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Abstract—The main objective of this work is to develop
a recursive algorithm for identification in the state-space of
linear stochastic discrete multivariable non-stationary system; a
computational process called MOESP_AOKI_VAR is proposed
and implemented to achieve this. The proposed algorithm is based
on the subspace methods: Multivariable Output-Error State
Space (MOESP), used for computational modelling of systems
and on an AOKI algorithm developed by Masanao Aoki, for
computational modelling of time series that we call the Aoki
algorithm.

Index Terms—MOESP, Markov parameters, non-stationary
system, time series, identification, Aoki.

I. INTRODUCTION

A
n initial study of different kind of systems for iden-

tification, based on the state-space, is performed. Ad-

ditionally, a structure to be used in the problem resolution

of computational modelling for non-stationary noisy linear

systems is proposed. Through this study, non-stationary sys-

tems are treated as a group of invariant models with respect

to the time. It is also considered that the matrix system

AK , BK , CK , DK , presents small changes with respect to the

time. This is translated into continuous and slow changes

within the matrices and it allows for the generation of a

recursive algorithm, which is the main objective of this study.

A linear system is considered as the superposition of its

deterministic and stochastic part. A MOESP_VAR algorithm is

used for modelling the deterministic part, whilst the stochastic

part is modelled by the use of AOKI_VAR algorithm. Finally,

the algorithm is tested by using a benchmark.

II. FOUNDATION

A. Stationary Deterministic Linear System

The representation of the deterministic linear system in state

spaces has the following form:

{

xk+1 = Axk +Buk

yk = Cxk +Duk
(1)

where, xk ∈ Rn is the state vector, uk ∈ Rm is the input

vector and yk ∈ Rl is the output vector. The A,B,C and D

matrices are considered constant for every k instant.
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B. Stationary Noisy Linear System

In order to quantify the uncertainty and external perturba-

tions of the system, vk and wk are added in the state-space

equations. These terms are considered as inputs where non-

control exists:

{

xk+1 = Axk + vk
yk = Cxk + wk

(2)

The pertubation vectors vk ∈ Rn and wk ∈ Rl

are random variables with zero means. The sequences

(vk, k = 0,±1,±2, ...) and (wk, k = 0,±1,±2, ...) are

considered stochastic processes of Gaussian white noise.

Additionally, the stochastic process can be represented by

defining the error vector as ek =

[

wk

vk

]

, with E [ek] =

0 ∀k, and its innovation representation is the following:

{

xk+1 = Axk +Kek
yk = Cxk + ek

(3)

where, ek is a white noise sequence and its covariance matrix

is given by ∆ = E
(

eke
T
k

)

.

When referring to the covariance domain, the Markov

parameters of the system can be represented as:

Λi =







CΠ0C
T +R i = 0

GT
(

AT
)−i−1

CT i < 0
CAi−1G i ≥ 1

(4)

where, G is also presented as G = AΠ0C
T + S, yielding

as result the following:







R = Λ0 − CPCT

Q = P −APAT

S = M −APCT

(5)

The stochastic realization problem consists of finding one

or more models in the state-space through process statistical

data such us covariance. For further information read Caceres,

Angel Fernando Torrico (2005), Tamariz, Annabell (2005) and

Barreto, G. (2002).

C. Non-stationary Deterministic Linear System.

A non-stationary deterministic linear system is represented

by the following state-space equations:

{

xj,k+1 = Aj,kxj,k +Bj,kuj,k

yj,k = Cj,kxj,k +Dj,kuj,k
(6)
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being j ∈ [j0, j0 + n− 1] and k ∈ [k0, k0 + T − 1] , where

j0 is the first interval of experiment, k0 is the first instant of

the experiment, n is the total number of simple experiments

and T ≥ n. Equation (6) can also be expressed as:

yH = OkXH + TkUH (7)

To get detailed information about the process to obtain the

equation (7), consult the matrices yH ,Ok,XH ,Tk y UH on [2].

D. Non-stationary Noisy Linear System

A non-stationary noisy linear system is expressed as fol-

lows:
{

xj,k+1 = Aj,kxj,k +Bj,kuj,k + vj,k
yj,k = Cj,kxj,k +Dj,kuj,k + wj,k

(8)

being j ∈ [j0, j0 + n− 1] and k ∈ [k0, k0 + T − 1] , where

j0 is the first interval of the experiment, k0 is the first instant

of time of the experiment, n is the total number of simple

experiments, T ≥ n and vj,k ∈ Rn and wj,k ∈ Rl are

random variables of null arithmetic mean, and the sequences

(vk, k = 0,±1,±2, ...) and (wk, k = 0,±1,±2, ...) are

non-stationary stochastic processes that are generated by

the non-stationary stochastic system represented by the

state-space equation:
{

xj,k+1 = Aj,kxj,k +Kj,kej,k
yj,k = Cj,kxj,k + ej,k

(9)

where, ek is the white noise stochastic process.

E. Time Variant Identification

The identification algorithm works on the assumption that

time-varying systems can be treated as a set of time-invariant

models for a given time interval. Thus, the identification of

time-varying systems consists of a set of n time-invariant

models which describes the system for the defined experiment.

The following expression relates the input variables to the

state vector in a time variant linear system in thekth moment:

xk = A(k−1)x0 +

k−1
∑

l=0

A(k−l−1)Blul (10)

where, A(n) and A(n) represent the transition matrixes that

satisfy:















A(0) = A0

A(0) = I

A(n) = AnA(n−1) = An . . . A2A1A0

A(n) = AnA
(n−1) = An . . . A2A1

(11)

A set of indices are stated to interpret the identification of

problem parameters; additionally, the set of indices j, k on uj,k

indicates the sample input for instant kth and for system ex-

perimentation range jth (8). Furthermore, j ∈ [j0,j0 + n− 1]
and k ∈ [k0,k0 + T − 1], where j0 is the first range of

experimentation, k0 is the first instant of time, n is the total

number of experiments or tests and T is the time required for

a single experiment.

The problem to be solved is represented by the state-space

model:

[

xj,k+1

yj,k

]

=

[

Ak Bk

Ck Dk

] [

xj,k

uj,k

]

(12)

based on the following output data sequence:

Yj,k =











yj0,k0
yj0,k0+1 · · · yj0,k0+T−1

yj0+1,k0
yj0+1,k0+1 · · · yj0+1,k0+T−1

...
... · · ·

...

yj0+n−1,k0
yj0+n−1,k0+1 · · · yj0+n−1,k0+T−1











(13)

The problem is also based on the input sequence Uj,k for the

same series of experiments and same time interval. The matrix

Yj,k represents the set of (n−1) intervals of experimentation.

It allows to develop general expressions that govern the system

and it also relates the inputs and outputs at a start time k0 and

establishes a correct experimentation interval j, for a discrete

time variant system, which is represented in state space by:

{

xj,k+1 = Akxj,k +Bkuj,k

yj,k = Ckxj,k +Dkuj,k
(14)

for the next instant, the expression is:

{

xj,k+2 = Ak+1xj,k+1 +Bk+1uj,k+1

yj,k+1 = Ck+1xj,k+1 +Dk+1uj,k+1
(15)

plugging in equation (15) into equation (14) yields:

{

xj,k+2 = Ak+1Akxj,k +Ak+1Bkuj,k +Bk+1uj,k+1

yyj,k+1 = Ck+1Akxj,k + Ck+1Bkuj,k +Dk+1uj,k+1

(16)

and this process is repeated successively. Solving equation

(14) for any moment of time k0 ≥ 0, the solution can be

written as:

yj,l =



















Cl,j +Dluj,l + l = 0
ClA(l−1)xj,l+

+
l−1
∑

i=0

ClA
(l−i−1)Biuj,i +Dluj,l l > k0

(17)

Equation (14) can be rewritten in a shorter form by the

extended model:

YH = OkXH + TkUH (18)

1) Determination of the extended model: For an experiment

j, the matrix UH for the stationary case is equal to the

matrix UH from the time-varying case. Data from a single

experiment is assumed. To solve the non-stationary discrete

case is necessary to assume that data is available from a single

experiment.

2) Recursive Algorithm for the deterministic part: A re-

cursive algorithm is applied for time-varying systems that

assumes small variations in a predefined range of operations

in the system matrixes. A recursive scheme is implemented to

systems that vary slowly with time.
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QR Factorization Update:

a.- Let’s assume that the following measurements were

already processed by the algorithm:

[uj0,k0 uj0,k0+1 ... uj0,k0+T−1]
T

and

[yj0,k0 yj0,k0+1 ... yj0,k0+T−1]
T

b.- Being the QR factorization:
[

Rj0,11 0
Rj0,21 Rj0,22

] [

Qj0,1

Qj0,2

]

(19)

where, j0 represents the set of input-output values pro-

cessed in the most recent experiment.

c.- Finally, suppose that during the time interval

[j0, j0 + n− 1] the model in state space is invariant

and equal to:
{

xk+1 = Aj0xk +Bj0uk

yk = Cj0xk +Dj0uk
(20)

It can also be represented in a shorter form by relating

the different data matrices as:

YH = OkXH + Tj0,kUH (21)

3) Recursive algorithm for the stochastic part: See [2] :

F. State-Space Deterministic-Stochastic Modelling of the Non-

stationary System

One way of representing non-stationary discrete multivariate

noisy linear systems, with exogenous time variable inputs in

the state space is:
{

xj,k+1 = Aj,kxj,k +Bj,kuj,k + vj,k
yj,k = Cj,kxj,k +Dj,kuj,k + wj,k

(22)

with

E

[(

vj,k
wj,k

)

(

vTj,s wT
j,s

)

]

=

[

Q S

ST R

]

k = s

0 k 6= s
(23)

A theorem for the decomposition by superposition of noisy

time variant linear systems is proposed as follows:

Theorem 1. By superposition, a variant time noisy linear

model S, in an innovative form given by:

S :

{

xj,k+1 = Aj,kxj,k +Bj,kuj,k +Kj,kej,k
yj,k = Cj,kxj,k +Dj,kuj,k + ej,k

(24)

can be decomposed into the following two subsystems:

Sd :

{

xd
j,k+1 = Aj,kx

d
j,k +Bj,kuj,k

ydj,k = Cj,kx
d
j,k +Dj,kuj,k

(25)

and

Se :

{

xe
j,k+1 = Aj,kx

e
j,k +Kj,kej,k

yej,k = Cj,kx
e
j,k + ej,k

(26)

where, the superscripts d and e refer to the determistic and

the stochastic subsystems Sd and Se respectively and yj,k =

ydj,k + yej,k. The noisy signal state is: xj,k =

[

xd
j,k

xe
j,k

]

where,

A =

[

Ad 0
0 Ae

]

B =

[

Bd

0

]

C =
[

Cd Ce
]

D = Dd, K = Ke

Proof: See [1]

III. MOESP_AOKI_VAR ALGORITHM

The proposed algorithm MOESP_AOKI_VAR collects the

MOESP_VAR proposed in [2], [3] and the MOESP_AOKI

proposed in [1], [2] and the AOKI_VAR in [13], [14] re-

spectively. Therefore, the algorithm MOESP_AOKI_VAR is

as follows:

1) Obtain the Hankel matrices YH and UH

2) Perform the QR factorization:
[

UH

YH

]

=

[

R11 0
R21 R22

] [

Q1

Q2

]

(27)

where, R11 and R22 are invertible square matrices.

3) Compute the SVD of R22 as:

R22 =
[

UH U⊥

H

]

[
∑

n 0
0

∑

2

] [

V T
n

(Vn)
T

]

(28)

4) Solve the equation system:

U
(1)
H AT = U

(2)
H (29)

5) Update: The recursive algorithm shown in section II.E.2

is applied

Thus, obtaining the matrices Ad
j,k, B

d
j,k, C

d
j,k, D

d
j,k, of

ydj,k for each k time instant and j intervals with respect

to the time.

6) Determine the signal generated by the matrices

HA, HM , HC , H, Y−, Y+

Y− =















ȳ1 ȳ2 ȳ3 · · · ¯yN−1

0 ȳ1 ȳ2 · · · ¯yN−2

0 0 ȳ1 · · · ¯yN−3

...
...

... · · ·
...

0 0 . . . ¯yN−k−1 ¯yN−k















Y+ =















ȳ2 ȳ3 ȳ4 · · · ȳN
ȳ3 ȳ4 ȳ5 · · · 0
ȳ4 ȳ5 ȳ6 · · · 0
...

...
... · · ·

...

¯yj+1 ¯yj+2 ¯yj+3 · · · 0















H =
Y+Y

T
−

N
=











Λ1 Λ2 · · · Λk

Λ2 Λ3 · · · Λk+1

...
...

. . .
...

Λj Λj+1 · · · Λj+k










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HA =











Λ2 Λ3 · · · Λk+1

Λ3 Λ4 · · · Λk+2

...
...

. . .
...

Λj+1 Λj+2 · · · Λj+k+1











HM =











Λ1

Λ2

...

Λj











HC =
[

Λ1 Λ2 · · · Λk

]

7) Obtain the SVD for the covariance Hankel matrix

H = U
∑

1/2∑1/2V T

8) Calculate the matrices Ae
j,k, C

e
j,k,K

e
j,k

9) Validate.

IV. EXPERIMENTATION AND RESULTS

The proposed algorithm is initially defined for T intervals

of experimentation thus getting the system matrices identifica-

tion. The presented MOESP_AOKI_VAR is assessed T times

in order to determine T sets of matrices corresponding to each

experiment.

If ∇ represents small increments, Lj is an integer number

for each Ij experimentation interval stated by:

Ij = [kj − Lj∇, kj + Lj∇] (30)

to validate the proposed algorithm a benchmark is imple-

mented [4]. The identification at time instant kj (which

is the middle point of each interval Ij) is determined as

kj+1 = kj + v∇, where v is an integer number, ∇ represents

an increment with respect to the simulation time and it is given

by ∇ = M∇j, where ∇j is the j − th sampling period and

M is an integer number. Lj = 500∀j is defined for this study.

The benchmark system is:

The deterministic part is given by the following matrices

Ak =

[

−0.3 ak
1 −1

]

(31)

where,

ak = −
1

3
−

1

10
sen(

2πk

400
)

and the remaining matrices are consired constants:

Bk =

[

−2 1
1 1

]

; Ck =

[

1 3
1 2

]

(32)

Dk = 0

The system input is randomically changing for each iteration

of the algorithm.

The proposed algorithm presents the following results for

k = 1:

Aj,k =

[

−0.3000 0
0 −0.4040

]

Bj,k =

[

−2 1
1 1

]

Cj,k =

[

1 3
1 2

]

Cj,kBj,k =

[

1 4
0 3

]

Cj,kAj,kBj,k =

[

−0.6121 −1.5121
−0.2081 −1.1081

]

The deterministic-stochastic identification of the system

under noise is realized. The obtained results after running the

first part of the algorithm MOESP_AOKI_VAR are shown:

Ad
j,k =

[

−0.3000 0
−0.0000 −0.4077

]

Bd
j,k =

[

4.1559 3.7636
−3.1924 1.5997

]

Cd
j,k =

[

0.7705 0.6867
0.5137 0.6677

]

Cd
j,kB

d
j,k =

[

1.0098 3.9984
0.0031 3.0014

]

Cd
j,kA

d
j,kB

d
j,k =

[

−0.6478 −1.5118
−0.2308 −1.1086

]

Figure 1 shows the output of the deterministic model

Figure 1. Output of the deterministic subsystem
The results after running the second part of the algorithm

MOESP_AOKI_VAR are:

∆ = [1.6092]

Ae
j,k =

[

−0.2092 −0.7319
0.7319 0.1218

]

Kj,k =

[

−0.2582
1.1257

]

Ce
j,k =

[

−2.7437 1.0369
]
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where, ∆ is the covariance matrix of the noise.

Figure 2 presents the stochastic modeled signal by using the

second part of the algorithm MOESP_AOKI_VAR

Figure 2. Output of the stochastic subsystem
Figure 3 displays the overlapped signals of the deterministic

and stochastic output signals ydj,k and yej,k.

Finally, a verification and validation process of the proposed

combined algorithm MOESP_AOKI_VAR is performed and

Figure 4 shows the results.

The algorithm MOESP_AOKI_VAR describes satisfacto-

rily the noisy signals.

Figure 3. Overlapping signals

Figure 4. Error

V. CONCLUSIONS

A computational procedure is formulated for the identifi-

cation of discrete stochastic multivariate linear systems time

variant. The considered hypothesis is that the variation in

time of the dynamic system is sufficiently slow to guar-

antee the efficiency of the subspace identification MOESP

for a non-stationary noisy linear system. The algorithm

MOESP_AOKI_VAR has its foundation in AOKI and MOESP

algorithms and it is given by the superposition of them. The

obtained results describe that the proposed method guarantee

an apropriate behaviour when modeling this kind of systems.
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