
 

 
Abstract—This paper presents a robust control algorithm based 

on adaptive proportional-integral-derivative (PID) controller and 
sliding mode control (SMC) approach. In this paper, the drawbacks 
of SMC are compensated by adopting an adaptive PID continuous 
second order sliding mode control approach (APID2SMC) with 
PID sliding surface. The stability of the system is guaranteed in the 
sense of Lyapunov theorem. Numerical simulations using the 
dynamic model of DC motor with modeling uncertainties show 
that the proposed approach provides robustness for trajectory 
tracking performance under the occurrence of uncertainties. These 
simulation results compared to the results of conventional sliding 
mode control (CSMC) and PID control approaches indicate that 
the proposed method yields superior performance than the other 
controllers. 
 

Index Terms— robust control, second order sliding mode 
control 
 

I. INTRODUCTION 

LIDIN mode control (SMC) is one of the effective 
nonlinear robust control approaches since it provides 

system dynamics with an invariance property to 
uncertainties once the system dynamics are controlled in the 
sliding mode [4], [7]–[8], [11]–[12]. Under certain 
conditions, the SMC is robust with respect to system 
perturbation and external disturbance [4], [14]. However, 
this control strategy produces some drawbacks associated 
with large control chattering that may wear coupled 
mechanisms and excite undesirable high-frequency 
dynamics. Moreover, a priori knowledge of the upper 
bounds of the norm of the perturbation vector is required to 
obtain robustness and convergence. In order to overcome 
the drawbacks of SMC, the problem of perturbation 
estimation was investigated in [1] for a particular class of 
nonlinear uncertain systems. However, these problems 
remained mainly unsolved [9].    

Several methods of chattering reduction have been 
reported. One approach [5] places a boundary layer around 
the switching surface such that the relay control is replaced 
by a saturation function. Another method [13] replaces a 
max–min-type control by a unit vector function. These 
approaches, however, provide no guarantee of convergence 
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to the sliding mode and involve a tradeoff between 
chattering and robustness. In [6], an asymptotic observer in 
the control scheme can eliminate chattering despite the 
discontinuous control law. Both the boundary layer 
approach and the observer design assume that the un-
modeled dynamics are completely unknown. In [2], the 
authors use the integral sliding method to overcome the 
drawback of chattering phenomenon. The authors in [10] 
attempted to reduce the well-known chattering problem in 
classical sliding mode control by presenting an innovative 
approach to adaptive fuzzy sliding mode control for a class 
of single input single output continuous nonlinear systems 
with unknown dynamics and bounded disturbances. In [14], 
a chattering free adaptive sliding mode controller is 
proposed for stabilizing a class of multi-input multi-output 
(MIMO) systems affected by both matched and mismatched 
types of uncertainties. 

This paper discusses the design of a robust adaptive PID 
continuous second order sliding controller (APID2SMC) 
with PID sliding surface to achieve system robustness 
against parameter uncertainty, external load disturbance, 
and nonlinearities. In this approach, different from the 
second order sliding mode control presented in [3], an 
adaptive PID controller with on line tuned parameters 
replaces the equivalent control term which is not used 
because it needs exact full system dynamics knowledge and 
the discontinuous term is replaced by a PD control in terms 
of sliding surface dynamics. The proposed approach has 
some features such as a priori knowledge of the bounds of 
uncertainties is not required and the chattering phenomenon 
is eliminated without deteriorating the system robustness. 
The stability of the system is guaranteed in the sense of the 
Lyapunov stability theorem. 

The proposed control algorithm is applied to a speed 
control of DC motor through simulations. The proposed 
approach is compared to the existing conventional 
controllers. The simulation results indicate that the control 
performance of the proposed control strategy is satisfactory 
and better than those of the existing conventional 
controllers. The remainder of this paper is organized as 
follows: section II presents the proposed adaptive PID 
second order sliding mode control. Section III presents the 
stability of the system in the sense of Lyapunov stability 
theorem. Section IV presents the simulation results, and 
section V summarizes the conclusions and contributions of 
the work 
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II. ADAPTIVE PID SECOND ORDER SLIDING MODE 

CONTROL 

The main objective in this paper is to adopt an adaptive 
PID-based second order sliding mode control approach 
(APID2SMC) in which: (i) the equivalent control term in 
[3] is replaced by an on line tuned adaptive PID controller 
which results in more robustness, fast dynamic response and 
good steady state accuracy. (ii) the discontinuous control in 
[3] is replaced by a continuous proportional derivative (PD) 
controller in terms of sliding surface dynamics which 
completely eliminates the requirement of a priori knowledge 
of the bounds of uncertainties and the chattering effects. 

The dynamics of a single-input linear uncertain plant can 
be written as [3]:             

    )()()()()( tDtuctybtyaty 


                          (1) 

where )(ty  is the output, )(tu  is the control input and )(td  

represents the disturbances and un-modeled dynamics. a , 
b  and c  are plant parameters. In general, the system 
parameters involve a nominal part and some variations, 
therefore, in the presence of the model uncertainties and 
external disturbances, (1) can be written as follows:                                                                         

)()()(

)()()()()(

tDtucc

tybbtyaaty






                         

(2) 

It is assumed that all uncertain elements can be lumped as 
follows: 

)()()()()( tDtuctybtyatD 


                           (3) 

The dynamics of the model is written as:                     

)()()()()( tDtuctybtyaty 


                             (4) 

The second order sliding PID surface in the space of 
tracking error can be defined as [3]:

                        



 detetetsts )()()()()( 21

             

(5) 

where )()()( tytyte d  is the tracking error, in which 

)(tyd  is the desired output. 1 , 2  and   are positive 

constants.  
The tracking control problem can be achieved by keeping 
the system trajectory on the sliding surface 0)( ts . For 

this purpose, the proposed control algorithm is chosen as: 

 )()(
1

)( tutu
c

tu aPID 
                               

                (6) 

where )(tuPID  and )(tua  are the adaptive PID control with 

online tuned gains and the continuous PD control, 
respectively.  
The adaptive PID control law )(tuPID  can be chosen as:
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(7) 

where pk
^

, ik
^

 and dk
^

 are the adaptive proportional, 

integral and derivative gains to be tuned online. 
The continuous proportional derivative (PD) control law, 

)(tua , can be chosen as: 

      
)()()( tDtsktu esta 



                            
             (8) 

where k  is a positive constant which is a design parameter 

and )(tDest  is the estimated perturbation. 

III. LYAPUNOV STABILITY ANALYSIS 

Lyapunov stability analysis is the most popular approach 
to prove and evaluate the stable convergence property of 
sliding mode control. Here, Lyapunov stability approach is 
employed to investigate the stability property of the 
proposed controller. Lyapunov function can be chosen as: 
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where D , p , d  and i  are positive constants which are 

design parameters and 
~
D  is the lumped uncertainty 

estimation error and is defined as follows [9]: 
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~
tDtDtD est 

          
                                (10) 

~

pk , 
~

dk  and 
~

ik are the deviations between the adaptive PID 

gains and initial gains and are defined as: 

iiidddppp kkkkkkkkk 
^~^~^~

,,

                  

(11) 

where pk , ik  and dk  are the initial proportional, integral 

and derivative gains 
The derivative of Lyapunov function is:
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Take the derivative of surface in (5) with respect to time and 
use (4), then 
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Substituting (13) into (12) yields 

ii
i

dd
d

pp
pD

d

kkkkkkDD

yDtucybyaseessstV








~~~~~~~~

21

1111

})({)(





      

(14) 

By substituting (7) and (8) into (6), the proposed controller 
)(tu  is chosen as: 
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(15) 

Substituting (15) into (14) yields: 
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Substituting dyey   and dyey


  into (16) yields 
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Rearranging (17) gives: 
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Differentiating (10) and (11) and substituting in (18) yields: 

ii
i

dd
d

pp
p

est

D
destdi

pdd

kkkkkk

DDyDDskekdek

ekybyaebeasssstV














^~^~^~

~^^

^

21

111

1
})(

)()({)(








      

(19) 

Using (10), (19) can be written as: 
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Rearranging (20) gives: 
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Using (11), (21) can be manipulated as: 
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From (5), (23) can be rewritten as: 
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Rearranging (25) yields: 

)
1

()(
1

()
1

(

)
1

(}{})()(

)()1{()1()(

^~^~^~

~

2

211

2
























sekkdeskksekk

sDDybyaysdek

ekbekassktV

d

d
di

i
ip

p
p

est

D
dddi

pd











       

(26) 

For 0)( 


tV , the updated laws of the adaptive PID 

controller gains can be written as: 
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The time evolution of the estimated uncertainty )(tDest  is 

chosen as:  

          


 stD Dest )(                                                 (28) 

Substituting (27) and (28) into (26) yields: 
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For 0)( 


tV , the following conditions must be satisfied: 

        2211 ,,1   ipd kbkak          (30)       

Substituting (30) into (29) yields 
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From the above analysis the global asymptotic stability is 

guaranteed since 0)( 


tV . From (6), (7), (8) and (28), the 

total proposed robust adaptive controller is expressed as: 
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where the adaptive gains of PID term are defined in (27). 
The block diagram of the proposed control approach is 
depicted in Fig. 1. 

 
Fig. 1. Block diagram of adaptive PID second order sliding mode control 

IV. SIMULATION RESULTS 

The proposed approach was tested for the speed control 
of the DC motor shown in Fig. 2 to validate the feasibility 
and effectiveness of the presented control algorithm. 

 
Fig. 2. DC motor model 

The dynamics of DC motor are given by: 

)()()()()( tDtuctwbtwatw 


                                  (33) 

where w  represents speed, 
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c  . aEtu )(  represents the motor armature voltage, 

 6.1aR , HLa 1.0  represent the armature coil 

resistance and inductance, respectively, 
2//.1.0 sradmNJ   is the moment of inertia, 

sradmNB //.5.0  represents coefficient of viscous 

friction, AmNkt /.1.0  represents the torque constant and 

././1.0 sradVkb   represents the back emf constant. All 

simulations are carried out using MATLAB R2009b. 
In order to show the effectiveness and robustness of the 

proposed approach, large severe uncertainties )(tD  are 

occurred which contains:     
1. A step external load disturbance torque of mN .5  is 

suddenly applied at the motor shaft at 0.1t  s. 
and is shown in Fig. 3. 
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Fig. 3. External load disturbance torque  

2. An unpredicted variation of the armature resistance 

aR  and coefficient of viscous friction B occurred 

at 0.1t  s. The abrupt changes of aR  and B  are 

shown in Fig. 4.  
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     (a)  Armature coil resistance 
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                             (b) Coefficient of viscous friction     

                   Fig. 4. Variation of physical parameters 
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Simulations are performed in the case of set-point 
tracking in which the command desired motor speed is set 
equal to rpm500 . For comparison, conventional PID 

controller and conventional sliding mode control (CSMC) 
are used.  

The parameters of the proposed APID2SMC are set as: 
50 , 21  , 12  , 20k , 10D , 5.0p , 

08.0i  and 01.0d .  

Fig. 5 shows the DC motor speed response profile. The 
time history of the sliding surface )(ts  for CSMC is 

depicted in Fig. 6. The phase portrait trajectory for CSMC is 
shown in Fig. 7. The time history of the sliding surface )(ts  

for APID2SMC is depicted in Fig. 8. The phase portrait 
trajectory for APID2SMC is shown in Fig. 9. The trajectory 

of the adaptive proportional gain pk
^

, adaptive integral gain 

ik
^

 and adaptive derivative gain dk
^

 defined in (27) for 
APID2SMC is shown in Fig. 10. 

 

 
Fig. 5. Motor speed response 
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Fig. 6. Trajectory of )(ts of CSMC 
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Fig. 7. Phase plane of CSMC 
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Fig. 8. Trajectory of )(ts of APID2SMC 
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Fig. 9. Phase plane of CSMC 
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a) Proportional gain pk
^
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b) Integral gain ik
^
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(c) Derivative gain dk
^

 

Fig. 10. Trajectory of adaptive gains
 
of APID2SMC 

From the simulation results, it is concluded that the 
proposed approach (APID2SMC) showed superior 
performance. It is obvious that CSMC suffers from the 
chattering phenomenon; however, the proposed controller 
can eliminate the chattering phenomenon and yields 
favorable tracking response. The proposed approach 
provides perfect tracking under highly severe uncertainties 
and external disturbances. The proposed control law shows 
much less error than CSMC and PID control systems when 
comparing the results. Table I shows performance indices 
computed for each of the different controllers. The 
performance indices are integral of absolute error (IAE) and 
integral time multiplied absolute error (ITAE) given by: 

       

  dttetITAEdtteIAE )(,)(              (34) 

 
Table I Performance indices of different controllers 

Algorithm 310IAE  
310ITAE  

PID 121.9 165.9 

CSMC 6.419 7.713 

APIDSMC 3.669 3.294 

 

V. CONCLUSION 

The presented paper has presented an adaptive PID 
continuous second order sliding mode control methodology 
(APID2SMC) with PID sliding surface to achieve system 
robustness against parameter uncertainty and external load 
disturbance. In this approach, an adaptive PID controller 
with parameters being updated online replaces the 
equivalent control term and the discontinuous term is 
replaced by a continuous PD control in terms of sliding 
surface dynamics. 

The proposed control algorithm has some features such as 
a priori knowledge of the bounds of uncertainties is not 
required and the chattering phenomenon is eliminated 
without deteriorating the system robustness. The closed-
loop system is globally stable in the Lyapunov sense and the 
system output can track the desired output asymptotically in 
the presence modeling uncertainties and disturbances. 
Simulation results have showed that the performance of the 
proposed controller is better than the conventional 
approaches and has superior tracking performance with 
robust characteristics to conventional methods.  
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