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Continuous Second Order Sliding Mode Control
With On Line Tuned PID

Wael M. Elawady, Samar A. Lebda and Amany M. Sarhan

Abstract—This paper presents a robust control algorithm based
on adaptive proportional-integral-derivative (PID) controller and
sliding mode control (SMC) approach. In this paper, the drawbacks
of SMC are compensated by adopting an adaptive PID continuous
second order sliding mode control approach (APID2SMC) with
PID sliding surface. The stability of the system is guaranteed in the
sense of Lyapunov theorem. Numerical simulations using the
dynamic model of DC motor with modeling uncertainties show
that the proposed approach provides robustness for trajectory
tracking performance under the occurrence of uncertainties. These
simulation results compared to the results of conventional sliding
mode control (CSMC) and PID control approaches indicate that
the proposed method yields superior performance than the other
controllers.

Index Terms— robust control, second order sliding mode
control

I. INTRODUCTION

LIDIN mode control (SMC) is one of the effective

nonlinear robust control approaches since it provides
system dynamics with an invariance property to
uncertainties once the system dynamics are controlled in the
sliding mode [4], [7]-[8], [11]-{12]. Under certain
conditions, the SMC is robust with respect to system
perturbation and external disturbance [4], [14]. However,
this control strategy produces some drawbacks associated
with large control chattering that may wear coupled
mechanisms and excite undesirable high-frequency
dynamics. Moreover, a priori knowledge of the upper
bounds of the norm of the perturbation vector is required to
obtain robustness and convergence. In order to overcome
the drawbacks of SMC, the problem of perturbation
estimation was investigated in [1] for a particular class of
nonlinear uncertain systems. However, these problems
remained mainly unsolved [9].

Several methods of chattering reduction have been
reported. One approach [5] places a boundary layer around
the switching surface such that the relay control is replaced
by a saturation function. Another method [13] replaces a
max—min-type control by a unit vector function. These
approaches, however, provide no guarantee of convergence
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to the sliding mode and involve a tradeoff between
chattering and robustness. In [6], an asymptotic observer in
the control scheme can eliminate chattering despite the
discontinuous control law. Both the boundary layer
approach and the observer design assume that the un-
modeled dynamics are completely unknown. In [2], the
authors use the integral sliding method to overcome the
drawback of chattering phenomenon. The authors in [10]
attempted to reduce the well-known chattering problem in
classical sliding mode control by presenting an innovative
approach to adaptive fuzzy sliding mode control for a class
of single input single output continuous nonlinear systems
with unknown dynamics and bounded disturbances. In [14],
a chattering free adaptive sliding mode controller is
proposed for stabilizing a class of multi-input multi-output
(MIMO) systems affected by both matched and mismatched
types of uncertainties.

This paper discusses the design of a robust adaptive PID
continuous second order sliding controller (APID2SMC)
with PID sliding surface to achieve system robustness
against parameter uncertainty, external load disturbance,
and nonlinearities. In this approach, different from the
second order sliding mode control presented in [3], an
adaptive PID controller with on line tuned parameters
replaces the equivalent control term which is not used
because it needs exact full system dynamics knowledge and
the discontinuous term is replaced by a PD control in terms
of sliding surface dynamics. The proposed approach has
some features such as a priori knowledge of the bounds of
uncertainties is not required and the chattering phenomenon
is eliminated without deteriorating the system robustness.
The stability of the system is guaranteed in the sense of the
Lyapunov stability theorem.

The proposed control algorithm is applied to a speed
control of DC motor through simulations. The proposed
approach is compared to the existing conventional
controllers. The simulation results indicate that the control
performance of the proposed control strategy is satisfactory
and better than those of the existing conventional
controllers. The remainder of this paper is organized as
follows: section II presents the proposed adaptive PID
second order sliding mode control. Section III presents the
stability of the system in the sense of Lyapunov stability
theorem. Section IV presents the simulation results, and
section V summarizes the conclusions and contributions of
the work
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II. ADAPTIVE PID SECOND ORDER SLIDING MODE
CONTROL

The main objective in this paper is to adopt an adaptive
PID-based second order sliding mode control approach
(APID2SMC) in which: (i) the equivalent control term in
[3] is replaced by an on line tuned adaptive PID controller
which results in more robustness, fast dynamic response and
good steady state accuracy. (ii) the discontinuous control in
[3] is replaced by a continuous proportional derivative (PD)
controller in terms of sliding surface dynamics which
completely eliminates the requirement of a priori knowledge
of the bounds of uncertainties and the chattering effects.

The dynamics of a single-input linear uncertain plant can
be written as [3]:

y®)+ay®+by(t)=cut)+D() (1
where y(t) is the output, u(t) is the control input and d(t)
represents the disturbances and un-modeled dynamics. a,
b and c are plant parameters. In general, the system
parameters involve a nominal part and some variations,

therefore, in the presence of the model uncertainties and
external disturbances, (1) can be written as follows:

Y(t) = ~(a+Aa) y(®) - (b + Ab) y(t) @
+(C+ Ac)u(t)+ D(1)
It is assumed that all uncertain elements can be lumped as
follows:

D(t) =-Aay(t) - Aby(®) + Acu(t)+ DIt) )
The dynamics of the model is written as:
y(t) =—ay(®) —by(t)+cu(t)+ D() 4)

The second order sliding PID surface in the space of
tracking error can be defined as [3]:

o =5(t)+ast) =0+ 4 )+ 4; [ e(§)dé )
where e(t) = y(t)—yq(t) is the tracking error, in which

Y4 () is the desired output. 4, 4, and a are positive

constants.
The tracking control problem can be achieved by keeping
the system trajectory on the sliding surface s(t) =0. For

this purpose the proposed control algorithm is chosen as:

ut) = {up.D<t>+ U (1) (©)
where up|D(t) and U, (t) are the adaptive PID control with
online tuned gains and the continuous PD control,
respectively.
The adaptive PID control law Upp(t) can be chosen as:
Upio(®) ==k et)—ki [e(&)dz—ka e(t) ™

where kp, ki and kg are the adaptive proportional,

integral and derivative gains to be tuned online.
The continuous proportional derivative (PD) control law,
U, (t) , can be chosen as:

Uy (1) = —k S(t) — Dy ) ()
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where k is a positive constant which is a design parameter
and Dgy (1) is the estimated perturbation.

III. LYAPUNOV STABILITY ANALYSIS

Lyapunov stability analysis is the most popular approach
to prove and evaluate the stable convergence property of
sliding mode control. Here, Lyapunov stability approach is
employed to investigate the stability property of the
proposed controller. Lyapunov function can be chosen as:

.2 - )

V)= Zs2 () + 18 (0)+——D(t)? +Lkp

2 2 27p 2y,
2

PR )
SIS
24 2y

where yp, y,, 7¢ and y; are positive constants which are

design parameters and D is the lumped uncertainty
estimation error and is defined as follows [9]:

Dest (t) - D(t)

k, » kg and k; are the deviations between the adaptive PID

D(t) = (10)

gains and initial gains and are defined as:
kp =kp—kp,kd zkd—kd, kizki_ki (11)
where k,, ki and kg are the initial proportional, integral

and derivative gains
The derivative of Lyapunov function is:

V() = a85(t)+ § 8-+ ——DD+——kp kp+ kg ke
7b 7p 7d
. (12)
L

7.
Take the derivative of surface in (5) with respect to time and
use (4) then

s(t) g+ﬂ1e+ﬂge as = y—Yd+/119+/12e as
(1) (13)
:,11e+ﬁﬁe—as—ay—by+CU(t)+D—yd

Substituting (13) into (12) yields

V(t)=cBS+ St 6+ e —axS —ay-by+cut)+ Dy, }

+i E)E)‘l‘—lip §p+— id kd+— k. k.

V! e p Ve N
By substituting (7) and (8) into (6), the proposed controller

(14)

U(t) is chosen as:

U() =2 Uprp (O + U (0} == {~k p (1)
S L (15)
—ki [e(£)dé ~ks e(t) =k s(t)~ D (1)}

Substituting (15) into (14) yields:
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\./(t) =as;,+;~{ﬂI <.e+ﬂ2e—a;—a§/—by—f<pe—lza Ie(é)df—lzd é—k;

L] L] L] L] (16)
o 1=~ 1~~~ 1~~~ 1~~~
—D+D-Yy }+— DDt—kpkp+—kaka+—kiki
Jio) 7/p bl "

Substituting Yy =e+Y4 and y =e+Yy, into (16) yields

\./(t) =a'5;+;{—a;+21 é+ﬂge—a(é+;/d)—b(e+yd) —IA(p ()

A AN e ° o0 1 ~ o~
e j 8()E—Kg e-ks— D+ D—y,} +— DD

o 1n
kot koketkik
7p Vel N
Rearranging (17) gives:
\./(t):ors;+;{—oz;+(ﬂ1 —a)c.a+(/12 —b)e—a;/d—byd —kpe
A N e . o0 1 ~ :
ki [ads-kaeks-Dy+D-Yg}+—DD (1)

o
I~~~ 1~~~ 1=~
+—kpkp+—Kd ka+—ki ki
7p e N
Differentiating (10) and (11) and substituting in (18) yields:

Vt) =85+ S{-as (A —8)e-+(y —b)e—ag/d—byd—lzpe

A A o . o 1 ~ e
—k je@dé—kd&ks—f%st+D—yd}+7D[¥st (19)
D

+—1 ip k|o+—1 Ed kd+—1 Ei ki
7p e b

Using (10), (19) can be written as:
V(t)=oss+s{-as+(4 —aje+(4 —be—ay,—byy — vy
—ks}—s E)—kp es —ski Ie(é)dé—kd es+i E)Dest (20)
o)

1 - A - A o~ A
+—Kkpkp+—kd ka+—Kkiki
7p Yd 7
Rearranging (20) gives:

L] L] L] L ] L] L] .2
VO =SicB—as+5{-Y =YYy HA -BerHh —el—Ks

°~ 1 ~ ® A o o/ N eoe 1~ A
—sD+— DDustkpes—ski j aoaes—hoky (o1
D 7o
1N A IN A
+—ka ka+—kiki
e "

Using (11), (21) can be manipulated as:
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. 2

\./(t):;{cs—as}+;{—;d—a;/d—byd +(4 —a)(.e+(/12 —b)e} —k;

o~ 1 ~ ® ~ o o ~
5D+ DDy es-sth ) e 22)
D
- e 1~: 1~: 1N:
—(kg+ky)es+—Kkpkp+— ka Ka+—ki ki
"p v i
V(t)=s{os—as}+s{-y —ay —byy +(4 —ae
.2 o ~ ~ @ ~ L]
+(Jy —b)e}—KS —SD+— DDss—k; €5
D
. o ~ ~ o0 o0 (23)

—kessk [e(e)dz—sk [ererdz—k;eskye

° .
A

1~ ~ ~ "
+—Kkpkp+—Kg ka+—Kiki
7p 7d 7
From (5), (23) can be rewritten as:

W) =si-sreve s [ads-as+5t-y-ay by,

(] .2 ~ L] L] e o
e bR 0 Do S 24
D

oSk s koky —éﬁje@dgék Kk 654+ kg kg
% % i

V) =St-510+4 0+ [ o545V, by

. .2 o o
H 208+ -Dijks K es-sk [edz

.-~1. ° NIA o~1:. (25)
—kyes+DI— Dest-9) +ko(—kp—e9)+k (— ki I HO0)
o 7p N
ALk
A

Rearranging (25) yields:
2

VIO =—(cheH)s +5{G—ar+1ky)eHA-+h - e
ﬂ@«)je(r:)d:}+5{—§da§woyd}+fx; DY (26)
D

° o .
A

o ke (ki j BB - kg—e9)
% % %

For V(t)<0, the updated laws of the adaptive PID

controller gains can be written as:

kp =7pe(t);, ki = ;jdé)dé Ka =74 é(t);

The time evolution of the estimated uncertainty Dgg () is

27

chosen as:

Dest(t)=yp S
Substituting (27) and (28) into (26) yields:

(28)
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L] 02 L[] L]
VO =—k+ort)s +s{¢h —at+l—g)eHA +4 bk e

. (29)
%—K)I SISty —aYy DY}

For V(t) <0, the following conditions must be satisfied:

ke 24 —a+l, kp=24+4,-b, ki24, (30)
Substituting (30) into (29) yields
L] .2 L] L] L]
V(O =k+a+D)s +st-yy—ay;—byg }
2 31

+a‘§’d +b|yd|}

From the above analysis the global asymptotic stability is

guaranteed since V(t) <0. From (6), (7), (8) and (28), the
total proposed robust adaptive controller is expressed as:

) = Uoft) + )= (- et) ki [e©)02—ks 0]
Cc C

V(O <—(k+a)s —éFd

(32)
+[ks() - 7psO1}

where the adaptive gains of PID term are defined in (27).
The block diagram of the proposed control approach is
depicted in Fig. 1.

Adaptive
PID
(0.7

lpp

Uncertain
System

Fig. 1. Block diagram of adaptive PID second order sliding mode control

IV. SIMULATION RESULTS

The proposed approach was tested for the speed control
of the DC motor shown in Fig. 2 to validate the feasibility
and effectiveness of the presented control algorithm.

Damping B

Inertia
load J

Torque (o]
Load

Fig. 2. DC motor model
The dynamics of DC motor are given by:

Wt) = —aw(t) —bw(t) + cu(t)+ D(t) (33)
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where w represents speed, 5 (B, Ra |, b [ BRatkoki | and
1L, i,

k

c=—1

. u(t) = E, represents the motor armature voltage,
a

R,=16Q, L,=01H
resistance and

J=0.IN.m/rad/s* is
B=0.5N.m/rad /s

friction, k; =0.1N.m/ A represents the torque constant and

represent the armature coil

inductance, respectively,
the

represents

moment of inertia,

coefficient of wviscous

Kp =0.1V /rad./s. represents the back emf constant. All
simulations are carried out using MATLAB R2009b.

In order to show the effectiveness and robustness of the
proposed approach, large severe uncertainties D(t) are
occurred which contains:

1. A step external load disturbance torque of SN.m is
suddenly applied at the motor shaft at t=1.0 s.
and is shown in Fig. 3.

AR L LA

External load disturhance tor

Time (sec.)
Fig. 3. External load disturbance torque
2. An unpredicted variation of the armature resistance

R, and coefficient of viscous friction B occurred
at t=1.0 s. The abrupt changes of R, and B are

shown in Fig. 4.

%

Armatuge resistnc

Time (sec.)

(a) Armature coil resistance

=

I

Coefficient of viscoys friction _

I I I I I I I I
04 06 08 1 12 14 16 18 2
Time (sec.)

(b) Coefficient of viscous friction

Fig. 4. Variation of physical parameters
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Simulations are performed in the case of set-point 0
tracking in which the command desired motor speed is set .
equal to 500rpm. For comparison, conventional PID

_ 5000
controller and conventional sliding mode control (CSMC) =
are used. 2

The parameters of the proposed APID2SMC are set as: S
a=50, 4 =2, =1, k=20, yp=10, y, =05, S
7; =0.08 and y4 =0.01. iy

Fig. 5 shows the DC motor speed response profile. The ”
time history of the sliding surface s(t) for CSMC is 00 w W 2 0 0 0

Emore

depicted in Fig. 6. The phase portrait trajectory for CSMC is
shown in Fig. 7. The time history of the sliding surface s(t) Fig. 7. Phase plane of CSMC

for APID2SMC is depicted in Fig. 8. The phase portrait
trajectory for APID2SMC is shown in Fig. 9. The trajectory

2
x

~
=

of the adaptive proportional gain K p, adaptive integral gain

ki and adaptive derivative gain kg defined in (27) for
APID2SMC is shown in Fig. 10.

sliding surface
= =
;

o
T

600 T T T T T T T T T
Desired s
APID2SMC v
_ 5 L L L L L L L L L
o0 . . - 4 0 02 04 06 08 1 12 14 16 18 2
) - Time (sec.)
Ly 1 Fig. 8. Trajectory of S(t) of APID2SMC
% CSMC
3 2000
g /) —Desred ]
b i PIN —
§ (i —clstc 200
aor If PID —— APD2SMC 2
I 3
100y A & -1000F
i :
/ = 200F
ot I I I r I I 1 I I -
0 02 04 06 08 1 1.2 14 18 18 2
Tme sec) g 0 5 0 m 0 %
Fig. 5. Motor speed response slding suace s{)
0 Fig. 9. Phase plane of CSMC
1400
=5 1200} 1
= o 1000t 1
w g
< s
= £ a0 :
= b=
g
a
o 600} 1
2
3
5 | | | | | | | | | < 400} i
0 02 04 06 08 1 12 14 16 18 2
Time (sec.)
200 1
Fig. 6. Trajectory of S(t) of CSMC
% 0z o4 06 08 1 12 14 16 18 2
Time (sec.)
A
a) Proportional gain k p
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109 T T T T T T T T T

Adaptive integral gain

99 L L L L L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (sec.)

A

b) Integral gain Kj

180

Adaptive derivative gain

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (sec.)

A

(C) Derivative gain K ¢
Fig. 10. Trajectory of adaptive gains of APID2SMC

From the simulation results, it is concluded that the
proposed approach (APID2SMC) showed superior
performance. It is obvious that CSMC suffers from the
chattering phenomenon; however, the proposed controller
can eliminate the chattering phenomenon and yields
favorable tracking response. The proposed approach
provides perfect tracking under highly severe uncertainties
and external disturbances. The proposed control law shows
much less error than CSMC and PID control systems when
comparing the results. Table I shows performance indices
computed for each of the different controllers. The
performance indices are integral of absolute error (IAE) and
integral time multiplied absolute error (ITAE) given by:

IAE = [le®ldt,  ITAE = [tfect)ct (34)

Table I Performance indices of different controllers

Algorithm IAE x10° ITAE x10°
PID 121.9 165.9
CSMC 6.419 7.713
APIDSMC 3.669 3.294

ISBN: 978-988-14047-2-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

V. CONCLUSION

The presented paper has presented an adaptive PID
continuous second order sliding mode control methodology
(APID2SMC) with PID sliding surface to achieve system
robustness against parameter uncertainty and external load
disturbance. In this approach, an adaptive PID controller
with parameters being updated online replaces the
equivalent control term and the discontinuous term is
replaced by a continuous PD control in terms of sliding
surface dynamics.

The proposed control algorithm has some features such as
a priori knowledge of the bounds of uncertainties is not
required and the chattering phenomenon is eliminated
without deteriorating the system robustness. The closed-
loop system is globally stable in the Lyapunov sense and the
system output can track the desired output asymptotically in
the presence modeling uncertainties and disturbances.
Simulation results have showed that the performance of the
proposed controller is better than the conventional
approaches and has superior tracking performance with
robust characteristics to conventional methods.
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