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Measuring Systemic Risk: Vine Copula-
GARCH Model

Kuan-Heng Chen and Khaldoun Khashanah

Abstract— We analyze each U.S. Equity sector’s risk
contribution AVaR, the difference between the Value-at-Risk of
a sector and the Value-at-Risk of the system (S&P 500 Index),
by using vine Copula-based ARMA-GARCH (1, 1) modeling.
Vine copula modeling not only has the advantage of extending
to higher dimensions easily, but also provides a more flexible
measure to capture an asymmetric dependence among assets.
We investigate systemic risk in 10 S&P 500 sector indices in the
U.S. stock market by forecasting one-day ahead Copula VaR
and Copula AVaR during the 2008 financial subprime crisis.
Our evidence reveals vine Copula-based ARMA-GARCH (1, 1)
is the appropriate model to forecast and analyze systemic risk.

Index Terms—Copula, Time Series, GARCH, Systemic Risk,
VaR

I. INTRODUCTION

he definition of systemic risk from the Report to G20
Finance Ministers and Governors agreed upon among the
International Monetary Fund (IMF), Bank for International
Settlements (BIS) and Financial Stability Board (FSB) [3]
that is “(i) caused by an impairment of all or parts of the
financial system and (ii) has the potential to have serious
negative consequences for the real economy”. Furthermore,
“G-20 members consider an institution, market or instrument
as systemic if its failure or malfunction causes widespread
distress, either as a direct impact or as a trigger for broader
contagion.” A common factor in the various definitions of
systemic risk is that a trigger event causes a chain of bad
economic consequences, referred to as a “domino effect”.
Given the definition of systemic risk quoted above,
measuring systemic risk is done by estimating the probability
of failure of an institute that is the cause of distress for the
financial system. Therefore, we only consider the ACoVaR
methodology proposed by Adrian and Brunnermeier [1], the
difference between the VaR that the institution adds to the
entire system conditional on the distress of a particular
institution and the unconditional VaR of the financial system.
Because CoVaR method does not take the dependence
structure of variables into account, not only did Girardi and
Ergun [7] modify the CoVaR methodology by using the
dynamic conditional correlation GARCH, but Hakwa [8] and
Hakwa et al. [9] also modified the CoVaR methodology
based on bivariate copula modeling. We extend their concepts
and present vine Copula-based ARMA-GARCH (1, 1) VaR
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measure into a high dimensional analysis in systemic risk.

Sklar [21] introduced the copula, which describes the
dependence structure between variables. Patton [16] defined
the conditional version of Sklar’s theorem, which extends the
copula applications to the time series analysis. In addition,
Joe [11] was the first research to introduce a construction of
multivariate distribution based on pair-copula construction
(PCC), while Aas et al. [13] were the first to recognize that
the pair-copula construction (PCC) principal can be used with
arbitrary pair-copulas, referred to as the graphical structure of
R-vines. Furthermore, Dissmann et al. [6] developed an
automated algorithm of jointly searching for an appropriate
R-vines tree structures, the pair-copula families and their
parameters. Accordingly, a high dimensional joint
distribution can be decomposed to bivariate and conditional
bivariate copulas arranged together according to the graphical
structure of a regular vine. Besides, Rockinger and Jondeau
[17] was the first to introduce the copula-based GARCH
modeling. Afterwards, Huang et al. [10] estimated the
portfolio’s VaR by using the copula-based GARCH model,
and Lee and Long [14] concluded that copula-based GARCH
models outperform the dynamic conditional correlation
model, the varying correlation model and the BEKK model.
Moreover, Reboredo and Ugolini [18] measured CoVaR in
European sovereign debts based on Gaussian and Student’s t
copula-based TGARCH model.

In this paper, we present an application of the estimation
of systemic risk in terms of the Copula AVaR/AES by using
vine Copula-based ARMA-GARCH (1, 1) model, and it
provides the important conclusion that it is a real-time and
efficient tool to analyze systemic risk.

This paper has four sections. The first section briefly
introduces existing research regarding systemic risk. The
second section describes the definition of the Copula
AVaR/AES, and outlines the methodology of vine Copula-
based GARCH (1, 1) modeling. The third section describes
the data and explains the empirical results of Copula
AVaR/AES. The fourth section concludes our findings.

II. METHODOLOGY

A. Risk Methodology

The definition of Value-at-Risk (VaR) is that the maximum
loss at most is (1 — a) probability over a pre-set horizon
[19]. People usually determines a as 95%, 99%, or 99.9% to
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be their confidence level. Adrian and Brunnermeier [1]
defined ACoVaR as the difference between the VaR if the
institution is added to the system conditional on the distress
of a particular institution and the unconditional VaR of the
system. In our paper, we modified the concept of CoVaR [1]
[8] [9]. We use the Copula-based ARMA-GARCH (1, 1)
methodology to obtain the VaR from each sector, named

Copula VaR. We denote AVaRifé, the sector i's risk
contribution to the system j (S&P 500 index) at the

confidence level a, by
Copula AVaR'”/ = Copula VaR:_, — CopulaVaR]_
The positive AVaR

receiver from the system while the negative AVaR;
interprets the sector is the risk provider to the system. In
addition, the methodology can be easily extended from VaR
to expected shortfall (ES).

B. Univariate ARMA-GARCH Model

Engle is the first researcher to introduce the ARCH model,
which deals with the volatility clustering, usually referred to
as conditional heteroskedasticity. Bollerslev [4] extended the
ARCH model to the generalized ARCH (GARCH) model.
We employ ARMA (p, ¢)-GARCH (1, 1) with the Student’s
t distributed innovations for the marginal to account for the
time-varying volatility, and ARMA (p, ¢)-GARCH (1, 1)
with Student’s ¢ distributed innovation can then be written as

T = Ug + Z QT + Z HjEt—j + €
i=1 =1

€t = O¢Zy,
0f = Ve + a0l + Brefy

where 1; is the log return, g, is the drift term, €, is the error
term, and the innovation term z, is Student’s ¢ distribution
with v>2 degrees of freedom.

In addition, an overwhelming feature of Copula-based
ARMA-GARCH model is the ease with which the correlated
random variables can be flexible and easily estimated.

C. Sklar’s theory

Sklar’s Theorem [21] states that given random
variables Xy, X,,...,X, with continuous distribution
functions Fj, F,, ..., E, and joint distribution function H, and
there exists a unique copula C such that for all x =
(xq, %2, ., Xp) ER™

H(X) = C(Fl(xl)' FZ(XZ)' R Fn(xn))
If the joint distribution function is n-times differentiable,
then taking the n' cross-partial derivative of the equation:
n

H(x)

presents the sector is the rlsk
l-’]

f(xlleI ""xn) =

0xq ...0xy,

o -
ek P GICVRACH) ];[fi(xi)

1..

= (R Cxy), o) FolCtn) ﬂfl(xl

where u; is the probability 1ntegral transform of x;.

For the purpose of estimating the VaR or ES based on time
series data, Patton [16] defined the conditional version of
Sklar’s theorem. Let F;, and F,, be the continuous
conditional distriubtions of X;|F;_; and X,|F;_;, given the
conditioning set F,_;, and let H, be the joint conditional
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bivariate distribution of (X;, X,|F;_;). Then, there exists a
unique conditional copula C; such that
Hy (g, 25| Feo1) = Co(Fre (g [Feoq), Fo e (o | Feo1) | Feor)

D. Parametric Copulas
Joe [12] and Nelsen [15] gave comprehensive copula
definitions for each family.
(1) The bivariate Gaussian copula is defined as:
C s, uz;p) = By (@7 (w), P71 (1)
where @, is the bivariate joint normal distribution with linear
correlation coefficient p and @ is the standard normal
marginal distribution.
(2) The bivariate student’s ¢ copula is defined by the
following:
Cur,uz; p,v) = o (57 (wr), 657 (1))
where p is the linear correlation coefficient and v is the
degree of freedom.
(3) The Clayton generator is given by ¢(u) = u=°
copula is defined by

1
C(uy,uy;0) = (ur® +uz% — 1)78, with 6 € (0, 0)

(4) The Gumbel generator is given by @(u) = (— Inu)?,
and the bivariate Gumbel copula is given by

1

C(uy,uy; 0) = exp(—[(— Inuy)? + (— In u2)9]§>,with 6
€ [1, )

(5) The Frank generator is given by ¢ (u) = ln(

—1,its

) and
the bivariate Frank copula is defined by

(6704 = 1)(e - 1)),

e ?—1
with 8 € (—o0,0) U (0, )
(6) The Joe generator is (u) =u=%—1,
copula is given by

1
C(uq,uy;0) = —Elog (1 +
and the Joe

Clus ) =1 - (7 + 150 1053,
with 8 € [1, )
(7) The BBI1 (Clayton-Gumbel) copula is given by
1 -1
Clup,uz;6,8) = (L+ [ ™% = D% + (7% = 1)°]9) 7,
with 8 € (0,0) N § € [1,0)
(8) The BB6 (Joe-Gumbel) copula is
C(ul,uz; 9, 6) =1- (1

— exp(-[(-lo g(1 - T"))’

+ (= log(1 -m°))°J51)@
with 8 € [1,0) N § € [1,0)
(9) The BB7 (Joe-Clayton) copula is given by
Clus,up6,8) =1-(1—[A-H) P+ (1 -5
11
—1]73)8,
with 6 € [1,0) N § € [0, 00)
(10) The BB8 (Frank-Joe) copula is

1
C(ul,u2;9,5) 25(1— [1 9(1

T1-(1-6)°
— (1= 6u?) (1- (1= 5u))FP),
with 8 € [1,0) N § € (0,1]
E. Vine Copulas

Even though it is simple to generate multivariate
Archimedean copulas, they are limited in that there are only
one or two parameters to capture the dependence structure.
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Vine copula method allows a joint distribution to be built
from bivariate and conditional bivariate copulas arranged
together according to the graphical structure of a regular vine,
which is a more flexible measure to capture the dependence
structure among assets. It is well known that any multivariate
density function can be decomposed as
[, x0) = Q) - fzlxg) - f (sl x3) -

f(xnlxli e xn—l)

Moreover, the conditional densities can be written as
copula functions. For instance, the first and second
conditional density can be decomposed as

f(xzlxy) = C1,2(F1(x1)'F2(x2)) *f2(x2),
fOxslxg, x3) = €231 (F2|1(x2|x1), F3|1(x3|x1)) * f3(x3lxq)

=C2311 (F2|1(x2 |x1), F3|1(x3 |x1))

"C13 (F1(x1), F3(x3)) - f3(x3)
After rearranging the terms, the three dimensional joint
density can be written as

f(x1,%2,%3) = €231 (F2|1(x2|x1), F3|1(x3|x1))

"C1,2 (F1(x1), F5(x3))
"C13 (F1(x1), F3(x3)) - f1(x1) - f2(x2)
" f3(x3)

Bedford and Cooke [2] introduced canonical vine copulas,
in which one variable plays a pivotal role. The summary of
vine copulas is given by Kurowicka and Joe [13]. The general
n-dimensional canonical vine copula can be written as

c(xq, s Xp)
n—-1 n—i

= 1_[ 1_[ Ciitjin.ima (FOG1X, v, Xi21), F(Xia 120, s Xi21))

i=1 j=1

Similarly, D-vines are also constructed by choosing a
specific order for the variables. The general n-dimensional
D-vine copula can be written as

(X1, vy Xy)
n-1 n—i

= H l_[ G i+ 1, imt (F (16010 w0 Ximn)s F (X1 X1 o0 Xpio1))

i=1 j=1

Dissmann et al. [6] proposed that the automated algorithm
involves searching for an appropriate R-vine tree structure,
the pair-copula families, and the parameter values of the
chosen pair-copula families, which is summarized in Table 1.

TABLEI
SEQUENTIAL METHOD TO SELECT AN R-VINE MODEL HE COEFFICIENTS OF
TAIL DEPENDENCY

Algorithm. Sequential method to select an R-Vine model

1. Calculate the empirical Kendall’s tau for all
possible variable pairs.

2. Select the tree that maximizes the sum of absolute
values of Kendall’s taus.

3. Select a copula for each pair and fit the
corresponding parameters.

4. Transform the observations using the copula and
parameters from Step 3. To obtain the
transformed values.

5. Use transformed observations to calculate
empirical Kendall’s taus for all possible pairs.

6. Proceed with Step 2. Repeat until the R-Vine is
fully specified.

F. Tail dependence

Tail dependence looks at the concordance and
discordance in the tail, or extreme values of u; and u,. It
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concentrates on the upper and lower quadrant tails of the joint
distribution function. Given two random variables u; ~F; and
u,~F, with copula C, the coefficients of tail dependency are
given by [5] [12] [15]
Clu,u
A= Jim PIFG) < ulFyu) < ul = Jim S,
Ay = ull)r{l P[F;(uy) > ulF,(uz) > ul
o 1=-2u+C(u,u)
= lim ——
u-1- 1—u
where C is said to have lower (upper) tail dependency
iff A, #0(Ay #0) . The interpretation of the tail
dependency is that it measures the probability of two random

variables both taking extreme values shown as table 2 [5] [12]
[15].

TABLE II
THE COEFFICIENTS OF TAIL DEPENDENCY

Family Lower tail dependence Upper tail dependence
Gaussian * *
Student's t Ny 1-6 Vvl 1-6
ents 2y (VY A1 I77) 2t (CVV L [T
Clayton 2-% *
Gumbel * 2 _ 2%
Frank * *
Joe * 2 2%
BBI1 (Clayton- 1 1
Gumbel) 2068 2-128
BB6 (Joe- % 1
Gumbel) 2—20%
BB7 (Joe- 1 1
Clayton) 28 2-20
BB8 (Frank- " 2 - 2% if 6
Joe) =1, otherwise 0

Note: * represents that there is no tail dependency.

G. Estimation method

Generally, the two-step separation procedure is called
the inference functions for the margin method (IFM) [12]. It
implies that the joint log-likelihood is simply the sum of
univariate log-likelihoods and the copula log-likelihood
shown is as below.

log f(x) = )" logf,(x) + Lloge(Fy (x,), -, Fa()
i=1

Therefore, it is convenient to use this two-step procedure to
estimate the parameters by maximum log-likelihood, where
marginal distributions and copulas are estimated separately.

III. DATA AND EMPIRICAL FINDINGS

A. Data Representation

We use indices prices instead of other financial
instruments or financial accounting numbers. One of the main
reasons is that an index price could reflect a timely financial
environment in contrast to financial accounting numbers that
are published quarterly. Furthermore, indices can easily be
constructed and tell us which sector contributes more risk to
the entire market. Standard and Poor separates the 500
members in the S&P 500 index into 10 different sector
indices based on the Global Industrial Classification Standard
(GICS). All data is acquired from Bloomberg, sampled at
daily frequency from January 1, 1995 to June 5, 2009. We
separate sample into two parts, the in-sample estimation
period is from January 1, 1995 to December 31, 2007 (3721

WCECS 2015



Proceedings of the World Congress on Engineering and Computer Science 2015 Vol 11
WCECS 2015, October 21-23, 2015, San Francisco, USA

TABLE IV
THE ESTIMATION OF THE IN-SAMPLE PARAMETERS AND STATISTICAL
HYPOTHESIS TESTINGS FOR EACH MARGINAL

observations) and the out-of-sample forecast validation
period is from January 1, 2008 to June 5, 2009 (360
observations). The summary statistics of these indices is

1 2 3 4 5 6 7 8 9 10 11
listed in table 3 as well as the statistical hypothesis testing. ’ S S
The results of Jarque-Bera (J-B) test reject the distributions @, 1466 0716 0776 0727 -L187 0505 -0.809 0030 -0.346 -0.216 -0.079
: -0.631 * -0.064 -0.043 0.296 1.017 0.010 1.135 -0.745 0.860 1.262
of returns are normality, and the results of LM test show that oo T TN TN 03 Goss ¢ 0066 0085 0365 0002
indices’ returns present conditional heteroscedasticity. In @ * o ** 0073 0503 * 0607 0.245 -0.810 -0.697
.. . . . [ * * * * -0.003  0.596 * -0.056 * * -0.024
addition, we assign the identify numbers to each sector. 0, -1458 -0.712 -0.748 -0.747 1208 -0496 0.830 -0.064 0386 0.190 0055
6, 0.599 -0.029 * * -0.329 -1.059 * -1.156 0.733 -0.872 -1.309
0, * * * * -0.564 1.000 * 0.192 -0.056 0.387 -0.002
TABLE III 0, * * * * * 0523 % 0.625 -0.282 0.805 0.725
THE SUMMARY STATISTICS OF THE IN-SAMPLE AND STATISTICAL % 00201 OOBOZ 00?)02 00?)02 00209 (;00?)?)2 00:)“ 00?)03 00?)10 (-)00(())3; 00204
HYPOTHESIS TESTINGS — , 9% 7% 12 Ll 8de Llee  13e SSe lde 80 5%
: - . 07 07 06 06 07 06 06 07 06 07 07
D Sector Mean Sigma = Skew Kurt test test min / Max a 0.9236 0.9434 0.9199 0.9370 0.9350 0.9229 0.8980 0.9362 0.9248 0.9496 0.9288
SSFINL Index  0.041 B 0.0746 0.0561 0.0740 0.0582 0.0609 0.0701 0.0931 0.0585 0.0696 0.0472 0.0692
1 Financials o, L41% 00725 6.0779 1 1 -8.04%/8.39% v 83281 12.799 88798 13.95 7.3847 9.0569 89202 7.6327 8.9985 8.1542 7.4981
SSINFT Ind 0.044 LLH 9862 8777 10240 9589 10265 10362 10645 11018 9899 9725 10675
2 ol o 199% 01825 67752 1 1 -10.01%/16.08%  AIC -19708 -17540 20467 -19165 20515 -20707 -21276 -22011 -19770 -19425 -21325
0
SSCONDlr%c}l,ex 0.030 1:2:: 1 1 1 1 1 1 1 1 1 1 1
3 Comsumer  ,°° 124% -0.1470 82310 1 1 -1033%/847% 3B | | 1 1 . | | 1 | X
Discretionary & test
LM
4 SSEgﬁ;yndex 0'855 139% -0.0889 4.648 1 1 721%/794% ey 0 0 0 00000000
0
5 SSH%E}I‘{CIZE:X 0'843 121% -0.1798 7.0971 1 1 9.17%/7.66%
0
6 Sslllliilzgrilﬁiex 0'839 1.18% -0.2272 74103 1 1 -9.60%/7.21% C. Results for the copula models
0
; SS%];illI;[ilcr;dex 0823 | 12% 04085 9.6084 1 1 -9.00%/848% After the'estlmatllon of each marginal, we consider the set
SSCONS Index - . of standardized residuals from the ARMA-GARCH (1, 1)
8 Consumer 0'833 0.97% -0.2326 9.9050 1 1 -930%/7.59% model and transform them to the set of uniform variables.
0
Staples Table 5 provides the correlation matrix of the transformed
g SSMATRIndex 0029 510, (0356 59286 1 1 -9.12%/6.98% : :
Materials % T : HeBI8% residuals and the result of the Kolmogorov-Smirnov (KS)
SSTELS Index : : :
10 Tolecommunion 0.316 L44% 01004 66741 1 L 10329%/8.03% test. The re.:sult of the Kolmogoroy Smirnov te.st is 0,.and it
tion Services fails to reject the null hypothesis that the distribution of
11 S&P500Index *03® 107% 01355 64383 1 1 7.11%557%  transformed residuals is different from the uniform

%

distribution at the 5% significance level.

B. Results for the marginal models TABLEV
THE PEARSON CORRELATION MATRIX AND KOLMOGOROV-SMIRNOV (KS)

We estimate the parameters of p and q by minimizing TEST FROM THE IN-SAMPLE DATA

Akaike information criterion (AIC) values for possible values D/

: ) - o 2 3 4 5 6 1 8 9 10 11
ranging from zero to five. Table 4 lists the parameters which 1 1 05571 0.7549 0.4038 05928 0.7836 04678 05911 0.6099 05626  0.8564
; s e 2 05571 1 0.6483 02574 0.3833 0.6529 0.2455 02849 0.4191 05132  0.8089
are estimated by minimum AIC values, and the statistical 307549 0.6483 1 03974 0.5692 0.8167 0.3997 0.5564 0.6474 0.5786  0.8699
hypothesis testing for the unit-root based on Augmented 4 04038 0.2574 0.3974 1 0.3945 0.4631 0.4699 0.3987 0.5007 0.3306  0.5255
. . .. 5 05928 0.3833 0.5692 0.3945 1 0.6056 0.4011 0.6595 0.4448 0437  0.6954
Dickey-Fuller (ADF) test. Meanwhile, the statistical 6 0.7836 0.6529 0.8167 0.4631 0.6056 1 0.4579 0.6008 0.7216 0.5716  0.8934
h hesi . f idual based he J B 7 04678 0.2455 03997 0.4699 04011 0.4579 1 0433 04022 03785  0.5048
ypothesis testings for residuals are based on the Jarque-Bera 8 0.5911 0.2849 0.5564 0.3987 0.6595 0.6008 0.433 1 0.5085 0.4254  0.6388
(J-B) test and the LM test. The result shows that the values of 9 0.6099 04191 0.6474 0.5007 0.4448 0.7216 0.4022 0.5085 1 0422 06771
10 05626 0.5132 0.5786 0.3306 0.437 0.5716 0.3785 04254 0.422 1 0.6902

1 in ADF test rejects the null hypothesis of a unit root in a 11 0.8564 0.8089 0.8699 0.5255 0.6954 0.8934 0.5048 0.6388 0.6771 0.6902 1
KStst_ 00 __ 0 0 0 0 0 0 __ 0 0 0

univariate time series. The result shows that using the
Student’s t innovation distribution for the error term is

appropriately fitted to the return data because the degree of
freedom is usually smaller than 15 and the result of Jarque-
Bera test rejects the null hypothesis of normality. Although
the parameter 3 is usually larger than 0.9, which indicates the
conditional volatility is time-dependent, using GARCH (1, 1)
model is appropriate because the result of the LM test shows
no conditional heteroscedasticity in residuals.
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Due to our benchmark using the Student’s t copula, the
parameters are the correlation matrix shown in table 5 and the
degree of freedom 8.0748. Table 6 shows that using vine
copula-based model has a better performance than using the
Student’s t copula-based model based on AIC values, and the
evidence supports that vine copula-based model is an
appropriate method to apply to high-dimensional modeling.

TABLE VI
THE ESTIMATION FOR THE COPULA MODELS FROM THE IN-SAMPLE DATA
Number of parameters  Log-likelihood AIC
t copula 56 17102 -34092
Vine copula 99 17211.33 -34225

The catalogue of pair-copula families includes elliptical
copulas such as Gaussian and Student’s t, single parameter
Archimedean copulas such as Clayton, Frank, and Gumbel,
as well as two parameter families such as BB1, BB6, BB7,
and BBS. All various copulas we implement are in the
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VineCopula library in R [20].

D. Results for the Copula VaR/ES and Copula AVaR/
AES

We empirically examine which sector dominates more risk
contributions on systemic risk with 10000 Monte Carlo
simulations in each time interval using vine Copula-based
ARMA-GARCH (1, 1) modeling. The results of Copula VaR
are not surprising and are shown in figure 1. As seen in figure
2 and figure 3 below, we realize that the financial sector
caused more risk distribution during the subprime crisis from
2008 to 2009, while the consumer staples sector is the major
risk receiver. The results present that this measure is a
simplified and efficient methodology to analyze systemic

risk.
VaR (1-95%) based on Vine-Copula ARMA-GARCH

2.1T Sector 3. Consumer Sector

1. Financial Sector

0.2

02 « T
01/01/09 01/01/09 01/01/09

time time time
4. Energy Sector 5. Health Care Sector 6. Industrial Sector

0.2 0.2

omﬂ%
01/01/09 01/01/09 01/01/09

time time time
7. Utiliies Sector 8. Consumer Staples Sector 9. Materials Sector

-0.2

0.2 0.2
Z Yo
9 0 e
-0.2
01/01/09 01/01/09 01/01/09
time time time

10. Telecomm Sector 11. S&P 500 Index

0.2

0

*  Empirical Returns
Vine-Copula ARMA-GARCH

-0.2

01/01/09
time time
Fig. 1. The one-day ahead Copula VaR for each sector index
Copula A VaR(1-95%) based on Vine-Copula ARMA-GARCH
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Fig. 2. The one-day ahead Copula AVaR
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Copula A ES(1-95%) based on Vine-Copulas ARMA-GARCH
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Fig. 3. The one-day ahead Copula AES

IV. CONCLUSION

The evidence in our paper shows that not only that vine
Copula-based ARMA-GARCH (1, 1) has a better
performance than the Student’s ¢ copula-based ARMA-
GARCH (1, 1) based on AIC values, but also that vine
Copula-based ARMA-GARCH (1, 1) is auseful and efficient
way to estimate systemic risk by using sector indices. In
addition, using vine Copula-based ARMA-GARCH (1, 1)
model to forecast one-day ahead Copula VaR and Copula
AVaR, we develop a real-time and flexible resolution without
lagging financial accounting data. Moreover, the AVaR/AES
provides the information of the risk contribution from each
sectors. This approach is very general and can be tailored to
any underlying country and financial market easily. In further
research, we would like to investigate copula-based modeling
in systemic risk in different financial market.
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