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Data Computational Modelling of Multivariable
Non-Stationary Noisy Linear Systems by
MOESP_AOKI_VAR Algorithm

Johanna B. Tobar and Celso P. Bottura

Abstract—The main objective of this work is to develop
a recursive algorithm for identification in the state-space of
linear stochastic discrete multivariable non-stationary system; a
computational process called MOESP_AOKI_VAR is proposed
and implemented to achieve this. The proposed algorithm is based
on the subspace methods: Multivariable Output-Error State
Space (MOESP), used for computational modelling of systems
and on an AOKI algorithm developed by Masanao Aoki, for
computational modelling of time series that we call the Aoki
algorithm.

Index Terms—MOESP, Markov parameters, non-stationary
system, time series, identification, Aoki.

I. INTRODUCTION

n initial study of different kind of systems for iden-
Atiﬁcation, based on the state-space, is performed. Ad-
ditionally, a structure to be used in the problem resolution
of computational modelling for non-stationary noisy linear
systems is proposed. Through this study, non-stationary sys-
tems are treated as a group of invariant models with respect
to the time. It is also considered that the matrix system
Ak, Bk,Ck, Dk, presents small changes with respect to the
time. This is translated into continuous and slow changes
within the matrices and it allows for the generation of a
recursive algorithm, which is the main objective of this study.
A linear system is considered as the superposition of its
deterministic and stochastic part. A MOESP_VAR algorithm is
used for modelling the deterministic part, whilst the stochastic
part is modelled by the use of AOKI_VAR algorithm. Finally,
the algorithm is tested by using a benchmark.

II. FOUNDATION
A. Stationary Deterministic Linear System

The representation of the deterministic linear system in state
spaces has the following form:

Tp1 = Axy + Buy, 1
Y = Cxy, + Duy,

where, x;, € R" is the state vector, ur € R™ is the input
vector and y;, € R' is the output vector. The A, B,C and D
matrices are considered constant for every k instant.
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B. Stationary Noisy Linear System

In order to quantify the uncertainty and external perturba-
tions of the system, vy and wy are added in the state-space
equations. These terms are considered as inputs where non-
control exists:

Trt1 = Azi + vg @)
yr = Cxy + wy,
The pertubation vectors vy € R"™ and wp € R!

are random variables with zero means. The sequences
(g, k=0,£1,£2,...) and (wg, k=0,£1,£2,...) are
considered stochastic processes of Gaussian white noise.

Additionally, the stochastic process can be represented by
W . _
t with E [eg] =

0 Vk, and its innovation representation is the following:

defining the error vector as e, =

{ Tpy1 = Axy + Key, 3)

yr = Crp + ey

where, ey, is a white noise sequence and its covariance matrix
is given by A= F (ekef).

When referring to the covariance domain, the Markov
parameters of the system can be represented as:

CH()CT + R 1 =0
Ai=S GT (AT TIOT <o )
CA-G i>1

where, G is also presented as G = AIloCT + S, yielding
as result the following:

R=Ay—CPCT
Q=P — APAT (5)
S =M — APCT

The stochastic realization problem consists of finding one
or more models in the state-space through process statistical
data such us covariance. For further information read Caceres,
Angel Fernando Torrico (2005), Tamariz, Annabell (2005) and
Barreto, G. (2002).

C. Non-stationary Deterministic Linear System.

A non-stationary deterministic linear system is represented
by the following state-space equations:

Tikt1 = AjeTjk + Bjrtik ©)
Yik = Cjpik + Djrujk
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being j € [jo,jo+n —1] and k € [ko, ko +T — 1] , where
Jjo is the first interval of experiment, kg is the first instant of
the experiment, n is the total number of simple experiments
and T' > n. Equation (6) can also be expressed as:

yu = O Xy + T U @)

To get detailed information about the process to obtain the
equation (7), consult the matrices yg,0k, X 5,1 y Uy on [2].

D. Non-stationary Noisy Linear System

A non-stationary noisy linear system is expressed as fol-
lows:
{ Tjr1 = AjrTjk + Bjrujr + vk )
Yik = Cjajk + Djrujr + wjk

being j € [jo,j0 +n— 1] and k € [ko, ko +T — 1] , where
Jjo is the first interval of the experiment, kg is the first instant
of time of the experiment, n is the total number of simple
experiments, ' > n and v;; € R"™ and w;; € R! are
random variables of null arithmetic mean, and the sequences
(g, k=0,£1,%£2,...) and (wg,k=0,%£1,4+2,...) are
non-stationary stochastic processes that are generated by
the non-stationary stochastic system represented by the
state-space equation:

Tjk+1 = Aj %k + Kjrejn
Yik = CinTjk + €k

€))

where, ey, is the white noise stochastic process.

E. Time Variant Identification

The identification algorithm works on the assumption that
time-varying systems can be treated as a set of time-invariant
models for a given time interval. Thus, the identification of
time-varying systems consists of a set of n time-invariant
models which describes the system for the defined experiment.

The following expression relates the input variables to the
state vector in a time variant linear system in thek!” moment:

k—1
T = A(k,l).’lﬁo + Z A(k_l_l)Blul
=0

(10)

where, A(n) and A" represent the transition matrixes that
satisfy:

A = Ao

A0 — 1
A(T? = ATLA(n*].) = A?’L “e A2A1A0
A n) — AnA(nil) = An A AgAl

Y

A set of indices are stated to interpret the identification of
problem parameters; additionally, the set of indices j, k on u; j
indicates the sample input for instant £** and for system ex-
perimentation range ;" (8). Furthermore, j € [jo jo +n — 1]
and k € [koko+ T — 1], where jo is the first range of
experimentation, kg is the first instant of time, n is the total
number of experiments or tests and 7" is the time required for
a single experiment.
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The problem to be solved is represented by the state-space
model:

Tikt1 | _ | Ae By Tk (12)
Yj ke Cr Dy sk
based on the following output data sequence:
Yjo,ko Yjo,ko+1 Yjo,ko+T—1
Yjo+1,ko Yjo+1,ko+1 Yjo+1,ko+T—1
Yjr= ) ) )
Yjo+n—1,ko  Yjo+n—1,ko+1

Yjo+n—1,ko+T-1
(13

The problem is also based on the input sequence Uj ;. for the
same series of experiments and same time interval. The matrix
Y r, represents the set of (n—1) intervals of experimentation.
It allows to develop general expressions that govern the system
and it also relates the inputs and outputs at a start time ko and
establishes a correct experimentation interval j, for a discrete
time variant system, which is represented in state space by:

Tj 41 = Apxjp + Brugk (14)
Yik = Cujp + Diuj
for the next instant, the expression is:
Tjht2 = Ak41%5 k11 + Ber1Uj k11 (15)
Yik+1 = Co1Zj k41 + D1 i1

plugging in equation (15) into equation (14) yields:

{ ZTjht2 = A1 Ak + Aps1Bruj ke + Bry1Uj k1

YYjih+1 = Crp1Arxj g + Crp1 Brug g + Dig1ty pq1

(16)

and this process is repeated successively. Solving equation

(14) for any moment of time ky > 0, the solution can be
written as:

CZJ' + Dg’u,j,l + 1=0
ClA-nyzji+
-1
+Z ClA(l_i_l)Biu]ﬂ‘ + Dyujy I > ko

=0

Yji = (17)

Equation (14) can be rewritten in a shorter form by the
extended model:

Yy = O Xg +T.Un (18)

1) Determination of the extended model: For an experiment
7, the matrix Up for the stationary case is equal to the
matrix Uy from the time-varying case. Data from a single
experiment is assumed. To solve the non-stationary discrete
case is necessary to assume that data is available from a single
experiment.

2) Recursive Algorithm for the deterministic part: A re-
cursive algorithm is applied for time-varying systems that
assumes small variations in a predefined range of operations
in the system matrixes. A recursive scheme is implemented to
systems that vary slowly with time.
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OR Factorization Update:

a.- Let’s assume that the following measurements were
already processed by the algorithm:
T

[Uj07k-0 U50,k0+1 Ujo,k0+T—1]
and
T
[Yjosk0  Yj0,k0+1 Y50,k0+T1)
b.- Being the QR factorization:
Rjo 11 0 Qjo,1 (19)
Rjoo1 Rjooo Qjo,2

where, jo represents the set of input-output values pro-
cessed in the most recent experiment.

c.- Finally, suppose that during the time interval
[40,jo + n — 1] the model in state space is invariant
and equal to:

Tpt1 = Ajory + Bjoug 20)
yr = Cjoxr + Djouy
It can also be represented in a shorter form by relating
the different data matrices as:

Yy = 0 Xug + TjoxUn 21

3) Recursive algorithm for the stochastic part: See [2] :

FE. State-Space Deterministic-Stochastic Modelling of the Non-
stationary System

One way of representing non-stationary discrete multivariate
noisy linear systems, with exogenous time variable inputs in
the state space is:

{ Tiht1 = Aj ki + Bjrujr + vk 22)
Yjk = Cchl‘j,k + Dj,kuj,k + wj
with
, Q S _
e[()og )= L& &) e
gk 0 k+#s
(23)

A theorem for the decomposition by superposition of noisy
time variant linear systems is proposed as follows:

Theorem 1. By superposition, a variant time noisy linear
model S, in an innovative form given by:

‘|

can be decomposed into the following two subsystems:

Tjk+1 = Aj Tk + Bjrujk + Kjrejk

24
Yijk = ijkx]’,k + Dj,kuj,k + €5k (24)

d _ X d . .
xj,[l;-&-l = Aj’kxj,k + Bj ki k

Sy 25
¢ { Yy = Cipady + Djrujin (25)
and
Se: { 51 = Ajps e+ Kk (26)
Y5k = Cir®§p + €k

where, the superscripts d and e refer to the determistic and
the stochastic subsystems Sq and S, respectively and y; . =
y}ik + yj .- The noisy signal state is: z; , = iék
; ; <
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where,
A
=1 ]
Bd
=[]
c=[ct ¢
D=D¢ K=K¢

Proof: See [1]

III. MOESP_AOKI_VAR ALGORITHM

The proposed algorithm MOESP_AOKI_VAR collects the
MOESP_VAR proposed in [2], [3] and the MOESP_AOKI
proposed in [1], [2] and the AOKI_VAR in [13], [14] re-
spectively. Therefore, the algorithm MOESP_AOKI_VAR is
as follows:

1) Obtain the Hankel matrices Yy and Uy
2) Perform the QR factorization:

Uy Ry O Q1
= 27
{YH} [Rm RQQHQJ D
where, 11 and Rso are invertible square matrices.
3) Compute the SVD of Ros as:
0 vr
— [y US| Zm " 28
ma=low vi 1% 2, || e ] e
4) Solve the equation system:

U Ar =US) (29)

5) Update: The recursive algorithm shown in section IL.E.2
is applied
Thus, obtaining the matrices Ai k> BJC{ k> C’J?‘f k> Di o Of
y;{ i for each k time instant and j intervals with respect
to the time.

6) Determine the signal

HA HM HC H)Y. Y,

generated by the matrices

Y1 Y2 Y3 YN-1

0 mn YN_2
y=10 0 wu YN-3
0 0 YN—k—1 YN—k

Y2 Y3 Ys - YN

U3 Y4 g5 - 0

Y, = Ya Ys % - 0

Yi+1 Yj+2 Yij+3 - 0

AL Ay oo A
= Y, Y7” Ay As o Apn

N : : :
Aj Aja Ajik
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A Az Ay Akqa
Aji1 Ajio Ajrtr
Ay
M — A.2
A,
HC = [ A A, Ay }

7) Obtain the SVD for the covariance Hankel matrix
H = Uzl/Z ZI/ZVT

8) Calculate the matrices A, C5,, K7,
9) Validate.

IV. EXPERIMENTATION AND RESULTS

The proposed algorithm is initially defined for T intervals
of experimentation thus getting the system matrices identifica-
tion. The presented MOESP_AOKI_VAR is assessed T times
in order to determine T sets of matrices corresponding to each
experiment.

If V represents small increments, L; is an integer number
for each I; experimentation interval stated by:

I; =[k; — L;V,

Ky + L;V] (30)

to validate the proposed algorithm a benchmark is imple-
mented [4]. The identification at time instant k; (which
is the middle point of each interval I;) is determined as
kjt1 = k;j + vV, where v is an integer number, V represents
an increment with respect to the simulation time and it is given
by V = MVj, where Vj is the j — th sampling period and
M 1is an integer number. L; = 500V j is defined for this study.
The benchmark system is:
The deterministic part is given by the following matrices

o —0.3 ag
where,
1 1 (27rlc)
=73 T 107 400
and the remaining matrices are consired constants:
-2 1 1 3
D=0

The system input is randomically changing for each iteration
of the algorithm.
The proposed algorithm presents the following results for
k=1
—0.3000 0

Ajk = 0 —0.4040
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13
on=[1 2]
14
CiaBin = [ 0 3 }
—0.6121 —1.5121
CinAjnBin = [ —0.2081 —1.1081 }

The deterministic-stochastic identification of the system
under noise is realized. The obtained results after running the
first part of the algorithm MOESP_AOKI_VAR are shown:

a4 _ [ —03000 0

7k = | ~0.0000 —0.4077
pd _ [ 41559  3.7636
ik T | —3.1924  1.5997

ol — 0.7705 0.6867
k105137 0.6677

i nd | 1.0098 3.9984
CinBik = { 0.0031 3.0014
4 1d pd | —0.6478 —1.5118
CindiaBin = [ —0.2308 —1.1086

Figure 1 shows the output of the deterministic model

Identified deterministic model output
15

i
50 100 150
Tirme

Figure 1. Output of the deterministic subsystem )
The results after running the second part of the algorithm

MOESP_AOKI_VAR are:

e _
3k

Kjr = {

A = [1.6092]

—0.2092

0.7319

—0.7319
0.1218

—0.2582
1.1257

€= —2.7437 1.0369 |
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where, A is the covariance matrix of the noise.

Figure 2 presents the stochastic modeled signal by using the
second part of the algorithm MOESP_AOKI_VAR

Identified output stochastic model
20 T T

e

Tirmne

Figure 2. Output of the stochastic subsystem

Figure 3 displays the overlapped signals of the deterministic
and stochastic output signals yj”-l’ g and 5 .

Finally, a verification and validation process of the proposed
combined algorithm MOESP_AOKI_VAR is performed and
Figure 4 shows the results.

The algorithm MOESP_AOKI_VAR describes satisfacto-
rily the noisy signals.

20

S i -
é i) L - B i £ Hu AEH 18 3 AR .
20 i i
o 50 100 150
20 T T
10 ~
&
E | )
“10F
o0 i 1
50 100 150
Figure 3. Overlapping signals
5 T T
E o it e ot
5 i I
D a0 100 180
i
EN 0 = s o
5 i i
u] 50 100 150

Figure 4. Error
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V. CONCLUSIONS

A computational procedure is formulated for the identifi-
cation of discrete stochastic multivariate linear systems time
variant. The considered hypothesis is that the variation in
time of the dynamic system is sufficiently slow to guar-
antee the efficiency of the subspace identification MOESP
for a non-stationary noisy linear system. The algorithm
MOESP_AOKI_VAR has its foundation in AOKI and MOESP
algorithms and it is given by the superposition of them. The
obtained results describe that the proposed method guarantee
an apropriate behaviour when modeling this kind of systems.
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