsee, Piyapatr Busababodhin, and Yupaporn Areepong

Abstract— This article proposes the comparison of control charts for bivariate copulas when observations are exponential distribution. The Monte Carlo simulation was used to investigate the value of Average Run Length (ARL) for incontrol and out-of-control process. The dependence of random variables were used and measured by Kendall's tau in each copula. The simulation results show that performance of MCUSUM control chart was similar to MEWMA control chart for almost all shifts.

Index Terms—Copula, ARL, MCUSUM, MEWMA, Monte Carlo simulation

I. INTRODUCTION

NONTROL chart is one of the most widely applied statistical process control (SPC) which is a statistical and visual tool designed to detect shifts in manufacturing process. It is designed and evaluated under the assumption that the observations are from processes which are independent and identically distributed (i.i.d.). Univariate control chart is devised to monitor the quality of a single process characteristic but modern process often monitor more than one quality characteristic. These quality characteristics are clearly correlated and separate univariate control charts for monitoring individual quality characteristic which may not be adequate for detecting changes in the overall quality of the product. Thus, it is desirable to have control charts that can monitor multivariate measurements and they are referred to as multivariate statistical process control charts.

Multivariate statistical process control (MSPC) charts are the most rapidly developing sections of statistical process control [1] and lead to an interest in the simultaneous inspection of several related quality characteristics [2-3]. The three most common multivariate control charts are the multivariate cumulative sum (MCUSUM) [4] control chart,

Manuscript received July 10, 2015; revised August 8, 2015. This work was supported in part by the Graduate Colleges, King Mongkut's University of Technology North Bangkok.

S. Kuvattana is with the Department of Applied Statistics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand (e-mail: sasigarn2010@gmail.com).

S. Sukparungsee is with the Department of Applied Statistics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand (e-mail: swns@kmutnb.ac.th).

P. Busababodhin is with the Department of Mathematics, Facultly of Science, Mahasarakham University, Mahasarakham, 41150, Thailand (e-mail: piyapatr99@gmail.com).

Y. Areepong is with the Department of Applied Statistics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand (e-mail:yupaporna@kmutnb.ac.th).

the multivariate exponentially weighted moving average (MEWMA) [5] control chart and the multivariate Shewhart control chart. Multivariate Shewhart control chart is used to detect large shifts in the mean vectors. The MEWMA and MCUSUM are commonly used to detect small or moderate shifts in the mean vectors [6]. MSPC procedures are based on a multi-normality assumption and independence but many processes are often non-normality and correlation. Moreover, multivariate control charts are the lack of the related joint distribution and copula can specify this property. Copulas are functions that join multivariate distribution functions to their one-dimensional margins . It can estimate joint distribution of nonlinear outcomes and explain the dependence structure among variables through the joint distribution by eliminating the effect of univariate marginals. Many researchers have developed the copula on MCUSUM and MEWMA charts (see [5], [7-14]).

This article presents comparison of efficiency between MCUSUM and MEWMA control charts when observations are exponential distribution with the means shifts and use a bivariate copulas function for specifying dependence between random variables.

II. THE MULTIVARIATE CUMULATIVE SUM CONTROL CHART

The multivariate cumulative sum (MCUSUM) control chart is the multivariate extension of the univariate cumulative sum (CUSUM) chart. The MCUSUM chart was initially proposed by Crosier [15]. The MCUSUM chart may be expressed as follows:

$$C_{t} = [(\mathbf{S}_{t-1} + \mathbf{X}_{t} - \mathbf{a})' \sum^{-1} (\mathbf{S}_{t-1} + \mathbf{X}_{t} - \mathbf{a})]^{1/2} ; t = 1, 2, 3, \dots$$
(1)

where covariance (\sum) and \mathbf{S}_t are the cumulative sums expressed as:

$$\mathbf{S}_{t} = \begin{cases} \mathbf{0}, & \text{if } C_{t} \leq k \\ (\mathbf{S}_{t-1} + \mathbf{X}_{t} - \mathbf{a}) \left(1 - \frac{k}{C_{t}} \right), & \text{if } C_{t} > k \end{cases}$$
(2)

the reference value k > 0 and **a** is the aim point or target value for the mean vector [16]. The control chart statistics for MCUSUM chart is

$$Y_t = [\mathbf{S}_t' \sum^{-1} \mathbf{S}_t]^{1/2} \quad ; \ t = 1, \ 2, \ 3, \dots$$
(3)

The signal gives an out-of-control if $Y_t > h$ where *h* is the control limit [17].

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II WCECS 2015, October 21-23, 2015, San Francisco, USA

III. THE MULTIVARIATE EXPONENTIALLY WEIGHTED MOVING AVERAGE CONTROL CHART

Lowry et.al. [18] have developed a multivariate exponentially weighted moving average (MEWMA) control chart. The MEWMA control chart is a logical extension of the univariate exponentially weighted moving average (EWMA) control chart. The EWMA statistic assigns less and less weight to the past observations than the current observation [6].

Suppose that \mathbf{X}_i is a $p \times 1$ vector of observations at sample i = 1, 2, 3, ... with target mean vector equal to the zero vector and known covariance matrix Σ and the vectors are independent over time. The extension of the EWMA control chart to the multivariate case is defined as follows:

$$\mathbf{Z}_{i} = \lambda \mathbf{X}_{i} + (1 - \lambda) \mathbf{Z}_{i-1}$$
(4)

with the scalar charting constant λ , $0 \le \lambda \le 1$ which may be adjusted to change the weighting of the past observations and $Z_0 = 0$. The quantity plotted on the control chart of the MEWMA [19] is

$$T_i^2 = \mathbf{Z}_i' \sum_{\mathbf{Z}_i}^{-1} \mathbf{Z}_i$$
(5)

The control chart signals a shift in the mean vector when $T_i^2 > h$, where *h* is the control limit chosen to achieve a desired in-control and the covariance matrix for \mathbf{Z}_i is

$$\sum_{\mathbf{z}_{i}} = \frac{\lambda}{2-\lambda} \Big[1 - (1-\lambda)^{2i} \Big] \sum$$
 (6)

which is analogous to the variance of the univariate EWMA. The Average Run Length performance of the MEWMA control chart depends on the off-target mean vector because the process mean vector shifts from the zero vector to a new out-of-control vector. The shift size is reported in terms of a quantity $\delta = (\mu' \sum^{-1} \mu)^{1/2}$, it usually called the non-centrality parameter. The value $\delta = 0$ is the in-control state and large values of δ correspond to bigger shifts in the mean.

Note that if λ in equation (4) equal to 1, the MEWMA control chart statistic reduces to $T_i^2 = \mathbf{X}_i' \sum_{\mathbf{Z}_i}^{-1} \mathbf{X}_i$ the statistic used to on the Hotelling T^2 control chart [19].

IV. COPULA FUNCTION

Copulas introduced by Sklar [20]. According to Sklar's theorem for a bivariate case, let X and Y be continuous random variables with joint distribution function H and marginal cumulative distribution F(x) and F(y), respectively. Then $H(x, y) = C(F(x), F(y); \theta)$ with a copula $C:[0,1]^2 \rightarrow [0,1]$ where θ is a parameter of the copula called the dependence parameter, which measures dependence between the marginals. For the purposes of statistical method it is desirable to parameterize the copula function. Let θ denote the association parameter of the bivariate distribution and there exists a copula C. Then

F(x) = u, F(y) = v where u and v are uniformly distributed variates [21]. This paper focuses on two types of Archimedean copulas which are Clayton and Frank [22].

Archimedean copulas

Let a class Φ of functions $\phi:[0,1] \rightarrow [0,\infty]$ with continuous, strictly decreasing, such that $\phi(1) = 0$, $\phi'(t) < 0$ and $\phi''(t) > 0$ for all 0 < t < 1 [22-24]. Archimedean copulas of two types are generated as follow:

A. Clayton copula

л г

$$C(u,v; \theta) = \left[\max(u^{-\theta} + v^{-\theta} - 1, 0) \right]^{-1/\theta},$$
(7)

where $\phi(t) = (t^{-\theta} - 1) / \theta$; $\theta \in [-1, \infty) \setminus 0$.

B. Frank copula

$$C(u, v; \theta) = -\frac{1}{\theta} ln(1 + \frac{(e^{-\theta u} - 1)(e^{-\theta v} - 1)}{e^{-\theta} - 1}),$$
(8)

where $\phi(t) = -ln(\frac{e^{-\alpha} - 1}{e^{-\theta} - 1})$; $\theta \in (-\infty, \infty) \setminus 0$.

V. DEPENDENCE MEASURES FOR DATA

Generally, a parametric measure of the linear dependence between random variables is correlation coefficient and nonparametric measures of dependence are Spearman's rho and Kendall's tau. According to the earlier literature, the copulas can be used in the study of dependence or association between random variables and the values of Kendall's tau are easy to calculate so this measure is used for observation dependencies.

Let X and Y be continuous random variables whose copula is C then Kendall's tau for X and Y is given by $\tau_c = 4 \iint_{I^2} C(u,v) dC(u,v) - 1$ where τ_c is Kendall's tau of copula C and the unit square I² is the product I×I where I = [0,1] and the expected value of the function C(u,v) of uniform (0,1) random variables U and V whose joint distribution function is C, i.e., $\tau_c = 4E[C(U,V)] - 1$ [23].

Genest and McKay [22] considered Archimedean

copula *C* generated by ϕ , then $\tau_{Arch} = 4 \int_{0}^{1} \frac{\phi(t)}{\phi'(t)} dt + 1$

where τ_{Arch} is Kendall's tau of Archimedean copula *C*.

A. Clayton copula

$$\tau = \theta / (\theta + 2) ; \ \theta = [-1, \ \infty) \setminus \{0\}$$
(9)

B. Frank copula

$$\tau = 1 + 4 \left(\frac{1}{\theta} \int_{0}^{\theta} \frac{t}{e^{t} - 1} dt - 1 \right) / \theta ; (-\infty, \infty) \setminus \{0\}$$
(10)

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II WCECS 2015, October 21-23, 2015, San Francisco, USA

VI. AVERAGE RUN LENGTH AND SIMULATION RESULTS

The popular performance measure for control charts is the Average Run Length (*ARL*). *ARL* is classified into *ARL*₀ and *ARL*₁, where *ARL*₀ is the Average Run Length when the process is in-control and *ARL*₁ is the Average Run Length when the process is out-of-control [25]. The copula approach focuses on Clayton and Frank. This article use Monte Carlo simulation in R statistical software [26-28] with the number of simulation runs 50,000 and sample size is 1,000. Observations were from exponential distribution with parameter (α) equal to 1 for in-control process ($\mu_0 = 1$) and the shifts of the process level (δ) by $\mu = \mu_0 + \delta$. The process means are equal to 1, 1.25, 1.5, 1.75, 2, 2.25 and 2.5.

Copula estimations are restricted to the cases of dependence (positive and negative dependence) and all copula models, setting θ correspondes with Kendall's tau. The level of dependence is measured by Kendall's tau values $(-1 \le \tau \le 1)$ which are defined to 0.8 and -0.8, respectively.

The results of simulation experiments are showed in Table I - IV for the different values of Kendall's tau and denote μ_1 for the variables X and μ_2 for the variables Y. The control chart was chosen by setting the desired $ARL_0 =$ 370 for each copula. Table I-II show strong positive dependence ($\tau = 0.8$) and Table III-IV show strong negative dependence $(\tau = -0.8)$. For example, Table I shows positive dependence ($\tau > 0$) when the shifts in one exponential parameter. In the case of $\mu_1 = 1$ and μ_2 is changed, for all shifts ($\mu_1 = 1, 1.25 \le \mu_2 \le 2.5$), the ARL values of Frank copula on MCUSUM control chart are less than MEWMA control chart. In the case of $\mu_2 = 1$ and μ_1 is changed, for small shift ($\mu_1 = 1.25$, $\mu_2 = 1$), the ARL value of Clayton copula on MCUSUM control chart is less than MEWMA control chart, for moderate and large shifts $(1.5 \le \mu_1 \le 2.5, \mu_2 = 1)$, the *ARL* values of Frank copula on MCUSUM control chart are less than MEWMA control chart. Table II shows positive dependence $(\tau > 0)$ when the shifts both exponential parameters. For small shifts in $(1.25 \le \mu_1 \le 1.75, 1.25 \le \mu_2 \le 1.75)$, the *ARL* values of Clayton copula on MEWMA control chart are less than MCUSUM control chart, for moderate and large shifts $(2 \le \mu_1 \le 2.5, 2 \le \mu_2 \le 2.5)$, the ARL₁ values of Clayton copula on MCUSUM control chart are less than MEWMA control chart.

 TABLE I

 COMPARISON OF ARL ON CONTROL CHARTS WITH KENDALL'S TAU VALUE

 EQUAL TO 0.8 WHEN THE SHIFTS IN ONE EXPONENTIAL PARAMETER.

Parameters		ARL_0 and ARL_1				
μ_{l}	μ_2	MCUSUM		MEWMA		
		Clayton	Frank	Clayton	Frank	
1	1	370.041	370.129	369.984	370.042	
1	1.25	195.156	195.096	200.143	197.932	
1	1.5	107.211	105.377	109.134	106.283	
1	1.75	62.768	59.581	68.107	66.309	
1	2	38.588	36.230	47.712	44.407	
1	2.25	25.877	23.634	34.206	29.761	
1	2.5	18.506	16.566	23.184	19.036	
1	1	370.041	370.129	369.984	370.042	
1.25	1	195.710	196.190	199.332	197.433	
1.5	1	108.657	105.015	109.455	106.719	
1.75	1	63.247	60.205	67.890	66.209	
2	1	38.869	36.091	47.970	44.633	
2.25	1	25.919	23.573	34.067	29.834	
2.5	1	18.501	16.441	23.432	19.060	

 TABLE II

 Comparison of ARL on Control Charts with Kendall's tau Value

 Equal to 0.8 when the Shifts in both Exponential Parameters.

Parameters		ARL_0 and ARL_1			
$\mu_{_{1}}$	μ_2	MCUSUM		MEWMA	
		Clayton	Frank	Clayton	Frank
1	1	370.041	370.129	369.984	370.042
1.25	1.25	145.866	149.487	145.435	150.129
1.5	1.5	76.576	80.001	74.421	78.224
1.75	1.75	46.467	48.708	45.555	49.047
2	2	30.540	31.957	31.957	34.814
2.25	2.25	21.532	22.423	23.649	25.791
2.5	2.5	15.978	16.533	18.390	19.461

Proceedings of the World Congress on Engineering and Computer Science 2015 Vol II WCECS 2015, October 21-23, 2015, San Francisco, USA

TABLE III
COMPARISON OF ARL ON CONTROL CHARTS WITH KENDALL'S TAU VALUE
EQUAL TO -0.8 WHEN THE SHIFTS IN ONE EXPONENTIAL PARAMETER.

Parameters		ARL_0 and ARL_1				
μ_{1}	μ_2	MCUSUM		MEWMA		
		Clayton	Frank	Clayton	Frank	
1	1	370.073	369.898	370.048	369.860	
1	1.25	217.642	213.616	206.189	203.742	
1	1.5	125.222	122.585	116.565	114.836	
1	1.75	73.649	72.141	75.813	73.019	
1	2	47.062	45.447	53.299	51.502	
1	2.25	32.383	30.621	40.395	38.061	
1	2.5	23.563	22.106	29.449	27.579	
1	1	370.073	369.898	370.048	369.860	
1.25	1	217.844	211.881	205.465	203.404	
1.5	1	125.629	121.631	116.712	114.335	
1.75	1	74.104	71.510	74.983	72.594	
2	1	47.452	44.831	53.409	51.980	
2.25	1	32.486	30.440	40.168	38.269	
2.5	1	23.635	22.082	29.611	27.783	

 TABLE IV

 Comparison of ARL on Control Charts with Kendall's tau Value

 Equal to -0.8 when the Shifts in both Exponential Parameters.

Parameters		ARL_0 and ARL_1			
$\mu_{_{1}}$	μ_2	MCUSUM		MEWMA	
		Clayton	Frank	Clayton	Frank
1	1	370.073	369.898	370.048	369.860
1.25	1.25	158.821	159.226	148.415	149.336
1.5	1.5	80.217	81.915	78.387	78.738
1.75	1.75	45.524	46.497	49.877	49.953
2	2	28.945	29.362	35.369	34.948
2.25	2.25	19.808	19.990	25.562	25.497
2.5	2.5	14.329	14.522	18.411	18.236

VII. CONCLUSION

The authors compared efficiency between MCUSUM and MEWMA control charts for bivariate copulas when observations are exponential distribution using the Monte Carlo simulation approach. The results found that MCUSUM control chart performs better than MEWMA control chart when one exponential parameter changes but the performance of MCUSUM control chart was found to be similar to the MEWMA control chart referring to the shift in both exponential parameters for all shifts.

ACKNOWLEDGMENT

The authors would like to thank the King Mongkut's University of Technology North Bangkok and Thailand Ministry of Science and Technology for the financial support during this research.

REFERENCES

- [1] C. Fuchs and R.S. Kenett, *Multivariate quality control: theory and applications*. New York: Marcel Dekker, INC. 1985.
- [2] C.A. Lowry and D.C. Montgomery, "A review of multivariate control charts," *IIE Transactions*, vol. 27, pp. 800-810. 1995.
- [3] W.H. Woodall, D.C. Montgomery, "Research issues and ideas in statistical process control," *Journal of Quality Technology*, vol. 31, pp. 376-386. 1999.
- [4] S. Bersimis, J. Panaretos and S. Psarakis, "Multivariate Statistical Process Control Charts and the Problem of Interpretation: A Short Overview and Some Applications in Industry," *Published in: Proceedings of the 7th Hellenic European Conference on Computer Mathematics and its Applications*, Athens Greece, 2005.
- [5] S. Kuvattana, S. Sukparungsee, P. Busababodhin and Y. Areepong, "Bivariate copulas on the exponentially weighted moving average control chart(Periodical style—Submitted for publication)," Maejo International Journal of Science and Technology.
- [6] H.M. Midi and A. Shabbak, "Robust Multivariate Control Charts to Detect Small Shifts in Mean," *Mathematical Problems in Engineering*, vol. 2011, Special section, pp.1-19. 2011.
- [7] A.A. Fatahi, P. Dokouhaki and B.F. Moghaddam, "A bivariate control chart based on copula function," *IEEE International Conference on Quality and Reliability (ICQR)*, Bangkok, Thailand, 14-17 Sept, 2011, pp. 292 – 296.
- [8] A.A. Fatahi, R. Noorossana, P. Dokouhaki and B.F. Moghaddam, "Copula-based bivariate ZIP control chart for Monitoring rare events," *Communications in statistics theory and methods*, vol. 41, pp. 2699 – 2716, 2012.
- [9] P. Dokouhaki and R. Noorossana, "A copula Markov CUSUM chart for Monitoring the bivariate auto-correlated binary observation," *Quality and reliability engineering international*, vol. 29, pp. 911-919, 2013.
- [10] O. Hryniewicz, "On the robustness of the Shewhart control chart to different types of dependencies in data," *Frontiers in Hryniewicz* and A. Szediw, "Sequential signals on a control chart based on nonparametric statistical tests," *Frontiers in Statistical Quality Control*, vol. 9, pp. 99-108, 2010.
- [11] O. Hryniewicz, "On the robustness of the Shewhart control chart to different types of dependencies in data," *Frontiers in Statistical Quality Control*, vol. 10, pp. 20-33, 2012.
- [12] G. Verdier, "Application of copulas to multivariate control charts," *Journal of Statistical Planning and Inference*, vol. 143, pp. 2151– 2159, 2013.
- [13] S. Kuvattana, S. Sukparungsee, P. Busababodhin and Y. Areepong, "Bivariate copulas on the Shewhart control chart(Periodical style— Submitted for publication)," Far East Journal of Mathematical Sciences.
- [14] S. Kuvattana, S. Sukparungsee, P. Busababodhin and Y. Areepong, "Efficiency of bivariate copulas on the CUSUM chart," *Proceedings* of *IMECS 2015*, Hong Kong, 18-20 March, 2015.
- [15] R.B. Crosier, "Multivariate generalizations of cumulative sum quality-control schemes," *Technometrics*, vol. 30, pp. 291–303, 1988.
- [16] B. C. Khoo, M. A. Atta and H. N. Phua, "A Study on the performances of MEWMA and MCUSUM charts for skewed distributions," in *Proc.10th Islamic Countries Conference On Statistical Science*, Cairo, Egypt, 2009. pp 817 – 822.
- [17] C. C. Alves, R. W. Samohyl and E. Henning, "Application of multivariate cumulative sum control charts(MCUSUM) for monitoring a machining process," 16th Int. Conf. on Industrial Engineering And Operations Management, Sao Carlos, Brazil, 12-15 Oct, 2010, pp. 1-7.
- [18] C. A. Lowry, W. H. Woodall, C. W. Champ and S. E. Rigdon, "A multivariate exponentially weighted moving average control chart," *Technometrics*, vol. 34, pp. 46–53, 1992.
- [19] G.C. Runger, J.B. Keats, D.C. Montgomery and R.D. Scranton, "Improving the performance of the Multivariate Exponentially Weighted Moving Average Control Chart," *Quality and reliability engineering international*, vol. 15, pp. 161-166, 1999.

ISBN: 978-988-14047-2-5 ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

- [20] A. Sklar, "Fonctions de repartition a n dimensions et leurs marges," *Publ. Inst. Statist. Univ. Paris*, vol. 8, pp. 229-231, 1959.
- [21] P. K. Trivedi and D. M. Zimmer, Copula Modeling: An Introduction for Practitioners. Foundations and Trends in Econometrics. 2005.
- [22] C. Genest and R. J. McKay, "The joy of copulas: bivariate distributions with uniform marginals," *American Statistician*, vol. 40, pp. 280–283, 1986.
- [23] R. B. Nelsen, An introduction to copulas. 2nd ed. New York. Springer. 2006.
- [24] C. Genest and L.-P. Rivest, "Statistical inference procedures for bivariate Archimedean copulas," *Journal of the American Statistical Association*, vol. 88, pp. 1034–1043, 1993.
- [25] J. Busaba, S. Sukparungsee and Y. Areepong, "Numerical Approximations of Average run length Run Length for AR(1) on Exponential CUSUM," *Proceedings of IMECS 2012*, Hong Kong, 14-16 March, 2012.
- [26] J. Yan, "Enjoy the joy of copulas: With a package copula," *Journal of Statistical Software*, vol. 21, pp. 1-21, 2007.
- [27] M. Hofert, M. Machler and A.J. McNeil, "Likelihood inference for Archimedean copulas in high dimensions under known margins," *Journal of Multivariate Analysis*, vol.110, pp. 133–150, 2012.
- [28] M. Machler and E. Zurich. (2013, March). Numerically stable Frank copula functions via multiprecision: R Package Rmpfr. [Online]. Available:

http://cran.r-project.org/web/packages/copula/vignettes/Frank-Rmpfr.pdf